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Abstract discrimination methods are suitable not only for
classification but also for characterisation of
Statistical discrimination methods are suitable not differences between a reference group of pattends a
only for classification but also for characterisai of ~ the population under investigation. For exampte, i
differences between a reference group of pattemts a clinical diagnosis we might want to understand
the population under investigation. In the lasange underlying causes of medical data by exploring the
statistical methods have been proposed to claasifly discriminating hyper-plane found by a statistical
analyse morphological and anatomical structures of classifier using image samples of patients androtmt
medical images. Most of these techniques work in In the last years, statistical pattern recognition
high-dimensional spaces of particular features sash  methods have been proposed to classify and analyse
shapes or statistical parametric maps and have morphological and anatomical structures of magnetic
overcome the difficulty of dealing with the inhdren resonance (MR) images [4, 6, 8]. Most of these
high dimensionality of medical images by analysing techniques work in high-dimensional spaces of
segmented structures individually or performing particular features such as shapes or statistical
hypothesis tests on each feature separately. i th parametric maps and have overcome the difficulty of
paper, we present a general multivariate linear dealing with the inherent high dimensionality of
framework to identify and analyse the most medical data by analysing segmented structures
discriminating  hyper-plane  separating ~ two individually or performing hypothesis tests on each
populations. The goal is to analyse all the intgns  feature separately. Unfortunately, in such appreac
features simultaneously rather than segmented changes that are relatively more distributed ardlire
versions of the data separately or feature-by-featu  simultaneously several structures of the pattern of
The conceptual and mathematical simplicity of the jterest (i.e., ventricles and corpus callosum foé t
approach, which pivotal step is spatial hormalisati brain) might be difficult to detect, despite the
involves. the same opgrations irrespective of the possibility of some methods [6, 8] of extracting
complexity of the experiment or nature of the data, gafistically multivariate differences between imag
giving multivariate results that are easy to intexp samples of patients and controls.
To demonstrate its performance we present |, ihis work, we present a general multivariate
experimental results on artificially generated da®@t  iavistical framework to identify and analyse thesm
and real medical data. discriminating hyper-plane separating two populaio
. The goal is to analyse all the intensity features
1. Introduction simultaneously rather than segmented versions ef th
data separately or feature-by-feature. We usevalno
In the generic discrimination problem, where the method proposed recently [10], called Maximum
training sample consists of the class membershib an yncertainty Linear Discriminant Analysis (MLDA), to
observations forN patterns, the outcome of interest gyercome the well-known instability of the withifess
fall into g classes and we wish to build a rule for gcatter matrix in limited sample size problems #md
predicting the class membership of an observationjncrease the computational efficiency of the apphoa
based onn variables or features. However, statistical Tpe approach is not restricted to any particuldroge



features and describes a simple and straightforward

way of mapping multivariate classification resutts
the whole images back into the original image domai
for further interpretation.

The remainder of this paper is divided as follows.
In section 2 we describe the main parts of the
multivariate linear framework and its design. This
section includes a brief review of Principal Comgohn
Analysis (PCA) and the novel MLDA method used.
Section 3 presents experimental results of thecambr

and demonstrates its effectiveness on a simplereconstructions to the reference image.

artificially generated data set and on a real nadic
data. In the last section, section 4, the papeclodes
with a short summary of functionalities that forhet
basis for this methodology of discriminating and
analysing the patterns of interest.

2. A Multivariate Linear Approach

Our main concern here is to describe a multivariate
framework that highlights the most discriminating

differences between two populations when the number

of examples per class is much less than the dimensi
of the original feature space. This problem iseidl
quite common nowadays, especially in medical image
analysis. For instance, patients and controlslasses
defined commonly by a small number of MR images
but the features used for recognition may be nmifliof
voxels or hundreds of pre-processed image attigbute

2.1. Principal Component Analysis (PCA)

There are a number of reasons for using PCA to
reduce the dimensionality of the original imag&CA
is a linear transformation that is not only simpbe
compute and analytically tractable but also exgract
set of features that is optimal with respect to
representing the data back into the original domain
Moreover, using PCA as an intermediate step will

reduce dramatically the computational and storage

requirements for the subsequent LDA-based covagianc
method. Since in our applications of interest the
number of training patterndN (or images) is much
smaller than the number of features (or instance:
voxels), it is possible to transform data in a vilagt
patterns occupy as compact regions in a lower
dimensional feature space as possible with far fewe
degrees of freedom to estimate.

Although much of the sample variability can be
accounted for by a smaller number of principal
components, and consequently a further dimensignali
reduction can be accomplished by selecting the

e
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Fig. 1. Reconstrution of a reference image (shown on
top left) using several principal components. Tdw on the
bottom illustrates the corresponding differencesvben th
The nundi
components retained and the corresfiog total sampl
variance explained are shown in parentheses. Wese:
modifications on the reconstructed images wherpraicipa
components with non-zero eigenvalues are not sglect

principal components with the largest eigenvalues,
there is no guarantee that such additional
dimensionality reduction will not add artefacts e
images when mapped back into the original image
space. Our aim is to map the classification reswaick
to the image domain for further visual interpretati
For that reason, we must be certain that any
modification on the images, such as blurring ortlsub
differences, is not related to an ‘“incomplete” or
perhaps “misleading” feature extraction intermesliat
procedure. For example, Figure 1 illustrates enttip
a reference image (shown on the left) reconstructed
using several principal components and on the botto
the corresponding differences between these
reconstructions to the original image. The valires
parentheses represent the number of principal
components used and corresponding total variance
explained. We can see clearly that even when weaus
set of principal components that represents maaa th
90% of the total sample variance we still have Isubt
differences between the reconstructed image and the
original one.

Therefore, in order to reproduce the total varigbil
of the samples we have composed the PCA
transformation matrix by selecting all principal
components with non-zero eigenvalues. To avoid the
high memory rank computation of the possibly large
total covariance matrix and because the MLDA
approach deal with the singularity of the withiasd
scatter matrix, we have assumed that all kheraining
patterns are linearly independent. In other woveks,
have assumed that the rank of the total covariance
matrix is N-1 and the number of PCAs selected is
m=N -1.



2.2. Maximum Uncertainty LDA (MLDA) uncertainty LDA-based approach (MLDA) based on a
straightforward covariance selection method for $e
The primary purpose of LDA is to separate samples matrix. In an earlier study [10], Thomaz and @8li
of distinct groups by maximising their between-slas compared the performance of MLDA with other recent
separability while minimising their within-class LDA-based methods, such as Chen et al.'s LDA [2],
variability. LDA’s main objective is to find a direct LDA [14], and Optimal Fisher Linear
projection matrix By, that maximizes the following Discriminant [13], with application to the face

ratio (Fisher’s criterion): recognition problem.  Since the face recognition
pTSDp‘ problem involves small training sets, a large numndje
Rga = argmax——, Q) features, and a large number of groups, it hasrheco
P PTSWP‘ the most used application to evaluate such limited

where S, is the between-class scatter matrix defined as sample size approaches. The experimental results
carried out have shown that the MLDA method

g
S :Z N; (X = X)(X; -x)7 (2) improved the LDA classification performance with or
i=1 without an intermediate dimensionality reductiord an
and S, is the within-class scatter matrix defined as using less linear discriminant features.
g N, The MLDA algorithm can be shortly described as
Sw=2. D 06, %)%, %) . (3)  follows:
i=1 j=L

. . . . i.Find the ® eigenvectors and\ eigenvalues oS,
The vectorx ; is then-dimensional patternj from P

class 7z, N; is the number of training patterns from where S, =Su/IN-gl;

class 77, and g is the total number of classes or ii.Calculate theS, average eigenvalud , that is,
groups. The vectok, and matrixS are respectively

the unbiased sample mean and sample covariance /T:E > A:tracdsp). (5a)
matrix of classsz[5]. The grand mean vectox is n< ! n '
given by : _ _

e 1 &N iii.Form a new matrix of eigenvalues based on the

XxX=—) NX =— - 4 following largest dispersion values

N le %= lez;m @)
where N is the total number of_ samples, 'thallt is, N :diag[max(/ll,/T),...,max@n,/T)]; (5b)
N=N;+Ny+--+Ng. The Fisher's criterion

described in equation (1) is maximised when the
projection matrixB, is composed of the eigenvectors
of s;lso with at most(g—-1) nonzero corresponding . . .
eigenvalues. This is the standard LDA procedure. Sy =Sp(N-g)=(PA P )(N~-g). (5¢)

It is well known, however, that the performance of
the standard LDA can be seriously degraded if there The maximum uncertainty LDA (MLDA) is
are only a limited number of total training obs¢isas ~ constructed by replacing, with S, in the Fisher's
N compared to the dimension of the feature space  criterion formula described in equation (1). Asrped
Since the within-class scatter matrf, is a function ~ Out by Thomaz and Gillies [TGOS], it is based on a
of (N-g) or less linearly independent vectors, where Maximum entropy covariance selection idea developed
g is the number of groups, its rank (&l — g) or less. to improve the performance of Bayesian classifars
Therefore in recognition problems where the nundfer ~ limited sample size problems [11].
training patterns is comparable to the number of )
features, S, might be singular or mathematically 2.3. Framework Design
unstable and the standard LDA cannot be used to

iv.Form the modified within-class scatter matrix

perform the task of the classification stage. We can divide the design of the PCA+MLDA
In order to avoid both the singularity and instipil ~ Multivariate  framework into  two main tasks:
critical issues of the within-class scatter matig,  classification (training and test stages) and Visua

when LDA is used in limited sample and high analysis.
dimensional problems, we have used a maximum



In the classification task the principal components descending order. Recall, from section 2.1, that w
and the maximum uncertainty linear discriminant have retained all the PCA eigenvectors with nom-zer
vector are generated. As illustrated in Figurérgt a eigenvalues. The zero mean image vectors are
training set is selected and the average imag®wvett  projected on the principal components and reduoced t
all the training images is calculated and subtdhcte m-dimensional vectors representing the most
from each pre-processed image vector. Then theexpressive features of each one of the pre-prodesse

CLASSIFICATION - TRAINING STAGE

Training images: each row is a Training images with zero mean: m most expressive features of each
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Fig. 2. Design of the multivariate linear framework.

training matrix composed of zero mean image vectorsdimensional image vector. Afterwards, tié x m

is used as input to compute the PCA transformationdata matrix is used as input to calculate the MLDA
matrix. The columns of thi;i x m transformation discriminant eigenvector. Since we are assumirlg on
matrix are eigenvectors, not necessarily in eigeeg  two classes to separate, there is only one MLDA
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Fig. 3. A synthetic data set.

discriminant eigenvector. The most discriminant experimental results of real medical data, biolatyc
feature of each one of therdimensional vectors is plausible results that are often not detectable
obtained by multiplying theN xm most expressive  simultaneously.

features matrix by thenx MLDA linear discriminant

eigenvector. Thus, the initial pre-processed ingiset 3. Experimental Results

consisting of N measurements om variables, is

reduced to a data set consistinghdfmeasurements on To illustrate the performance of the multivariate

only 1 most discriminant feature. _ linear approach we present in this section experiate
The other main task that can be implemented by thisresults of the framework based on a simple ariligi

two-stage multivariate statistical approach isisually generated data set and on a real medical data.
analyse the most discriminant feature found by the

maximum uncertainty method. According to Figure 2, 3 1. A Synthetic Data Example
more specifically from right to left in its Visual

Analysis frame, any point on the most discriminant  \ve have chosen a very simple artificial data set
feature space can be converted to its correspomding composed of 8 binary images of circles (ellipses) &
dimensional image vector by simply: (1) multiplying pinary images of squares (rectangles). Figureo8vsh
that particular point by the transpose of the linea poth samples of images composed of 70 x 70 pixels.
discriminant ~ vector previously computed; (2)  As described in the previous section, we use such
multiplying its m most expressive features by the training examples (without any spatial normalisafio
transpose of the principal components matrix; @)d ( to construct the multivariate linear classifier for
adding the average image calculated in the training|apelling new examples and identifying the most
stage to then-dimensional image vector. Therefore, discriminating hyper-plane separating circles (or
assuming that the clouds of the classes follow aellipses) from squares (or rectangles). Since ethos
multidimensional Gaussian distribution and applying samples are very simple and easily separable, the
limits to the variance of each cloud, such #3s, classifier achieved 100% of leave-one-out accuracy.
where < is the standard deviation of each group, we Figure 4 presents the PCA+MLDA most discriminant
can move along this most discriminant feature aap m  feature of the synthetic database using all the 16
the result back into the image domain. This mappin examples as training images. It displays the image
procedure provides an intuitive interpretation bé t regions captured by the classifier that change when
classification experiments and, as we will showthe move from one side (squares or rectangles) of the

- 33square quuare + 38square boundary - Sscircle Xcircle + 33circle

Fig.4. Image display of theegions captured by the classifier that changenwibe move from one side (squares or rectangle
the dividing PCA+MLDA hyper-plane to the other das or ellipes), following limits oft3 standard deviations for each saen

group.




l

dividing hyper-plane to the other (circles or edy),

following limits to the variance #3sstandard i -l

deviations) of each sample group. ! T
Despite the changes due to misalignments of the ‘

images, Figure 4 shows clearly that the statistical .

mapping effectively extracts the group differencds. i | AR |

is important to note that these differences coelddry i || g ||

subtle on samples that are very close to the digidi | || [ | |

boundary and consequently difficult to charactedse

belonging to one of the groups.

3.2. A Real Data Example ] [ | |

| Al et J] |

In order to demonstrate the effectiveness of the I -l

methodology on medical data, we have used an NeIEVIVELCS White Matter CSF Space

Alzheimer MR brain data set that contains imagebdof

patients and 14 healthy controls. All these imagee Fig. 5. Brain regions where significant differences
acquired using a 1.5T Philips Gyroscan S15-ACS MRI Alzheimer patients relatively to controls were dete b
scanner (Philips Medical Systems, Eindhoven, The tbhe SPM voxel-wise statistical tests p 001. ‘We can se

. . . . etweengroup differences in the occipital, parietal
Netherlands), including a series of contiguous DM onta| [obes, inter-hemispheric fissure, and csrpallosum.
thick coronal images across the entire brain, using
T1-weighted fast field echo sequence (TE = 9ms=TR included: an automated brain extraction procedare t
30ms, flip angle 39 field of view = 240mm, 256 x 256  remove non-brain tissue and an algorithm to coffierct
matrix). All images were reviewed by a MR neuro- image intensity non-uniformity. Finally, images ree
radiologist.  Ethical permission for this study was smoothed with an isotropic Gaussian kernel (8mm
granted by the Ethics Committee of the Clinical FWHM), and averaged to provide the gray, white
Hospital, University of Sao Paulo Medical Scho@pS matter and CSF templates in stereotactic space.

Paulo, Brazil. To boost the signal-to-noise ratio, the image
processing of the original images from all AD patse
3.2.1. Mass-univariate Statistical Analysis and controls was then carried out, beginning bygena

segmentation. The segmented images were spatially

For comparison purpose, Statistical Parametric normalized to the customized templates previously
Mapping (SPM, version SPM2) [4] analyses were created by using 12-parameter linear as well as non
conducted using an optimised Voxel-based linear (7 x 9 x 7 basis functions) transformatioe
Morphometry (VBM) protocol [7]. In contrast to the parameters resulting from this spatial normalizatio
multivariate approach, SPM has been designed tostep were reapplied tihe original structural images.
enable voxel-by-voxel inferences about localised These fully normalized images were re-sliced usiiag
differences between the groups and, consequemi®s d linear interpolation to a final voxel size of 2 xx22
not characterise interregional dependencies betweermn?, and segmented intpay matter, white matter and
the structures of the brain [3]. CSF partitions. Voxel values were modulated by the

A standard template set selected by the psychimtris Jacobian determinants derived from the spatial
was created specifically for this study, consistaiga normalisation, thus allowing brain structures that
mean T1-weighted image, arad priori gray matter, their volumes reduced after spatial normalisation t
white matter and CSF templates based on the in@fges have their total counts decreased by an amount
all AD (Alzheimer Disease) and healthy control proportional to the degree of volume shrinkage [7].
subjects. Initially, images were spatially normmed to Finally, images from AD patients and controls were
the standard SPM T1-MRI template [9], using linear smoothed using a 12mm Gaussian kernel and compared
12-parameter affine transformations. Spatially statistically between the two groups using unpaired
normalized images were then segmented into grayStudent's t-tests ap < 001 (level of significance).
matter, white matter and cerebrospinal fluid (CSF)  Figure 5 illustrates the locations where significan
compartments, using a modified mixture model cluste differences between the groups were detected. The
analysis technique [7]. The segmentation methed al underlying image is the reference template usetthen



spatial normalisation of all MR images. As can be
seen,
Alzheimer patients relatively to controls in the
occipital, parietal and frontal lobes, in the inter
hemispheric fissure, and corpus callosum.

structures, especially where significant gray mmatte

changes were observed, are among the regions thougl

to be the most prominently affected by atrophic
changes in Alzheimer disease [1].

3.2.2. Multivariate Statistical Analysis

Evaluating the classifier's performance.In order to
evaluate the PCA+MLDA classification’s rule, we bav

used the Bhattacharyya bound to estimate the error

probability of the multivariate statistical framesko
For two-class problems, the upper bound of the
error probabilitye, is defined as [5]
& = (Pip,) 2 exp(d) ®)
where p; and p, are the prior probabilities of classes

7 and 77, respectively, andl is the Bhattacharyya
distance between the two classes defined as

4 S+
L T[22 ) g _xy 4 L 2
d==(-%) [ j (q-%)+<In , (7)
8 ? 2 sl
where the notation “|.|” denotes the determinant of

matrix. As described previously, the vect® and

there are some localised differences in the

These

Fig. 6. Statistical differences between the control (be
left) and Alzheimer patient (on the right) imageptired b

the multivariate statistical classifier. We cane sthe
following brain differences in the Alzheimer patis
relatively to the controls:1) enlargement of the ventricu

matrix § are respectively the unbiased sample meanSystem, (2) atrophy of the hippocampus, (3) cd

and sample covariance matrix of clags(i = 1,2).

Since the dataset under investigation comes wih th
same proportion of patient images relatively to
controls, we have assumed that the prior probadslit
of both groups are equal. Thus, assuming
p,=p, =05 and calculating the Bhattacharyya
distanced using all the patient and control samples,
the multivariate statistical classifier achieves thalue
of 1.56%. This result confirms the classifier'sliap
of discriminating the brains of controls from thaske
patients with a successful classification rate &#@%,
using the closed-form method for the error probghil

Visual Analysis of discriminative information. The
visual analysis of the linear discriminant featémand
by the multivariate approach is summarised in Fdur
As mentioned earlier, the one-dimensional vectanéb
by the PCA+MLDA approach corresponds to a hyper-
plane on the original image space which direction
describes statistically the most discriminant défeces

degeneration of the occipital, parietal, and frbfdahes, (4
enlargement of the intdremispheric fissure, and (5) atro|
of corpus callosum.

between the control and patient images used for
training.

Figure 6 shows the differences between the control
(on the left column) and patient (on the right cof)
images captured by the multivariate statisticadsifeer
using MR intensity features as inputs. These image
correspond to one-dimensional points on the
PCA+MLDA space projected back into the image
domain and located at 3 standard deviations of each
sample group. We can understand this mapping
procedure as a way of defining intensity changes th
come from “definitely control” and “definitely paitnt”
samples captured by the statistical classifier. dAle
see the following brain differences in the Alzheime
patients relatively to the controls: (1) enlargeteh
the ventricular system, (2) atrophy of the hippopas)

(3) cortical degeneration of the occipital, patdietand
frontal lobes, (4) enlargement of the inter-hemésjh



fissure, and (5) atrophy of the corpus callosunhese
multivariate results are consistent with the SPM

between-group differences presented previously and

with other common findings of patients who have
developed the pathology [12], such as the enlargeme
of the ventricular system. Therefore, the usehef t
multivariate approach has allowed not only the
simultaneous identification of localised betweeatgr
differences but also distributed ones that arenofte
measured separately
approaches.

4. Conclusion

We have presented a general PCA+MLDA
multivariate linear framework to identify and arsdy

the most discriminating hyper-plane separating two
The statistical analysis generates a

populations.

in the voxel-wise statistical
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