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Abstract. In several pattern recognition problems, particularly in image recognition 
ones, there are often a large number of features available, but the number of training 
samples for each pattern is significantly less than the dimension of the feature space.  
This statement implies that the sample group covariance matrices often used in the 
Gaussian maximum probability classifier are singular.  A common solution to this 
problem is to assume that all groups have equal covariance matrices and to use as 
their estimates the pooled covariance matrix calculated from the whole training set.  
This paper uses an alternative estimate for the sample group covariance matrices, 
here called the mixture covariance, given by an appropriate linear combination of 
the sample group and pooled covariance matrices. Experiments were carried out to 
evaluate the performance associated with this estimate in two recognition applica-
tions: face and facial expression. The average recognition rates obtained by using the 
mixture covariance matrices were higher than the usual estimates. 

1   Introduction 

A critical issue for the Gaussian maximum probability classifier is the inverse of the sam-
ple group covariance matrices.  Since in practice these matrices are not known, estimates 
must be computed based on the observations (patterns) available in a training set.  In 
some applications, however, there are often a large number of features available, but the 
number of training samples for each group is limited and significantly less than the di-
mension of the feature space.  This implies that the sample group covariance matrices will 
be singular. 

This problem, which is called a “small sample size problem”  [5], is quite common in 
pattern recognition, particularly in image recognition where the number of features is very 
large. One way to overcome this problem is to assume that all groups have equal covari-
ance matrices and to use as their estimates the weighting average of each sample group 
covariance matrix, given by the pooled covariance matrix calculated from the whole 
training set. 

This paper uses another estimate for the sample group covariance matrices [4], here 
called mixture covariance matrices, given by an appropriate linear combination of the 
sample group covariance matrix and the pooled covariance one.  The mixture covariance 
matrices have the property of having the same rank as the pooled estimate, while allowing 



 
a different estimate for each group.  Thus, the mixture estimate may result in higher accu-
racy.  

In order to evaluate this approach, two pattern recognition applications were consid-
ered: face recognition and facial expression recognition. The evaluation used different 
image databases for each application. A probabilistic model was used to combine the 
well-known dimensionality reduction technique called Principal Component Analysis 
(PCA) and the Gaussian maximum probability classifier, and in this way we could inves-
tigate the performance of the mixture covariance matrices on the referred recognition 
tasks. Experiments carried out show that the mixture covariance estimates attained the 
best performance in both applications. 

2   Dimensionality Reduction 

One of the most successful approaches to the problem of creating a low dimensional im-
age representation is based on Principal Component Analysis (PCA).  PCA generates a set 
of orthonomal basis vectors, known as principal components, that minimizes the mean 
square reconstruction error and describe major variations in the whole training set consid-
ered. 

Instead of analyzing the maximum probability classifier directly on the face or facial 
expression images, PCA is applied first, to provide dimensionality reduction. As the num-
ber of training samples is limited and significantly less than the number of pixels of each 
image, the high-dimensional space is very sparsely represented, making the parameter 
estimation quite difficult – a problem that is called the curse of dimensionality [8].  Fur-
thermore, many researchers have confirmed that the PCA representation has good gener-
alization ability especially when the distributions of each class are separated by the mean 
difference [1,6,7,9]. 

3   Maximum Probability Classifier 

The basic problem in the decision-theoretic methods for pattern recognition consists of 
finding a set of g discriminant functions d1 (x), d2 (x), ..., dg (x), where g is the number of 
groups or classes, with the decision rule such that if the p-dimensional pattern vector x 
belongs to the class i (1 ≤ i ≤ g), then di (x) ≥ dj (x), for all i ≠ j and 1 ≤ j ≤ g. 

The Bayes classifier designed to maximize the total probability of correct classifica-
tion, where equal prior probabilities for all groups are assumed, corresponds to a set of 
discriminant functions equal to the corresponding probability density functions, that is, 
di(x)=fi(x) for all classes [8].  The most common probability density function applied to 
pattern recognition systems is based on the Gaussian multivariate distribution 
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where µi and Σi are the class i population mean vector and covariance matrix.  Usually the 
true values of the mean and the covariance matrix are seldom known and must be esti-
mated from training samples.  The mean is estimated by the usual sample mean 
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where jix , is observation j from class i, and ki is the number of training observations from 

class i. The covariance matrix is commonly estimated by the sample group covariance 
matrix defined as 
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From replacing the true values of the mean and the covariance matrix in (1) by their re-
spective estimates, the Bayes decision rule achieves optimal classification accuracy only 
when the number of training samples increases toward infinity [4].  In fact for p-
dimensional patterns the sample covariance matrix is singular if less than p + 1 training 
samples from each class i are available, that is, the sample covariance matrix can not be 
calculated if ki is less than the dimension of the feature space. 

One method routinely applied to solve this problem is to assume that all classes have 
equal covariance matrices, and to use as their estimates the pooled covariance matrix.  
This covariance matrix is a weighting average of each sample group covariance matrix 
and, assuming that all classes have the same number of training observations, is given by 
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Since more observations are taken to calculate the pooled covariance matrix Spooled , this 
one will potentially have a higher rank than Si and will be eventually full rank.  Although 
the pooled estimate does provide a solution for the algebraic problem arising from the 
insufficient number of training samples in each group, assuming equal covariance for all 
groups may bring about distortions in the modeling of the classification problem and 
consequently lower accuracy. 

4   Mixture Covariance Matrix 

The choice between the sample group covariance matrix and the pooled covariance one 
represents a restrictive set of estimates for the true covariance matrix.  A less limited set 
can be obtained using the mixture covariance matrix. 

4.1   Definition 

The mixture covariance matrix is a linear combination between the pooled covariance 
matrix Spooled and the sample covariance matrix of each class Si.  It is given by 
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The mixture parameter wi takes on values 0 < wi ≤ 1 and is different for each class.  This 
parameter controls the degree of shrinkage of the sample group covariance matrix esti-
mates toward the pooled one.   

Each Smixi matrix has the important property of admitting an inverse if the pooled es-
timate Spooled does so [2]. This implies that if the pooled estimate is non-singular and the 
mixture parameter takes on values wi > 0, then the Smixi will be non-singular. 

Then the remaining question is: what is the value of the wi that gives a relevant linear 
mixture between the pooled and sample covariance estimates ?  A method that determines 
an appropriate value of the mixture parameter is described in the next section. 

4.2   The mixture parameter 

According to Hoffbeck and Landgrebe [4], the value of the mixture parameter wi can be 
appropriately selected so that a best fit to the training samples is achieved.  Their tech-
nique is based on the leave-one-out-likelihood (L) parameter estimation. 

In the L method, one sample of the class i training set is removed and the mean and 
covariance matrix from the remaining ki – 1 samples are estimated.  Then the likelihood 
of the excluded sample is calculated given the previous mean and covariance matrix esti-
mates.  This operation is repeated ki – 1 times and the average log likelihood is computed 
over all the ki samples.  Their strategy is to evaluate several different values of wi in the 
range 0 < wi ≤ 1, and then choose wi that maximizes the average log likelihood.  Once the 
mixture parameter wi is selected, the proposed covariance matrix estimate is calculated 
using all the training samples and replaced into the maximum probability classifier de-
fined in (1). 

The mean of class i without sample r may be computed as 
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The notation \r indicates the corresponding quantity is calculated with the rth observation 
from class i removed.  Following the same idea, the sample covariance matrix and the 
pooled covariance matrix of class i without sample r are 
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Then the average log likelihood of the excluded samples can be calculated as follows: 
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where ( ))(,| \\, iririri wSmixxxf  is the Gaussian probability function defined in (1) with 

rix \ mean vector and )(\ iri wSmix covariance matrix defined as 
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This approach, if implemented in a straightforward way, would require computing the 
inverse and determinant of the )(\ iri wSmix for each training sample.  As the )(\ iri wSmix is 

a p by p matrix and p is typically a large number, this computation would be quite expen-
sive.  Hoffbeck and Landgrebe [4], using the Sherman-Morrison-Woodbury formula [3], 
have showed that it is possible to significantly reduce the required computation by writing 
the log likelihood of the excluded samples in a form as follows: 
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5   Experiments 

Two experiments with two different databases were performed. 
In the face recognition experiment the ORL Face Database containing ten images for 

each of 40 individuals, a total of 400 images, were used. The Tohoku University has pro-
vided the database for the facial expression experiment.  This database is composed of 
193 images of expressions posed by nine Japanese females.  Each person posed three or 
four examples of each six fundamental facial expression: anger, disgust, fear, happiness, 
sadness and surprise.  The database has at least 29 images for each fundamental facial 
expression. For implementation convenience all images were first resized to 64x64 pixels. 

The experiments were carried out as follows. First PCA reduces the dimensionality of 
the original images and secondly the Gaussian maximum probability classifier using one 
out of the three covariance estimates (Si, Spooled and Smixi) was applied.  Each experiment 
was repeated 25 times using several PCA dimensions.  Distinct training and testing sets 
were randomly drawn, and the mean and standard deviation of the recognition rate were 
calculated. 

The face recognition classification was computed using for each individual 5 images to 
train and 5 images to test.  In the facial expression recognition, the training and test sets 
were respectively composed of 20 and 9 images.  The size of the mixture parameter (0 < 
wi ≤ 1) optimization range was taken to be 20, that is wi = [0.05, 0.10, 0.15, …, 1]. 



 
6   Results 

Tables 1 and 2 present the training and test average recognition rates (with standard de-
viations) of the face and facial expression databases, respectively, over the different PCA 
dimensions. 

Since only 5 images of each individual were used to form the face recognition training 
set, the results relative to the sample group covariance estimate were limited to 4 PCA 
components. Table 1 shows that in all but one experiment the Smix estimate led to higher 
accuracy than did both the pooled covariance and sample group covariance matrices. In 
terms of how sensitive the mixture covariance results were to the choice of the training 
and test sets, it is fair to say that the Smix standard deviations were similar to the other 
two covariance estimates. 

Table 2 shows the results of the facial expression recognition. For more than 20 com-
ponents when the sample group covariance estimate became singular, the mixture covari-
ance estimate reached higher recognition rates than the pooled covariance estimate.  
Again, regarding the computed standard deviations, the Smix estimate showed to be as 
sensitive to the choice of the training and test sets as the other two estimates. 

 

Table 1. Face Recognition Results 
 
 

Table 2. Facial Expression Recognition Results  

 

PCA Sgroup Spooled Smix 

Components Training Test Training Test Training Test 

4 99.5 (0.4) 51.6 (4.4) 73.3 (3.1) 59.5 (3.0) 90.1 (2.1) 70.8 (3.2) 
10   96.6 (1.2) 88.4 (1.4) 99.4 (0.5) 92.0 (1.5) 
20   99.2 (0.6) 91.8 (1.8) 100.0 (0.1) 94.5 (1.7) 
30   99.9 (0.2) 94.7 (1.7) 100.0 (0.0) 95.9 (1.5) 
40   100.0 (0.0) 95.4 (1.5) 100.0 (0.0) 96.2 (1.6) 
50   100.0 (0.0) 95.7 (1.2) 100.0 (0.0) 96.4 (1.5) 
60   100.0 (0.0) 95.0 (1.6) 100.0 (0.0) 95.8 (1.6) 
70   100.0 (0.0) 94.9 (1.6) 100.0 (0.0) 95.4 (1.6) 

 

PCA Sgroup Spooled Smix 

Components Training Test Training Test Training Test 

5 41.5 (4.2) 20.6 (3.9) 32.3 (3.0) 21.6 (3.8) 34.9 (3.3) 21.3 (4.1) 
10 76.3 (3.6) 38.8 (5.6) 49.6 (3.9) 26.5 (6.8) 58.5 (3.7) 27.9 (5.6) 
15 99.7 (0.5) 64.3 (6.4) 69.1 (3.6) 44.4 (5.3) 82.9 (2.9) 49.7 (7.7) 
20   81.2 (2.6) 55.9 (7.7) 91.4 (2.8) 61.3 (7.1) 
25   86.9 (2.8) 64.9 (6.9) 94.8 (2.2) 68.3 (5.1) 
30   91.9 (1.7) 70.1 (7.8) 96.8 (1.3) 72.3 (6.2) 
35   94.3 (1.7) 72.0 (7.4) 97.7 (1.1) 75.6 (5.5) 
40   95.9 (1.4) 75.6 (7.1) 98.3 (1.1) 77.2 (5.7) 
45   96.7 (1.3) 78.4 (6.5) 98.6 (0.8) 79.1 (5.4) 
50   97.6 (1.0) 79.4 (5.8) 99.2 (0.7) 81.0 (6.6) 
55   98.5 (0.9) 81.6 (6.6) 99.5 (0.6) 82.8 (6.3) 
60   99.1 (0.8) 82.1 (5.9) 99.6 (0.6) 83.6 (7.2) 
65   99.5 (0.6) 83.3 (5.5) 99.8 (0.4) 84.5 (6.2) 

 



 
7   Conclusion 

This paper used an estimate for the sample group covariance matrices, here called mixture 
covariance matrices, given by an appropriate linear combination of the sample group 
covariance matrix and the pooled covariance one.  The mixture covariance matrices have 
the property of having the same rank as the pooled estimate, while allowing a different 
estimate for each group. 

Extensive experiments were carried out to evaluate this approach on two recognition 
tasks: face recognition and facial expression recognition.  A Gaussian maximum probabil-
ity classifier was built using the mixture estimate and the typical sample group and pooled 
estimates.  In both tasks the mixture covariance estimate achieved the highest accuracy.  
Regarding the sensitiveness to the choice of the training and test sets, the mixture covari-
ance matrices presented similar performance to the other two usual estimates. 
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