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ABSTRACT 
 

Among the many methods proposed in the literature for face 
recognition, those relying on the so called eigenfaces have been 
explored with great interest in the last few years. In those 
methods the face images are initially subjected to a PCA stage 
(Principal Component Analysis) for dimensionality reduction 
and then applied to a classifier. This work evaluates and 
compares two eigenface based face recognition systems, using 
two different classifiers: a) the LDA (Linear Discriminant 
Analysis) classifier, and b) a Gaussian Mixture Model RBF 
(Radial Basis Function) neural network. Extensive experiments 
using the ORL Face Database indicate that the more general 
model underlying the RBF classifier does not bring any 
significant performance improvement compared with the 
simpler and less computation intensive LDA approach. 
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1. INTRODUCTION 
 
In an increasingly computerized world, there is an 
overwhelming demand for automated personal identification 
systems. In the past few years, sophisticated methods for either 
verifying or recognizing the identity of an individual have been 
proposed, well beyond the password authentication schemes 
commonly employed in automated teller machines, telephone 
calling and credit cards. Most of those methods are based on 
the recognition of physiological characteristics such as hand 
shape, fingerprint, retinal pattern, speech and the whole face 
[4].  Identity verification based on face features has important 
advantages when compared to other approaches, particularly in 
applications where the subject does not wish to be identified, 
e.g., bank/store security, expert identification, witness face 
reconstruction, etc. 

A central issue in pattern recognition in general, and in face 
recognition in particular, is the well-known problem of 
dimensionality reduction.  Face images are highly redundant, 
since every individual has one mouth, one nose, two eyes and 
so on. Instead of using n intensity values for a n pixel image, it 
is generally possible to characterize an image instance by a set 
of p features, for p << n.  The set of face images of the same 
individual defines a class. The features must be chosen in such 
a way, that it is possible to identify the right class of a face 
image based only on those features.  

 This work studies two face recognition systems.  Both 
systems have a PCA stage for dimensionality reduction. It 
computes the projections of a face image over the principal 
components (the so called eigenfaces). The face images 
represented in this lower dimensional space (the face space) are 
the input to a classifier. In the first system a linear classifier 
based on the Linear Discriminant Analysis (LDA) is used. The 
second uses a nonlinear classifier based on a RBF neural 
network.   
 The LDA approach assumes that the population of each 
group, corresponding to the different images of the same 
person, is normally distributed around its centroid in the 
discriminant space.  It further assumes that all groups have the 
same covariance matrix. Independent experiments  [8,13,22]  
have indicated that the LDA approach  reaches the best 
performance among the proposed linear methods for face 
recognition using eigenfaces. 

The RBF network is an one hidden layer neural network 
with radial basis activation functions. The most commonly 
used activation function is the Gaussian function. There are 
several techniques and heuristics for optimizing the basis 
functions parameters and determining the number of hidden 
neurons for best classification rates. This work implements the 
Gaussian Mixture Model algorithm to train the network [6].  
The model describes samples of each individual as mixture of 
Gaussian distributions, allowing the RBF classifier to describe 
regions with arbitrary form, including the case of disjoint 
regions. Since the LDA approach uses a single Gaussian to 
represent the population of a group in the input space, the RBF 
network has the potential for a better performance.   

This work analyzes both face recognition systems to 
determine how much the superior generality of the model 
underlying the RBF Gaussian Mixture Model network impacts 
the performance when compared to the LDA approach. 
 The Olivetti Face Database (ORL) containing 10 photos of 
40 individuals was used in a set of experiments carried out to 
compare the performance of both face recognition systems. In 
each experiment 200 photos (5 of each individual) were chosen 
at random to calculate the eigenfaces and to train both 
classifiers. The other 200 photos were used for performance 
evaluation. 
 The results of the experiments carried out in this work 
showed no clear superiority of RBF or LDA methods. The 
ability of the RBF network to use more than one Gaussian to 
describe the population of each group brought no significant 
performance improvement, when compared to the less 
computation intensive LDA classifier. 
 
 



2. PREVIOUS WORK ON FACE RECOGNITION 
 
Earlier face recognition systems were mainly based on 
geometric facial features and template matching [20,21].  In 
those works a face was characterized by a set of features such 
as mouth position, chin shape, nose width and length which are 
potentially insensitive to illumination conditions. Brunelli et al.  
[20] compared this approach with a traditional template 
matching scheme which produced higher recognition rates for 
the same face database (90% against 100%).  Cox, Ghosn and 
Yianilos [11] proposed a mixture distance technique which 
achieved the best reported recognition rate among the 
geometric feature approaches using the same database.  Those 
results were obtained in an experiment where the features were 
extracted manually. 

The Principal Component Analysis technique was first 
suggested for the characterization of human faces by Kirby and 
Sirovich [14] and later extended by Turk and Pentland [15]. 
Many refinements to the original idea were further introduced  
[2,3,5,19]. Several psychologists and neurophysiologists use 
PCA to model the way the human brain stores, retrieves and 
recognizes faces [9,16,17,18].  The experiments of Turk and 
Pentland [15] achieved recognition rates around 96%, 85% and 
64% respectively for lighting, orientation and scale variation.  
Recognition rate around 95% are reported by Pentland and 
Moghaddam (1994) [2] for a database consisting of 3000 
accurate registered and aligned faces. 
 Samaria & Harter  [10] presented an approach based on 
Hidden Markov Models that achieved a recognition rate of 
95% for the ORL database at the expense of a high 
computational overhead. 
 All those works, as well as this one, rely on a preprocessing 
to detect a face in a scene and to compensate for variation of 
lighting, position, rotation and scale. The work reported here 
studies two face recognition systems consisting of a standard 
PCA used for dimensionality reduction, followed respectively 
by a LDA classifier and by a RBF network. 

The LDA approach was originally proposed by Swets and 
Weng [8]. In the first step a n-pixel face image is projected 
onto the face subspace, whose basis is given by the p (p < n) 
eigenvectors of the sampled covariance matrix corresponding 
to the highest eigenvalues (the eigenfaces). In the second step 
the LDA maps the projection of the input image on the face 
space onto a discriminant space. A set of discriminant 
functions, based on general quadratic distance measures, is then 
used as classifier.  

The RBF network for face recognition has already been 
studied by Howell and Buxton. Instead of using principal 
components, they use either the image itself , or  the output of a 
Difference of Gaussian filter and the output of a Gabor filter 
[1] as the input to the RBF network. Vallentin, Abdi and 
Edelman [9] used PCA followed by a RBF network to model 
how faces are stored in human memory.  Their work neither 
compares the performance of the RBF network with any other 
classifier. 
 The main contribution of this work is a better 
understanding of the models underlying the LDA and RBF 
classifiers for the face recognition application. The experiments 
carried on with this purpose have shown that the simpler and 
less computational expensive LDA classifier has almost the 
same performance as the RBF Gaussian Mixture neural 
network. 
 
 
 

3. USING PCA FOR DIMENSIONALITY REDUCTION 
 
 An input image with n pixels can be treated as a point in a 
n-dimensional axes space, called, in this context, the image 
space. The coordinates of this point represent the values of 
each pixel of the image i and form a feature vector xi = [xi1,..., 
xin]

T obtained by concatenating the columns of the image 
matrix. For this representation to make sense for classification, 
it is necessary that two images that look alike correspond to 
two close points in the image space. 
 The intensities of adjacent pixels of a face image are 
usually highly correlated, so that a face image contains much 
redundant information.  As a consequence, the image-points 
will not occupy evenly the image space and can be projected 
onto a lower dimensional subspace without significant loss of 
information.  
 Lets consider a set of K images and define the data matrix 
X with rows given by the feature vectors T

ix , i = 1,..,K , 
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A column of matrix X represents the values of a particular 
pixel observed across the K images. Without loss of generality 
the mean of each column can be assumed to be zero. This can 
be achieved by subtracting the column mean from each 
column. With zero mean images the sampled covariance matrix 
of the images is given by the n x n matrix, 
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 Consider now the representation of those images on 
another basis (matrix Y). This is achieved by applying a linear 
transformation: 
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where the columns of the transformation matrix A are the axes 
of the new basis expressed in the original basis. This 
corresponds geometrically to project the points xi’s over the 
new axes. The set of images in matrix X can be projected on 
the new basis by the transformation 
 

XAY = .       (4) 
 
Since the mean of xi is zero, the mean of yi will also be zero. 
Moreover, the sample covariance matrix expressed in the new 
basis will be obtained by, 
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 The new basis, defined by transformation matrix A 
columns, can be determined so as to satisfy several criterion, 
motivating different approaches for dimensionality reduction. 
In this work we concentrate on the maximum variance of 
projections given by the Principal Components Analysis (PCA) 
technique. 

PCA gives the set of axes over which the projections of the 
whole sample has the maximum dispersion, subjected to the 



orthonormality condition. Figure 1 illustrates the axes found by 
PCA for a 2 dimensional example. Note that the first axis e’1 is 
in the direction of the maximum variance. Axis e’2 is in the 
next direction of maximum variance and is orthogonal to e’1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The geometric interpretation of  principal components for a 
two dimensional feature space. 

 
The axes of the new orthonormal basis having those 

properties are the principal components. They are given by the 
eigenvectors of SX. In the context of face recognition those 
axes are frequently named eigenfaces. Therefore, the new 
features associated with the columns of Y will be uncorrelated 
with variance given by the eigenvalues of SX or, equivalently, 
SY will be a diagonal matrix.   

Important for the dimensionality reduction is the property 
that the proportion of the total variance explained by one 
eigenface is given by the ratio of the corresponding eigenvalue 
to the trace of SY.  Suppose that the eigenfaces of SX are ranked 
in eigenvalues decreasing order. To reduce dimensionality, 
only projections over the p eigenvectors (p < n) corresponding 
to the p greatest eigenvalues are considered.  

By dismissing the projections over the remaining n-p 
eigenvectors, with lower eigenvalues, will result in a 
reconstruction error, whose mean square value is given by 
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where λj is the jth  eigenvalue of SX.  

The number p of principal components retained is chosen 
so that the error is less than some given percentage m of the 
sum of all eigenvalues. On this way,  p is the minimum integer 
number for which the condition below holds: 
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Therefore, the columns of the transformation matrix P 

generated by PCA are the first p eigenvectors of SX.  Swets and 
Weng have called the so selected features the Most Expressive 
Features (MEFs) [8], since they give the minimum mean 
square reconstruction error. 
 
 

4. CLASSIFICATION SCHEMES 
 
A classifier is essentially a mapping of the input space onto a 
set of classes. The literature on pattern recognition presents a 

huge number of schemes to construct this mapping from data 
[12]. 
 This work evaluates and compares two eigenface based 
recognition systems, using two different classifiers: a) the LDA 
(Linear Discriminant Analysis) classifier, and b) a RBF (Radial 
Basis Function) neural network. 
 
The LDA approach 
 
The classifier based on the Linear Discriminant Analysis can 
be seen as involving two stages. In the first stage a new 
(discriminant) lower dimensional basis is chosen. In the second 
stage the projections of the sample on the new discriminant 
basis are fed to a distance classifier.   
  The goal of PCA on choosing a lower dimensional basis is 
to minimize the reconstruction error. This is not the major 
concern in pattern recognition applications, whose goal is to 
maximize the recognition rate. Figure 2 shows two dimensional 
example, where the projections on the principal components 
(e’1, e’2) can not properly separate the two groups. The axis 
over which the projections of the both populations are clearly 
separated is the e” 1 axis, quite different from the basis provided 
by PCA. The set of axes which satisfies the condition of 
maximal separation is called the Most Discriminant Features 
(MDFs) [8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The geometric interpretation of Most Discriminant Features 

for a two dimensional feature space. 
 
 The Linear Discriminant Analysis (LDA) provides a 
procedure to determine a set of axes whose projections of 
different groups have the maximum separation. This procedure 
can be described as follows.  

Suppose that the sample consists of K face images from 
where kj images are of individual j, for j = 1,...,g , so that K = k1 
+...+ kg.  Let jx be the mean feature vector of images from 

individual j, defined by 
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The sampled between individuals covariance matrix is defined 
as 
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where x  is the grand mean vector of all observations of all 
groups. Let the sampled within individuals covariance matrix 
be defined as 
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The maximum separation problem can be stated as to find the 
projection matrix Q such that 
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with solution given by the eigenvectors of  BWC 1−= .  C  is a 
n x n matrix with maximum rank equal to min(g-1,n), since B 
is obtained from a summation of only g terms. Therefore, the 
new basis consists of the min(g-1,n) eigenvectors with nonzero 
eigenvalues.  

Since in most practical applications g < n, this procedure 
can significantly reduce the dimensionality. An important 
property of the new basis allows a further reduction. The 
contribution of each axis to the measure of the spread of the 
populations is proportional to the corresponding eigenvalue. If 
the eigenvectors are ranked in eigenvalues decreasing order, 
one can take only the first q < min(g-1,n) eigenvectors, with  
the greatest eigenvalues, still preserving much of the group 
separation. The parameter q is chosen such that some given 
percentage r of the separation between groups are preserved. 
Then, the value of q is the minimum integer number for which 
the condition  
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holds. 
 Usually, in face recognition applications, the amount of 
face images in the training set (K) is less than the number of 
pixels in the images (n). In such cases the sampled within 
individuals covariance matrix W - Eq. (11) - is not invertible. 
To circumvent this problem, Swets and Weng [8] propose to 
use the p ≤ K projections over the eigenfaces produced by a 
previous PCA algorithm as input to the LDA stage. Therefore, 
this work does not use the pixel intensities as input to the LDA 
classifier, but the principal components generated by a previous 
PCA stage, according to Swets and Wengs proposal. 
 
 
The RBF network classifier  
 
The RBF classifier is an one hidden layer neural network with 
several forms of radial basis activation functions.  The most 
common one is the Gaussian function defined by, 
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where σj is the width parameter, µj is the vector determining 
the center of basis function f and x  is the n-dimensional input 
vector . 
 In a RBF network, a neuron of the hidden layer is activated 
whenever the input vector is close enough to its center vector 
µj.  There are several techniques and heuristics for optimizing 
the basis functions parameters and determining the number of 
hidden neurons needed to best classification [7]. This work 
implements the Gaussian Mixture Model algorithm to train the 
network. The model regards the basis functions as the 
components of a mixture density model, whose parameters σj 
and µj are to be optimized by maximum likelihood [7].  The 
number of hidden neurons or, equivalently, the number of basis 
functions is treated as an input to the model and is typically 
much less than the total number of input data points { xi} . 
 The second layer of the RBF network, which is the output 
layer, comprises one neuron to each individual. Their output 
are linear functions of the outputs of the neurons in the hidden 
layer and is equivalent to an OR operator. The final 
classification is given by the output neuron with the greatest 
output. 
 With RBF networks, the regions of the input space 
associated to each individual can present an arbitrary form. 
Also, disjoint regions can be associated to the same individual 
to render, for example, very different angles of vision or 
different facial expressions. 
 
 

5.  EXPERIMENT DESIGN 
 

The Face Database 
 
The experiments to evaluate both recognition systems make use 
of the ORL Face Database.  It contains a set of face images 
taken between April 1992 and April 1994 at the Olivetti 
Research Laboratory in Cambridge, U.K, with ten images for 
each of 40 individuals, a total of 400 images.  In some cases the 
images were taken at distinct times, with varying lighting, 
facial expressions (open/closed eyes, smiling/not smiling) and 
facial details (glasses/no glasses).  All images were taken 
against a dark homogeneous background with the person in an 
upright frontal position, with tolerance for some tilting and 
rotation of up to about 20 degrees.  Scale varies about 10%.  
The original size of each image is 92x112 pixels, with 256 gray 
levels per pixel.  For implementation convenience all images 
were first resized to 64x64 pixels.  Figure 3 shows an example 
of the set of images for one subject. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3 – A set of ten images for one subject from the ORL database. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  The experiments carried out to evaluate the recognition systems. 
 
The Experiments 
 
Figure 4 illustrates the experiments carried out in this work. 
Before being used in the experiments all the images are 
represented as a row vector, which is obtained by simply 
concatenating the columns of the image matrix together. 

Each experiment consists of three steps: generation of the 
PCA eigenvectors, training the classifiers and testing the 
classifiers. 
 

First Step – PCA eigenvectors generation: In the first 
step the PCA eigenvectors are generated.  A training set is 
selected by choosing randomly 5 images for each individual, a 
total of 200 images, each one containing 64x64=4096 pixels.  
The remaining 5 images per individual are used later to test 
both methods (step 3).  The average image of all training faces 
is then computed and subtracted from each face producing the 
matrix X.  This zero mean training matrix is used as input to 
compute the PCA, and the p eigenvectors (eigenfaces) with the 

greatest eigenvalues are selected, forming the PCA 
transformation matrix P.  To determine the maximum number 
of eigenfaces to retain, the total variance explained by each 
principal component was taken into account. Both systems 
reached the top performance around 50 eigenfaces.  
  

Second Step – Training the classifiers: In the second step 
the classifiers are trained.  To train the RBF classifier, the 
matrix X containing the 200 training images is projected onto 
the face space. The matrix Y, containing the training faces 
represented in the Most Expressive Features, is so computed. 
Those matrices are used to estimate the probability density of 
the input data.  The number of basis functions is an input to the 
model. The basis function centers are determined by fitting the 
mixture model with circular covariances using the EM 
(expectation-maximization) algorithm [7] and their respective 
widths are set to the maximum inter-center square distance.  
The hidden to output weights that gives rise to the least squares 
solution are determined using the pseudo-inverse [7].  The RBF 
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network is trained to produce the value 1 in the output unit 
corresponding to the face presented at the input layer and value 
0 in every other unit.   

The second design method, the LDA classifier, uses also 
the matrix Y as its training set.  The within-group covariance 
matrix and the between-group covariance matrix of the face 
features represented in the MEF space are computed. The 
discriminant axes are then calculated according to Eq. (11) 
obtaining the transformation matrix Q. The projections of the 
training faces in terms of the Most Discriminat Features (the 
matrix Z in figure 4) are then computed. This step ends with 
the computation of the centroid for each individual in the new 
discriminant space. 
 

Third Step – Testing the classifiers: The performance of 
the classifiers is evaluated in the third step.  Each test image 
(matrix X’) is projected onto the MEFs using the matrix P 
obtained in the first step. The resulting matrix Y’  is subjected 
to the RBF classifier.   

In the system using the LDA classifier a second projection 
takes place onto the MDF space, whose projection matrix Q  
has been computed in the second step.   

The true/false recognition of both classifiers are then stored 
for the computation of the recognition rate. 

This three-steps procedure was repeated 25 times using 
different training and testing sets.  The number p of eigenfaces 
used during the analysis assumed ten different values: 
10,20,30,40,50,60,70,80,90 and 100.  In the evaluation of the 
RBF classifier 70,80,90,100, and 110 neurons in the hidden 
layer were considered. 
 
 

6.  EXPERIMENT RESULTS 
 

The results of the experiments are summarized in figures 5 to 8. 

Figure 5 shows the average recognition rate obtained in 25 
runs for the LDA method as a function of the number of 
eigenfaces.  The four curves represent the results of 10, 20, 30 
and 39 dimensional discriminant spaces generated by the LDA 
algorithm.  It can be observed that the performance grows by 
increasing the number of MDFs (the dimension of the 
discriminant space - q), and reaches, in these experiments, the 
maximum value for 39 MDFs. The maximum average 
recognition rate for the LDA - 95.7% - was reached for 39 
MDFs computed on 50 MEFs. 

Figure 6  shows the recognition rate of the RBF classifier. 
The five distinct curves correspond to different numbers of 
neurons in the RBF hidden layer.  With more than 110 hidden 
neurons, the classifier brings no improvement of the  
recognition rates and the training process has become unstable. 
It can be seen in figure 6 that the best average recognition rate 
of the RBF approach - 95.5% - was obtained for 50 eigenfaces 
working with 110 neurons in the RBF hidden layer.  

The average recognition rates for the best performance 
configurations for each methods – LDA classifier with 39 
MDFs  and the RBF classifier with 110 neurons in the hidden 
layer - are shown in figure 7.  For more than 40 eigenfaces both 
classifiers had almost the same recognition rates. 

Figure 8 shows how many times, during the 25 runs, each 
method has won, that is to say, has had a better performance 
than the other.  Again, the results in the figure 8 indicate a 
similar performance of both approaches. 

As a final evaluation, the results show no clear superiority 
of any method as far as the recognition rate is concerned.  The 
ability of the RBF network to use more than one gaussian 
activation function to describe the population brings no 
important performance improvement when compared to the 
LDA approach. The more complex model underlying the RBF 
network implies in a higher computation cost, and its training is 
sometimes unstable.  
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Average recognition rate for  LDA method as a function of the 
number of eigenfaces for  10- 20- 30- and 39 dimensional discriminant space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6:  Average recognition rate for the RBF method as a function of the 
number of eigenfaces for  70, 80, 90, 100 and 110 neurons in the hidden layer. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:  Average recognition rate for best parameter configuration 
of both methods as a function of the number of eigenfaces. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:  Number of times in the 25 runs each classifier had the best 
recognition rate  as a function of the number of eigenfaces  (in some 
cases both classifiers had the same performance). 
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7.  CONCLUSIONS 

 
Two eigenface based face recognition systems were evaluated: 
one based on the Linear Discriminant Analysis and the other 
based on a Radial Basis Function Neural Network. 

The ORL Face database containing 10 photos of 40 
individuals was used for the training and testing purposes. The 
parameters of both systems (number of eigenfaces, number of 
discriminant features and number of neuron in the hidden layer 
of the RBF network) were varied in a wide range of values. For 
each set of parameter values the experiments were executed 25 
times for a different choice of the training and testing sets. 
  The performance measures on the experiments have 
indicated no recognition rate superiority of any method. On the 
other hand, the RBF approach has involved a higher 
computational cost than LDA method, and also sometimes has 
presented problems of convergence for high dimensional space. 
Therefore, it is fair to say that the experiments carried out in 
this work favor the LDA approach because of its simplicity and 
reliability. 
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