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1  Introduction 

Whole brain voxel-based morphometry and statistical pattern recognition methods have been used to classify and 
describe anatomical structures of MR images.  Most of these methods are based on statistical learning techniques 
applied to either segmented images or a number of features pre-selected from specific image decomposition 
approaches.  Although such pre-processing strategies have overcome the difficulty of dealing with the inherent 
high dimensionality of 3D brain image data, most of these approaches rely on optimisation techniques that are 
time consuming and do not provide a simple way of mapping the classification results back into the original 
image domain for further interpretation. 

In this paper, we use the general multivariate statistical methodology (PCA+LDA) to identify the most 
discriminating hyper-plane separating two populations.  We introduce some novel techniques to overcome the 
well-known instability of the LDA within-class scatter matrix and increase the computational efficiency of the 
approach.  Our goal is to analyse all the data simultaneously rather than feature by feature.  The result is an 
efficient and practical method for separating two populations and visually analysing their differences. 

2  Methodology 

Before we can analyse the MR images we need to map all images into a common atlas coordinate system. This 
pre-processing step is essential because the construction of the multivariate statistical model relies on anatomical 
correspondences when comparing patterns across subjects.  We have randomly chosen the image of one subject 
as reference or atlas.  In order to map the anatomy of each subject into the anatomy of the atlas we have first 
applied an affine registration [1] followed by non-rigid registration based on free-form deformations [2]. Both 
algorithms are based on the maximisation of normalised mutual information as a voxel-based similarity measure. 

2.1  PCA 

After registration, the Principal Components Analysis (PCA) technique is performed.  PCA is a feature extraction 
procedure concerned with explaining the covariance structure of a set of variables through a small number of 
linear combinations of these variables.  It is a common statistical technique that has been used in several image 
recognition problems, especially for dimensionality reduction. 

Although there is always the question of how many principal components to retain in order to reduce the 
dimensionality of the original training sample, Yang and Yang [3] have proved recently that the number of 
principal components to retain for a best LDA classification performance should be equal to the rank m  of the 
total covariance matrix S  composed of all the training patterns and given by 
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where jix ,  is the n-dimensional pattern j  from class iπ , N  is the total number of samples, and x  is the grand 
mean vector given by 
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The m  principal components can then replace the initial n  features and the original data set, consisting of N  
measurements on n  variables, is reduced to a data set consisting of N  measurements on m  principal 
components.  For this representation to make sense in statistical classification problems we are making the 
assumption that the distributions of each class or group are separated by their corresponding mean differences. 

2.2  LDA 

The primary purpose of Linear Discriminant Analysis (LDA) is to separate samples of distinct groups by 
maximising their between-class separability while minimising their within-class variability.  Let the between-
class scatter matrix bS  be defined as 
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and the within-class scatter matrix wS  be defined as 
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where jix ,  is the m-dimensional pattern j  from class iπ , iN  is the number of training patterns from class iπ , 
g  is the total number of classes or groups, and x  is the grand mean vector defined in equation (2).  The vector 

ix  and matrix iS  are respectively the unbiased sample mean and sample covariance matrix of class iπ . 

The main objective of LDA is to find a projection matrix ldaP  that maximises the ratio of the determinant of the 
between-class scatter matrix to the determinant of the within-class scatter matrix (Fisher’s criterion), that is 
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It is a proven result [4] that if wS  is a non-singular matrix then the Fisher’s criterion is maximised when the 
projection matrix ldaP  is composed of the eigenvectors of bw SS 1−  with at most )1( −g  nonzero corresponding 
eigenvalues.  This is the standard LDA procedure. 

However, the performance of the standard LDA can be seriously degraded if there are only a limited number of 
total training observations N  compared to the dimension of the feature space m .  Since the within-class scatter 
matrix wS  is a function of )( gN −  or less linearly independent vectors, its rank is )( gN −  or less.  Therefore in 
the problem under investigation where the number of training patterns is comparable to the number of features, 

wS  might be singular or mathematically unstable and the standard LDA cannot be used to perform the task of the 
classification stage. 

2.3  MLDA 

In order to avoid both the singularity and instability critical issues of the within-class scatter matrix wS  when 
LDA is used in such limited sample and high dimensional problem, we have proposed a maximum uncertainty 
LDA-based approach (MLDA) to overcome the instability of the wS  matrix [5].  It is based on the maximum 
entropy covariance selection method developed to improve quadratic classification performance on limited 
sample size problems [6]. 

The proposed method considers the issue of stabilising the wS  estimate with a multiple of the identity matrix by 
selecting the largest dispersions regarding the wS  average eigenvalue.  The following selection algorithm 
expands only the smaller and consequently less reliable eigenvalues of within-class scatter matrix wS : 

i. Find the Φ  eigenvectors and Λ  eigenvalues of pS , where ][ gNSS wp −= ; 



ii. Calculate the pS  average eigenvalue λ  using  
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iii. Form a new matrix of eigenvalues based on the following largest dispersion values 

)],max(),...,,max(),,[max( 21
* λλλλλλ mdiag=Λ ;  

iv. Form the modified within-class scatter matrix 

))(()( *** gNgNSS T
pw −ΦΦΛ=−= .  

The maximum uncertainty LDA is constructed by replacing wS  with *
wS  in the standard Fisher’s criterion 

formula described in equation (5).  It is a straightforward method that overcomes both the singularity and 
instability of the within-class scatter matrix wS  when LDA is used in limited sample and high dimensional 
problems. 

3  Experiments 

To demonstrate the effectiveness of the approach, we have used a neonatal MR brain data set that contains 67 
preterm infants at term equivalent age (mean 29.7, range 24-34 weeks post-menstrual age), and 12 term born 
controls (mean 39.3, range 36-42 weeks post-menstrual age).  Ethical permission for this study was granted by 
the Hammersmith Hospital Research Ethics Committee and informed parental consent was obtained for each 
infant.  Infants were sedated for the examination but did not require mechanical ventilation at the time of MR 
imaging.  Pulse oximetry, electrocardiographic and televisual monitoring were used throughout the examination 
which was attended by a paediatrician.  A 1.5 T Eclipse MR System (Philips Medical Systems, Cleveland, Ohio) 
was used to acquire high resolution T1 weighted images (TR=30ms, TE=4.5ms, flip angle = 30o).  In addition to 
conventional T1 and T2 weighted image acquisition, volume datasets were acquired in contiguous sagittal slices 
(in-plane matrix size 256 x 256, FOV = 25cm) with a voxel size of 1.0 x 1.0 x 1.6 mm3. 

We have performed two main tasks: classification and visual analysis.  First a training matrix composed of N  
zero mean n-dimensional image vectors is used as input to compute the PCA transformation matrix.  The 
columns of this n x m transformation matrix are eigenvectors, in eigenvalues descending order.  The N  zero 
mean image vectors are projected on the principal components and reduced to m-dimensional vectors 
representing the most expressive features of each one of the pre-processed n-dimensional image vector.  
Afterwards, this N x m data matrix is used as input to calculate the MLDA discriminant eigenvector.  The most 
discriminant feature of each one of the m-dimensional vectors is obtained by multiplying the N x m most 
expressive features matrix by the MLDA linear discriminant eigenvector.  An analogous procedure, but in reverse 
order, has been used to convert any point on the most discriminant space back to its corresponding n-dimensional 
image vector. More specifically, first we multiply that particular point by the transpose of the linear discriminant 
vector previously computed, then we multiply its m most expressive features by the transpose of the principal 
components matrix, and finally we add the average image calculated in the training stage to the n-dimensional 
image vector. 

4  Results 

Figure 1 presents the leave-one-out recognition rate (rr) of the two-stage linear classifier using the affine and non-
rigid registration algorithms as pre-processing techniques.  As expected, the classification results obtained by the 
non-rigid registration algorithms are higher than the one obtained by an affine transformation, achieving a 
maximum recognition rate of 97.47% with a control point spacing of 5mm. 



Figure 2 highlights the statistical differences between the preterm infants (shown on the top) at term equivalent 
age and the control group (bottom) mapped back (without the mean) into the image domain.  We can see clearly 
differences in the ventricular system, the posterior limb of the internal capsule, the corpus callosum area, and the 
inter-hemispheric fissure. 

Figure 1.  Classification results. Figure 2.  Visual statistical differences. 

5  Conclusion 

This paper describes the idea of using PCA plus the maximum uncertainty LDA-based approach to classify and 
analyse MR brain images.  The methodology proposed has been performed directly on the MR intensity images 
rather than on segmented versions of the images.  Our results indicate that the use of non-rigid registration in the 
pre-processing step and the two-stage linear classifier make clear the statistical differences between the control 
and preterm neonatal samples, showing a classification accuracy of 97.47% using the leave-one-out method. 

Although the experiments carried out were based on a specific preterm infants database, we believe that such 
multivariate statistical strategy for targeting limited sample and high dimensional problems provides a suitable 
framework for characterising and analysing the high complexity of MR images in general. 
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Registration rr (%) 

Affine 91.14 

Non-rigid (10mm) 96.20 

Non-rigid (5mm) 97.47 

Non-rigid (2.5mm) 93.67 

 

 


