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Abstract.  In biometric recognition applications, the number of training exam-
ples per class is limited and consequently the conventional quadratic classifier
either performs poorly or cannot be calculated.  Other non-conventional quad-
ratic classifiers have been used in limited sample and high dimensional classifi-
cation problems.  In this paper, a new quadratic classifier called Maximum En-
tropy Covariance Selection (MECS) is presented.  This classifier combines the
sample group covariance matrices and the pooled covariance matrix under the
principle of maximum entropy.  This approach is a direct method that not only
deals with the singularity and instability of the maximum likelihood covariance
estimator, but also does not require an optimisation procedure.  In order to
evaluate the MECS effectiveness, experiments on face and fingerprint recogni-
tion were carried out and compared with other similar classifiers, including the
Reguralized Discriminant Analysis (RDA), the Leave-One-Out Covariance es-
timator (LOOC) and the Simplified Quadratic Discriminant Function (SQDF).
In both applications, using the publicly released databases FERET and NIST-4,
the MECS classifier achieved the lowest classification error.

1   Introduction

In most image recognition applications, especially in biometric ones, the number of
training examples per class is limited.  In such situations, the conventional maximum
likelihood quadratic classifier either performs poorly or cannot be calculated when the
group sample sizes are smaller than the number of features.

Other non-conventional quadratic classifiers have been used in limited sample and
high dimensional classification problems [1,3,7,9].  All these quadratic approaches
rely on optimisation techniques that are time consuming and do not necessarily lead to
the highest classification accuracy for all circumstances.

In this paper, a new quadratic classifier called Maximum Entropy Covariance Se-
lection (MECS) is presented.  This classifier is based on combining covariance matri-
ces under the principle of maximum entropy.  It assumes that the sources of variation
are similar from group to group and consequently a similar covariance shape may be
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expected for all classes.  This has often been the case for biometric applications such
as face recognition.  The new classifier not only deals with the singularity and insta-
bility of the maximum likelihood covariance estimator, but also is computed directly
not requiring an optimisation procedure.

In order to evaluate the MECS effectiveness compared with other classifiers, ex-
periments on face and fingerprint applications were carried out using the correspond-
ing publicly released databases FERET and NIST-4.  In both applications the MECS
classifier achieved the lowest classification error.

2   The Quadratic Discriminant Classifier

The Quadratic Discriminant classifier is based on the p-multivariate normal class-
conditional probability densities, where p is the dimension of the feature vector.  As-
suming the symmetrical or zero-one loss function, the optimal quadratic discriminant
(QD) rule stipulates that an unknown pattern x should be assigned to the class or
group i that minimises:
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where iπ  is a prior probability associated with the ith group, and the parameters iµ
and iΣ  represent the true mean vector and covariance matrix respectively for the ith
group.

In practical situations, the true values of the mean and covariance matrix in (1) are
replaced by their respective maximum likelihood estimates ix  and iS .  Thus, the QD
rule can be rewritten as:  assign pattern x to class i that minimises:
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This is the standard or conventional quadratic discriminant function (QDF) classifier.

2.1   Sample Size Effects

As a general guideline, Jain and Chandrasekaran [6] have suggested that the class
sample sizes in  should be at least five to ten times the dimension of the feature space
p.  Indeed when in  are small compared with p, the sample group covariance estimates

iS  become highly variable or even not invertible when 1+< pni .
The effect of that instability on the QD classifier can be explicitly seen by rewriting

the quadratic discriminant distance described in (2) on its spectral decomposition form
[2], as follows:
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where ikλ  is the kth eigenvalue of iS  and ikφ  is the corresponding eigenvector.  As
can be observed, a poor or unreliable estimation of the sample group covariance ma-
trices tends to exaggerate the importance associated with the low-variance information
and consequently distorts the quadratic discriminant analysis.

One method routinely applied is the so-called linear discriminant function (LDF).
The LDF classifier is obtained by replacing the iS  in (2) with the pooled sample co-
variance matrix

gN
SnSnSn

S gg
p −

−++−+−
=

)1()1()1( 2211 !
, (4)

where in  is the number of training observations from class i, g is the number of
groups and gnnnN +++= !21 .  Theoretically, however, Sp is a consistent estimator
of the true covariance matrices iΣ  only when gΣ==Σ=Σ !21 .

3   Other Quadratic Classifiers

Other non-conventional quadratic classifiers have been used in limited sample and
high dimensional classification problems.  In the next sub-sections, three of the most
important of these quadratic classifiers are briefly described.  The new quadratic clas-
sifier proposed in this work is detailed in section 4.

3.1   Reguralized Discriminant Analysis (RDA) Classifier

The Friedman�s RDA [1] approach is a two-dimensional optimisation method that
shrinks both the Si towards Sp and also the eigenvalues of the Si towards equality by
blending the first shrinkage with multiples of the identity matrix.

In this context, the sample covariance matrices Si of the QD rule defined in (2) are
replaced by the following ),( γλrda
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where the notation �tr� denotes the trace of a matrix.  The mixing parameters λ  and
γ  are restricted to the range 0 to 1 (optimisation grid) and are selected to maximise
the leave-one-out classification accuracy regarding all groups [1].  Although RDA has
the benefit of being directly related to the classification accuracy, it is the most com-
putationally intensive method particularly when a large number of groups is consid-
ered.
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3.2   Leave-One-Out Covariance (LOOC)Classifier

Hoffbeck and Landgrebe [3] proposed a covariance estimator that depends only on
covariance optimisation of single classes.

The idea is to examine pair-wise mixtures of the sample group covariance estimates
iS   and the unweighted common covariance estimate S , together with their diagonal

forms  [3].  The LOOC estimator has the following form:
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The optimisation strategy is to evaluate several values of iα  over the grid
30 ≤≤ iα , and then choose iα  that maximizes the average log likelihood of the cor-

responding p-variate normal density function [3].  Considering valid approximations
of the covariance estimates [3] LOOC requires less computation than RDA estimator.

3.3   Simplified Quadratic Discriminant Function (SQDF) Classifier

The SQDF classifier has been proposed by Omachi et al. [7] and can be viewed as an
approximation method of the standard quadratic discriminant function.

Basically, the SQDF classifier approximates the spectral decomposition form of the
QD classifier described in (3) by the following function:
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where ),( ikik φλ  are  the k-th eigenvalue-eigenvector pair of iS , λ  is a simplification
constant and ps ≤ .  The constant λ  is determined by the mean value of

),...,1( pskik +=λ  and the parameter s  can be defined arbitrarily, experimentally or
by information criterion [7].  Since SQDF approximates the QD classification rule
considering solely the information provided by each sample group covariance matrix,
it seems to be more sensible to poor sample covariance estimation than other non-
conventional QD classifiers.

4   A New Quadratic Classifier

In biometric recognition applications, the pattern classification task is commonly
performed on pre-processed or well-framed images and the sources of variation are
often the same from group to group.  As a consequence, a similar covariance shape
may be assumed for all groups.  In such situations and when the sample group covari-
ance matrices iS  are singular or not accurately estimated, linear combinations of iS
and the pooled covariance matrix pS  may lead to a �loss of covariance information�
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[10].  This statement forms the basis of the new quadratic classifier based on the
Maximum Entropy Covariance Selection method proposed.

4.1   The �Loss of Covariance Information�

The theoretical interpretation of the �loss of covariance information� can be described
as follows.  Let a matrix mix

iS  be given by the following linear combination:

pi
mix
i bSaSS += , (8)

where the mixing parameters a and b are positive constants, and the pooled covariance
matrix pS  is a non-singular matrix.  The mix

iS  eigenvectors and eigenvalues are given
by the matrices mix

iΦ  and mix
iΛ , respectively.  From the covariance spectral decompo-

sition formula [2], it is possible to write
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where mix
p

mixmix λλλ ,...,, 21  are the mix
iS eigenvalues and p is the dimension of the meas-

urement space considered.  Using the information provided by equation (8), equation
(9) can be rewritten as:
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where 21 ,...,, i
p

ii λλλ  and 21 ,...,, p
p

pp λλλ  are the corresponding variances of the sam-
ple and pooled covariance matrices spanned by the mix

iS  eigenvectors matrix mix
iΦ .

Then, the spectral decomposition form of the QD score described in (3) becomes:
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where mix
ikφ  is the corresponding k-th eigenvector of the matrix mix

iS .
The discriminant score described in equation (11) considers the dispersions of

sample group covariance matrices spanned by all the mix
iS eigenvectors.  However,

when the group sample sizes in  are small or not large enough compared with the
dimension of the feature space p, the corresponding lower dispersion values are often
estimated to be 0 or approximately 0, implying that these values are not reliable.
Therefore, a linear combination of iS  and pS  that uses the same parameters a and b
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as defined in (11) for the whole feature space fritters away some pooled covariance
information.

The geometric idea of a hypothetical �loss of covariance information� on a three-
dimensional feature space is illustrated in Figure 1.  The constant probability density
contour of iS  and pS  are represented by the two-dimensional ),( 21 xx  dark grey el-
lipse and three-dimensional ),,( 321 xxx  light grey ellipsoid, respectively.

Figure 1. Geometric idea of a hypothetical �loss of covariance information�.

As can be seen, iS  is well defined on the plane ),( 21 xx  but not defined at all on
),,( 321 xxx .  In fact, there is no information from iS  on the 3x  axis.  As a conse-

quence, a linear combination of iS  and pS  that shrinks or expands both matrices
equally all over the feature space simply ignores this evidence.  Other covariance
estimators have not addressed this problem.

4.2   Maximum Entropy Covariance Selection Method

The Maximum Entropy Covariance Selection (MECS) method considers the issue of
combining the sample group covariance matrices and the pooled covariance matrix
based on the maximum entropy (ME) principle [5].

Let a p-dimensional sample iX  be normally distributed with true mean iµ  and true
covariance matrix iΣ , i.e. ),(~ iipi NX Σµ .  The entropy h  of such multivariate
distribution can be written as:
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which is simply a function of the determinant of iΣ and is invariant under any or-
thonormal transformation [2].  Thus, when iΦ  consists of p eigenvectors of iΣ
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In order to maximise (13) or equivalently (12), we must select the covariance estima-
tion of iΣ that gives the largest eigenvalues.

Considering convex combinations between the sample group covariance iS  and
pS  matrices, equation (13) can be rewritten (by using equation (10)) as
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nonnegative and sum to 1.  Moreover, as the natural logarithm is a monotonic in-
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for any pk ≤≤1 .  Therefore, in order to maximise equation (15) and consequently
the entropy given by the convex combination of iS  and pS , we do not need to choose
the best parameters a and b but simply select the maximum variances of the corre-
sponding matrices.

Thus, the MECS estimator mecs
iS  is given by the following procedure:

 i. Find the eigenvectors me
iΦ  of the covariance given by pi SS + .

 ii. Calculate the variance contribution of both iS  and pS  on the me
iΦ  basis, i.e.
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 iii. Form a new variance matrix based on the largest values, that is
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The MECS quadratic classifier is constructed by substituting mecs
iS  for Si on the QD

rule defined in (2).  This approach is a direct procedure that not only deals with the
singularity and instability of iS but also with the loss of information when similar
covariance matrices are linearly combined.  Furthermore, it does not require an opti-
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misation procedure and consequently its computation cost is less severe than the RDA,
LOOC and SQDF methods.

5   Experiments and Results

In order to investigate the performance of MECS compared with QDF, LDF, RDA,
LOOC and SQDF classifiers, two biometric applications were considered: face and
fingerprint recognition.  In the face classification application, the training sample sizes
were chosen to be extremely small compared to the dimensionality of the feature
space.  In contrast, large training sample sizes were considered for the fingerprint
recognition.  Both applications were analysed using publicly released databases.

5.1   Experiments

In the face recognition experiments the FERET Face Database [8] was used.  Sets
containing 4 �frontal b series� images for each of 200 total subjects were considered.
Each image set is composed of a regular facial expression (referred as �ba� images in
the FERET database), an alternative expression (�bj� images), and two symmetric
images (�be� and �bf� images) taken with the intention of investigating 15 degrees
pose angle effects.  For implementation convenience all images were first resized to
96x64 pixels and transformed into eigenfeature vectors [11].  Each experiment was
repeated 25 times using several of those eigenfeatures.  Distinct training and test sam-
ples were randomly drawn, and the mean of the recognition rate was calculated.  Since
the LOOC computation requires at least three examples in each class [3], the recogni-
tion rate was computed utilising for each subject 3 images to train and 1 image to test.

The fingerprint classification was performed utilising the training and test feature
vectors extracted from the grey scale images of the standard NIST-4 Special Database
[12].  Each feature vector consists of 112 floating point numbers, made by a feature
selection procedure that ends with the Karhunen-Loeve transform.  The fingerprints
were classified into one of five categories (L=left loop, W=whorl, R=right loop,
T=tented arch, and A=arch) with an equal number of prints from each class (400).
There are 2000 first-rolling fingerprint feature vectors for training and 2000 corre-
sponding second-rolling ones for testing.

In both applications, the prior probabilities were assumed equal for all groups.
Also the RDA optimisation grid was taken to be the outer product of

]0.1,650.0,354.0,125.0,0[=λ  and ]0.1,75.0,5.0,25.0,0[=γ , identically to the Fried-
man�s work [1].  Analogously, the size of the LOOC mixture parameter was

]0.3,75.2,...,5.0,25.0,0[=iα .  The SQDF parameter s , however, was defined differ-
ently in each application.  Due to the extremely small training sample, s  was 1 for the
FERET classification � in this case, 2)( =iSrank .  In the fingerprint recognition, this
parameter was selected experimentally as one of the following values: 5, 10, 20, 30
and 40.
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5.2   Results

Figures 2 and 3 present the test average recognition error of the FERET face and
NIST-4 fingerprint databases, respectively, over different number of features.

     Figure 2. Feret Recognition Error        Figure 3. NIST-4 Recognition Error

Since only 3 face images were used to train the classifiers, the sample group co-
variance matrices iS  were singular and the QDF could not be calculated.  Due to the
same problem the SQDF classifier performed poorly (around 30% of classification
error for all the features considered) and its results are not presented.  Instead, the
recognition rate of the Euclidean distance classifier (EUC) that corresponds to the
classical Eigenfaces method proposed by Turk and Pentland  [11] are displayed.
Figure 2 shows that for all the feature components considered the MECS quadratic
classifier performed as well or better than the other classifiers.  The MECS quadratic
classifier achieved the lowest classification error � 2.2% � on 50 eigenfeatures.  In this
application where iS  seem to be quite similar, favouring the LDF performance, the
MECS classifier did better without loss of covariance information.

The recognition results of the NIST-4 fingerprint database are presented in figure 3.
In the lowest and highest dimension spaces (28 and 112 features), RDA led to lower
classification error than MECS estimator.  However, for 56 and 84 features the MECS
performed better than the other classifiers.  Although in this application the ratio of
the training sample size to the number of features is large, favouring the QDF, RDA,
LOOC and SQDF classifiers, the MECS estimator achieved the lowest classification
error � 12.5% � on 84 components.  Putting this result in perspective, a classification
error of 12% but with 10% rejection was reported on the same training and test sets
[12].
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6   Conclusion

In this work, a new quadratic classifier called Maximum Entropy Covariance Selec-
tion (MECS) was introduced.  This classifier is based on combining the sample group
covariance matrices and the pooled covariance matrix under the principle of maximum
entropy.  This approach is a direct procedure that not only deals with the singularity
and instability of the maximum likelihood covariance estimators, but also with the loss
of information when similar covariance matrices are convexly combined.  Further-
more, it is not a time consuming method because it does not require an optimisation
procedure.

The effectiveness of the MECS method compared with several classifiers (QDF,
LDF, RDA, LOOC and SQDF) was evaluated on two biometric applications: face and
fingerprint recognition.  In the face classification application, the training sample sizes
were chosen to be extremely small compared to the dimensionality of the feature
space.  In contrast, large training sample sizes were considered for the fingerprint
recognition.  In both applications, using the publicly released databases FERET and
NIST-4, the MECS quadratic classifier achieved the lowest classification error.

These results indicate that the MECS classifier does increase the classification ac-
curacy in biometric recognition applications where the sources of variation are com-
monly the same from group to group and limited training sample sizes are considered.
In such situations and when concerns about the computation cost exists, the MECS
should be preferable to the other aforementioned classifiers.
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