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Abstract 
 

The Bayes plug-in classifier has been successfully 
applied to discriminate high dimensional data. This 
classifier is based on similarity measures that involve the 
inverse of the sample group covariance matrices.  These 
matrices, however, are singular in “ small sample size”  
problems.  Therefore, other methods of covariance 
estimation have been proposed where the sample group 
covariance estimate is replaced by covariance matrices 
of various forms.  In this paper, a new covariance 
estimator is proposed and compared with two covariance 
estimators known as RDA and LOOC.  The new estimator 
does not require an optimisation procedure, but an 
eigenvector-eigenvalue ordering process to select 
information from the projected sample group covariance 
matrices whenever possible and the pooled covariance 
otherwise.  The effectiveness of the method is shown by 
experimental results carried out on face and facial 
expression recognition, using different databases for 
each application. 
 
 

1. Introduction 
 

Image pattern recognition problems, especially face 
and facial expression ones, are examples of “small 
sample size”  problems.  In such applications there are a 
large number of features available but the number of 
training samples for each pattern is considerably less than 
the dimension of the feature space. 

The Bayes plug-in classifier has been successfully 
applied to discriminate high dimensional data [2,7,10,11].  
This classifier is based on similarity measures that 
involve the inverse of the true covariance matrix of each 
class.  Since in practical cases these matrices are not 
known, estimates must be computed based on the patterns 
available in a training set.  The usual choice for 
estimating true covariance matrices is the maximum 
likelihood estimator defined by the corresponding sample 
group covariance matrices. However, in “small sample 

size”  applications the sample group covariance matrices 
are singular. 

One way to overcome this problem is to assume that 
all groups have equal covariance matrices and to use as 
their estimates the weighting average of each sample 
group covariance matrix, given by the pooled covariance 
matrix calculated from the whole training set. The 
decision concerning whether to choose the sample group 
covariance matrices or the pooled covariance matrix 
represents a limited set of estimates for the true 
covariance matrices [3].  Therefore, other approaches 
have been applied not only to overcome the small size 
effect but also to provide higher classification accuracy. 

In this paper, a new covariance estimator is proposed 
and compared with two covariance estimators known as 
RDA [3] and LOOC [7].  Experiments were carried out to 
evaluate these approaches on face and facial expression 
recognition, using different databases for each 
application. The effectiveness of the new covariance 
method is shown by the results. 
 

2. The Bayes Plug-in Classifier  
 

The Bayes plug-in classifier, also called the Gaussian 
maximum likelihood classifier, is based on the p-
multivariate normal or Gaussian class-conditional 
probability densities. 

Assuming that all of the g groups or classes have the 
same prior probabilities, the optimal Bayes classification 
rule may be specified as: Assign pattern x to class i if 
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where µj and Σj are the true class j population mean 
vector and covariance matrix.  The Bayes classification 
described in (1) is also known as the quadratic 
discriminant rule (QD). 

In practice, however, the true values of the mean and 
covariance matrix are seldom known and must be 
replaced by their respective estimates calculated from the 
training samples available.  The mean is estimated by the 



usual sample mean ix  which is the maximum likelihood 
estimator of iµ .  The covariance matrix is commonly 
estimated by the sample group covariance matrix iS  
which is the unbiased maximum likelihood estimator of 
Σi. 

From replacing the true values of the mean and 
covariance matrix in (1) by their respective estimates 
(“plug-in”), the QD rule can be rewritten as:  Assign 
pattern x to class i that minimizes the generalized distance 
between x and ix  
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2.1. “ Small Sample Size”  Problems 
 

It is well known that the misclassification rate defined 
in (2) approaches the optimal rate obtained by equation 
(1) only when the sample sizes in the training set 
approach infinity [1]. 

In fact, the performance of (2) can be seriously 
degraded in small samples due to the instability of the 
sample estimators [9].  For p-dimensional patterns the use 
of iS  is especially problematic if less than p + 1 training 
observations from each class are available, that is, the 
sample group covariance matrix is singular if the number 
of observations of each group is less than the dimension 
of the feature space. 

One method routinely applied to overcome the “small 
sample size”  problem and consequently deal with the 
singularity and instability of the iS  is to employ the so-
called linear discriminant rule (LD) which is obtained by 
replacing the iS  in (2) with the pooled sample covariance 
matrix 
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where ni is the number of training observations from class 
i, g is the number of groups or classes and 
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Since more observations are taken to calculate the 
pooled covariance matrix, Sp will potentially have a 
higher rank than Si (and be eventually full rank).  
Theoretically, however, Sp is a consistent estimator of the 
true covariance matrices Σi only when Σ1=Σ2=…=Σg. 
 

3. Covar iance Estimators 
 

The sample group covariance matrices Si (or QD 
classifier) and the pooled covariance matrix Sp (or LD 
classifier) represent a limited set of estimates for the true 
covariance matrices Σi, particularly in small sample size 
problems.  Therefore, other estimators have been applied 

not only to overcome these problems but also to provide 
higher classification accuracy.  In the next sub-sections, 
the Friedman’s RDA [3] and the Hoffbeck’s LOOC [7] 
methods are briefly described.  A new covariance 
estimator is proposed in section 4. 
 
3.1. Fr iedman’s RDA M ethod 
 

The Friedman’s RDA method is basically a two-
dimensional optimisation method that shrinks both the Si 
towards Sp and also the eigenvalues of the Si towards 
equality by blending the first shrinkage with multiples of 
the identity matrix. 

In this context, the sample covariance matrices Si of 
the discriminant rule defined in (2) are replaced by the 
following covariance estimator 
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where the notation “ tr”  denotes the trace of a matrix.  The 
RDA mixing parameters λ  and γ  are restricted to the 
range 0 to 1 (optimisation grid) and are selected to 
maximise the leave-one-out classification accuracy based 
on the rule defined in (2). 

Although the RDA method is theoretically a well-
established approach, it has practical drawbacks.  Despite 
the substantial amount of computation saved by taking 
advantage of matrix updating formulas [3], RDA is a 
computationally intensive method.  For each point on the 
two-dimensional optimisation grid, RDA requires the 
evaluation of the proposed estimates of every class.  In 
situations where a large number of g groups is 
considered, the RDA seems to be unfeasible.  In addition, 
as RDA maximises the classification accuracy calculating 
all covariance estimates simultaneously, it is restricted to 
using the same value of the mixing parameters for all the 
classes.  These same values may not be optimal for all 
classes. 
 
3.2. Hoffbeck’s LOOC Method 
 

In practical situations, it seems appropriate to allow 
covariance matrices to be estimated by distinct mixing 
parameters.  Hoffbeck [7] has proposed a leave-one-out 
covariance estimator (LOOC) that depends only on 
covariance estimates of single classes. 

In LOOC each covariance estimate is optimised 
independently and a separate mixing parameter is 
computed for each class based on the corresponding 
likelihood information. The idea is to examine pair-wise 
mixtures of the sample group covariance estimates iS   



and the unweighted common covariance estimate S , 
defined as 
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together with their diagonal forms.  The LOOC estimator 
has the following form: 
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The mixing or shrinkage parameter iα  determines which 
covariance estimate or mixture of covariance estimates is 
selected.  The strategy consists of evaluating several 
values of iα  over the optimisation grid 30 ≤≤ iα , and 
then choosing iα  that maximizes the average log 
likelihood of each corresponding p-variate normal density 
function [7]. 

The computation of the LOOC estimate requires only 
one density function be evaluated for each point on the 

iα  one-dimensional optimisation grid, but also involves 
calculating the inverse and determinant of the (p by p) 
matrix )( i

looc
iS α  for each training observation belonging 

to the ith class.  Analogously, Hoffbeck has reduced the 
LOOC required computation by considering valid 
approximations of the covariance estimates and using 
rank-one updating formulas [7].  Therefore, the final 
form of LOOC requires less computation than RDA 
estimator. 
 

4. A New Covar iance Estimator  
 

Friedman’s RDA and Hoffbeck’s LOOC approaches 
described in the previous section, and several other 
similar methods [5,6,11] not described in this report, 
optimised linear combinations of the sample group 
covariance matrices and, for instance, the pooled 
covariance matrix.  Not only does this overcome the 
“small sample size”  problem but it also achieves better 
classification accuracy than LD and standard QD 
classifiers. 

In situations, however, where iS  are singular, such 
approaches may lead to inconvenient biasing mixtures.  
This statement, which is better explained in the following 
sub-section, forms the basis of the new covariance 
estimator idea, called Covariance Projection Ordering 
method. 
 
4.1. Covar iance Projection Order ing Method 
 

The Covariance Projection Ordering estimator 
(COPO) examines the combination of the sample group 
covariance matrices and the pooled covariance matrix in 
the QD classifiers using their spectral decomposition 

representations.  This new estimator has the property of 
having the same rank as the pooled estimate, while 
allowing a different estimate for each group. 

First, in order to understand the aforementioned 
inconvenient biasing mixtures, let a matrix mix

iS  be given 
by the following linear combination: 

pi
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where the mixing parameters a and b are positive 
constants, and the pooled covariance matrix pS  is a non-
singular matrix.  The mix

iS  eigenvectors and eigenvalues 
are given by the matrices mix

iΦ  and mix
iΛ , respectively.  

From the covariance spectral decomposition formula [4], 
it is possible to write 
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where mix
p

mixmix λλλ ,...,, 21  are the mix
iS eigenvalues and p is 

the dimension of the measurement space considered.  
Using the information provided by equation (7), equation 
(8) can be rewritten as: 
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corresponding spread values of sample group covariance 
and pooled covariance matrices spanned by the mix

iS  
eigenvectors matrix mix

iΦ . Then, the discriminant score 
of the QD rule in spectral decomposition form becomes  
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where mix
ikφ  is the corresponding k-th eigenvector of the 

matrix mix
iS . 

As can be observed, the discriminant score described 
in equation (10) considers the dispersions of sample 
group covariance matrices spanned by all the 

mix
iS eigenvectors.  Therefore, in problems where the 

group sample sizes in  are small compared with the 
dimension of the feature space p, the corresponding 
( 1+− inp ) lower dispersion values are often estimated to 
be 0 or approximately 0, indicating that these values are 
not reliable.  In this way, a linear combination as defined 
in equation (7) of the sample group covariance matrix 
and the pooled covariance in a subspace where the former 
is poorly represented seems to be not convenient.  Other 
covariance estimators have used the same parameters a 
and b defined in equation (7) for the whole feature space 
and consequently have not addressed this problem. 

The COPO estimator is a simple approach to 
overcome this problem.  Basically, the idea is to use all 



the sample group covariance information available 
whenever possible and the pooled covariance information 
otherwise.  Regarding equations (7) and (9), this idea can 
be derived as follows: 

otherwise,
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and copo
ikφ is the corresponding k-th eigenvector of the 

matrix given by pi SS +  ordered in *i
kλ  decreasing 

values.  Then the discriminant scored described in 
equation (10) becomes: 
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where )( iSrankr = . 
The COPO estimator provides a new combination of 

the sample group covariance matrices and the pooled 
covariance matrix in such a way that this combination is 
strongly related to the rank of iS  or, equivalently, to the 
number of training samples in .  It can be viewed as a p-
dimensional non-singular approximation of an r-
dimensional singular matrix. 

The COPO method does not require an optimisation 
procedure, but an eigenvector-eigenvalue ordering 
process to select information from the projected sample 
group covariance matrices whenever possible and the 
pooled covariance otherwise.  Therefore, the 
computational issues regarding the Covariance Projection 
Ordering approach is less severe than the Friedman’s 
RDA and Hoffbeck’s LOOC approaches.  In addition, the 
COPO method is not restricted to use the same 
covariance combination for all classes, allowing 
covariance matrices to be distinctly estimated. 
 

5. Exper iments and Results 
 

In order to evaluate the Covariance Projection 
Ordering (COPO) approach, two image recognition 
applications were considered: face recognition and facial 
expression recognition.  In the face recognition 
experiments the ORL Face Database was used, which 
contains ten images for each of 40 individuals, a total of 
400 images.  The Tohoku University has provided the 
database for the facial expression experiment.  This 
database [8] is composed of 193 images of expressions 
posed by nine Japanese females.  Each person posed 
three or four examples of each six fundamental facial 
expression: anger, disgust, fear, happiness, sadness and 
surprise.  The database has at least 29 images for each 
fundamental facial expression.  For implementation 
convenience all images were first resized to 64x64 pixels. 
 

5.1. Exper iments 
 

The experiments were carried out as follows.  First the 
well-known dimensionality reduction technique called 
Principal Component Analysis (PCA) [12] reduced the 
dimensionality of the original images and secondly the 
Bayes plug-in classifier using one of the five covariance 
estimators was applied: 1) Sample group covariance 
(Sgroup); 2) Pooled covariance (Spooled); 3) Covariance 
projection ordering (Scopo); 4) Friedman’s covariance 
(Srda); 5) Hoffbeck’s covariance (Slooc). 

Each experiment was repeated 25 times using several 
PCA dimensions.  Distinct training and test sets were 
randomly drawn, and the mean and the standard deviation 
of the recognition rate were calculated.  The face 
recognition classification was computed using for each 
individual in the ORL database 5 images to train and 5 
images to test.  In the facial expression recognition, the 
training and test sets were respectively composed of 20 
and 9 images.  The RDA optimisation grid was taken to 
be the outer product of ]0.1,650.0,354.0,125.0,0[=λ  and 

]0.1,75.0,5.0,25.0,0[=γ , identically to the Friedman’s 
work [3].  Analogously, the size of the LOOC mixture 
parameter [7] was ]0.3,75.2,...,5.0,25.0,0[=iα . 
 
5.2. Results 
 

Tables 1 and 2 present the training and test average 
recognition rates (with standard deviations) of the ORL 
and Tohoku face and facial expression databases, 
respectively, over the different PCA dimensions.  Also 
presented are the mean of the optimised RDA and LOOC 
parameters.  For the ORL face database, only 6 LOOC 
parameters corresponding to the subjects 1, 5, 10, 20, 30 
and 40 are shown.  The notation “ -”  in the Sgroup rows 
indicate that the sample group covariance were singular 
and could not classify the samples. 

Table 1 shows that on the training set and for less than 
20 PCA components the Scopo estimator led to higher 
face recognition classification accuracy than the linear 
covariance estimator (Spooled) and both optimised 
quadratic discriminant estimators (Srda and Slooc).  For 
the test samples, the Srda and Slooc estimators often 
outperformed the Scopo in lower dimensional space, but 
these performances deteriorated when the dimensionality 
increased, particularly the Slooc ones.  It seems that in 
higher dimensional space, when the Sgroup estimate 
became extremely poorly represented, the RDA and 
LOOC parameters did not counteract the Sgroup mixing 
singularity effect. The Scopo estimator achieved the best 
recognition rate – 96.4% – for all PCA components 
considered.  In terms of how sensitive the covariance 
results were to the choice of training and test sets, the 



covariance estimators similarly had the same 
performances, particularly in high dimensional space. 
 

 

Table 1. ORL face database results. 
 

 

Table 2. Tohoku facial expression database results. 
 

The results of the Tohoku facial expression 
recognition are presented in table 2.  For more than 50 
PCA components on the training set, the Scopo estimator 
performed as well or better than all the covariance 
estimators considered.  Regarding the test samples, 
however, there is no overall dominance of any covariance 
estimator.  In lower dimension space, Srda led to higher 
classification accuracies, followed by Scopo, Spooled and 
Slooc.  On the other hand, when the dimensionality 
increased and the true covariance matrices became 

apparently equal and highly ellipsoidal, Srda performed 
poorly while Scopo, Spooled and Slooc improved.  In the 
highest dimensional space the LOOC optimisation, which 
considers the diagonal form of the pooled estimate, took 
advantage of the equal-ellipsoidal behaviour  (for more 
than 70 PCAs all iα  parameters are bigger than the value 
2) achieving the best recognition rate – 87.2% – for all 
PCA components calculated.  In this recognition 
application, all the computed covariance estimators were 
quite sensitive to the choice of the training and test sets. 
 

6. Conclusion 
 

In this paper, alternative optimised Bayes plug-in 
covariance estimators available in statistical pattern 
recognition were described, with regard to the difficulties 
caused by small sample sizes, and a new covariance 
estimator was proposed.  Experiments were carried out to 
evaluate these approaches on two real data recognition 
tasks: face and facial expression recognition.  These 
experiments confirmed that choosing an intermediate 
estimator between the linear and quadratic classifiers 
improve the classification accuracy in settings for which 
samples sizes are small and number of parameters or 
features is large. 

The new covariance estimator, called Covariance 
Projection Ordering method (COPO), has proved to be a 
powerful technique in small sample size image 
recognition problems, especially when concerns about 
computational costs exist.  The new estimator does not 
require an optimisation procedure, but an eigenvector-
eigenvalue ordering processing to select information from 
the projected sample group covariance matrices whenever 
possible and the pooled covariance otherwise.  This 
estimator can be viewed as a non-singular approximation 
of a singular covariance matrix. 

The above results are encouraging and comparisons 
between estimators like RDA and LOOC have to be 
analysed utilising other pattern recognition problems. 
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