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ABSTRACT 

Pre-term birth is strongly associated with subsequent neuropsychiatric impairment.  To identify structural differences in 
preterm infants we have examined a dataset of magnetic resonance (MR) images containing 88 preterm infants and 19 
term born controls.  We have analyzed these images by combining image registration, deformation based morphometry 
(DBM), multivariate statistics, and effect size maps (ESM).  The methodology described has been performed directly on 
the MR intensity images rather than on segmented versions of the images.  The results indicate that the approach 
described makes clear the statistical differences between the control and preterm samples, showing a leave-one-out 
classification accuracy of 94.74% and 95.45% respectively.  In addition, finding the most discriminant direction between 
the groups and using DBM features and ESM we are able to identify not only what are the changes between preterm and 
term groups but also how relatively relevant they are in terms of volume expansion and contraction. 
 
Keywords: Pattern recognition, statistical methods, magnetic resonance images, deformation-based morphometry. 

1.   INTRODUCTION 

Pre-term birth is associated with neuropsychiatric impairment that is more severe with more prolonged exposure to the 
extrauterine environment [2].  Half of all surviving infants born at 25 weeks or less show neurodevelopmental 
impairment at 30 months of age [16], and among less immature infants over one third develop neurocognitive and 
behavioral problems [2, 10, 11].  The most common known cerebral abnormality in surviving preterm infants is non-
localized white matter disease seen in about two thirds of survivors and increased apparent diffusion coefficient values 
on diffusion weighted imaging [4, 9].  The effect of this diffuse lesion on neural systems is unknown, but defining its 
neuroanatomical correlates could advance understanding about the neural basis of functional impairment. 
 
To identify structural differences in preterm infants we have examined an extensive dataset of magnetic resonance (MR) 
images containing 88 preterm infants and 19 term born controls.  We have analyzed these images by combining image 
registration [5, 12], deformation based morphometry [1, 6], multivariate statistics [14], and effect size maps [8].  In this 
way, differently from analyzing the morphological differences given by the average volume change described by each 
sample group, we are able to analyze regional brain contraction and expansion of statistical extremes of preterm and term 
born infants and make a non-hypothesis survey of the whole brain to identify structural alterations apparent at term 
equivalent age. 
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2.   SUBJECTS AND DATA ACQUISITION 

The MR images of the 88 preterm infants (mean 29.8, range 24-34 weeks post-menstrual age) were acquired at term 
equivalent age (38 to 42 weeks), together with 19 term-born infants (mean 39.0, range 36-43 weeks post-menstrual age).  
All images were reviewed by a perinatal neuroradiologist (MR) and infants with focal lesions or congenital cerebral 
malformations were excluded.  The mean birth weight of the preterm at term equivalent group was 1302g (range 610-
2178g), compared with a mean birth weight of 3390g (range 2448-4780g) among the control group.  Preterm infants at 
term equivalent age were sedated with chloral hydrate for the examination but did not require mechanical ventilation at 
the time of MR imaging.  Control infants were examined in natural sleep.  Pulse oximetry, electrocardiographic and 
televisual monitoring were used throughout the examination which was attended by a neonatologist. 
 
A 1.5 T Eclipse MR System (Philips Medical Systems, Best, The Netherlands) was used to acquire high resolution T1 
weighted images (TR=30ms, TE=4.5ms, flip angle = 30o).  In addition to conventional T1 weighted image acquisition, 
volume datasets were acquired in contiguous sagittal slices (in-plane matrix size 256 x 256, FOV = 25cm) with a voxel 
size of 1.0 x 1.0 x 1.6 mm3.  The skull, scalp, and other extra-cranial tissues were removed from each image before 
performing the analysis.  Ethical permission for this study was granted by the Hammersmith Hospital Research Ethics 
Committee and informed parental consent was obtained for each infant. 

3.   IMAGE REGISTRATION 

To map the anatomy of each subject into the anatomy of the reference subject we used a non-rigid registration algorithm 
[12] that has been successfully applied to registration tasks involving deformable human tissue [5].  This algorithm uses 
a combined transformation T , which consists of a global transformation and a local transformation.  The global 
transformation, represented by an affine transformation, models global differences in rotation, scaling, shearing and skew 
between the reference and subject images.  The local transformation describes any local deformation required to achieve 
alignment of anatomical structures across subjects.  This is modelled using a free-form deformation (FFD) based on B-
splines, which is a powerful tool for modelling 3D deformable objects.  In essence FFDs deform an object by 
manipulating an underlying mesh of control points.  The resulting deformation controls the shape of the 3D object and 
can be written as the 3D tensor product of the 1D cubic B-splines as follows 
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where c  denotes the control points which parameterise the transformation. 
 
The optimal transformation is found by minimizing a cost function associated with the global transformation parameters 
as well as the local transformation parameters.  The cost function comprises two competing goals: the first term 
represents the cost associated with the voxel-based similarity measure, in this case normalized mutual information, while 
the second term corresponds to a regularization term which constrains the transformation to be smooth.  The resulting 
transformation T  maps each point in the anatomy of the reference subject to the corresponding point in the anatomy of 
the subject. 

4.   DEFORMATION-BASED MORPHOMETRY (DBM) AND VOLUME CHANGE 

An MR image taken from a term born control infant that was normal by visual inspection was selected as the reference 
subject.  The MR datasets from 88 preterm at term equivalent age infants and 19 term born controls were brought into 
alignment with the reference subject using the non-rigid registration algorithm with a multi-resolution scheme of control 
spacings of 20mm, 10mm, 5mm and 2.5mm.  The resulting control point mesh defines a continuous and analytic 
representation of the deformation field which describes the point-wise 3D displacement vectors that are required to warp 
each dataset to the reference image.  Boardman et al. [3] have previously shown that the algorithm performs consistently 
irrespective of the chosen reference subject.  In all cases registration achieved a visually plausible alignment of 



anatomical structures.  There were 7 subjects, in addition to the 88 preterms used, which were excluded due to 
misregistration (motion artefact in raw image or representing a structural extreme). 
 
To calculate regional volume changes, the determinant of the Jacobian of the deformation field was used to quantify 
local volume differences between the registered images and the reference subject [13].  The determinant of the Jacobian 
for any given location x  in the reference coordinate system provides an estimate of the point-wise volume change for 
each subject with respect to the reference.  Values above 1 indicate tissue expansion and values below 1 indicate tissue 
contraction.  As pointed out by Studholme et al. [13], assuming an unbiased registration, the choice of reference anatomy 
simply defines the origin of comparison of the relative size of local anatomy among subjects, and does not directly 
influence a statistical-based comparison of populations. 

5.   MULTIVARIATE STATISTICAL ANALYSIS 

The volume change maps for subjects in each group were analysed using the general multivariate statistical methodology 
(PCA+LDA) to identify the most discriminating hyper-plane separating two populations.  We used a recent approach 
proposed by Thomaz et al. [14] to overcome the well-known instability of the LDA within-class scatter matrix and 
increase the computational efficiency of the analysis. 

5.1   Principal Components Analysis (PCA) 

There are a number of reasons for using PCA to reduce the dimensionality of the 3D MR volume changes.  PCA is a 
linear transformation that is not only simple to compute and analytically tractable but also extracts a set of features that is 
optimal with respect to representing the data back into the original domain.  Moreover, using PCA as an intermediate 
step will reduce dramatically the computational and storage requirements for the subsequent LDA-based covariance 
method.  Since our application is a small sample size problem where the number of training patterns N  (or images) is 
much smaller than the number of features n  (voxel-wise volume change map), it is possible to transform data in a way 
that patterns occupy as compact regions in a lower dimensional feature space as possible with far fewer degrees of 
freedom to estimate. 
 
Although much of the sample variability can be accounted for by a smaller number of principal components, and 
consequently a further dimensionality reduction can be accomplished by selecting the principal components with the 
largest eigenvalues, there is no guarantee that such additional dimensionality reduction will not add any artefacts on the 
images when mapped back into the original image space.  Since one of our main concerns here is to map the 
classification results back to the image domain for further visual interpretation, we must be certain that any modification 
on the images, such as blurring or subtle differences, is not related to an “ incomplete”  or perhaps “misleading”  feature 
extraction intermediate procedure.  Therefore, in order to reproduce the total variability of the preterm and control 
samples, we composed the PCA transformation matrix by selecting all principal components with non-zero eigenvalues.  
In other words, assuming that all the N  training patterns are linearly independent the rank of the total covariance matrix 
is 1−N  and the number of principal components selected is 1−= Nm . 

5.2   Maximum Uncertainty LDA (MLDA) 

The primary purpose of LDA is to separate samples of distinct groups by maximising their between-class separability 
while minimising their within-class variability.  It is well known, however, that the performance of the standard LDA 
can be seriously degraded if there are only a limited number of total training observations N  compared to the dimension 
of the feature space m .  Since the within-class scatter matrix wS  is a function of )( gN −  or less linearly independent 
vectors, where g  is the number of groups, its rank is )( gN −  or less.  Therefore in the problem under investigation 
where the number of training patterns is comparable to the number of features, wS  might be singular or mathematically 
unstable and the standard LDA cannot be used to perform the task of the classification stage. 
 



In order to avoid both the singularity and instability critical issues of the within-class scatter matrix wS  when LDA is 
used in such limited sample and high dimensional problem, we used a maximum uncertainty LDA-based approach 
(MLDA) based on a straightforward covariance selection method for the wS  matrix [15].  Thomaz et al. have shown 
recently that the MLDA approach provides an appropriate separation between the control and preterm voxel-based 
features without over-fitting the limited sample data [14]. 

6.   EXPERIMENTAL RESULTS 

We performed two main tasks: classification and visual analysis.  In the classification task the PCA+MLDA linear 
classifier was generated and the leave-one-out method was used to test and evaluate the classifier’s performance.  The 
main characteristic of the classification step is to find the most discriminant hyper-plane that not only separates the 
control from preterm infants but also indicates the statistical direction where patterns of morphological group differences 
are most expressive. 
 
Since the dataset under investigation comes with a higher proportion of preterm images relatively to the control ones it is 
important to assess the PCA+MLDA classifier using different prior probabilities for the control and preterm groups as 
well as different misclassification costs.  In order to avoid the specification of these values that are not known in practice, 
we used the equivalent threshold-free ROC (Receiver Operating Characteristic) approach that examines the effect of 
setting the decision line at various points between the samples and consequently varying the bias of the classifier. 
 
Varying the decision threshold such that a given example will be classified as either control or preterm when its 
discriminant feature is compared to the threshold value leads to a tradeoff between sensitivity and specificity.  The ROC 
curve is a plot of sensitivity (or true positive rate) versus 1–specificity (or false positive rate).  In our problem, the true 
positive rate is the fraction (or %) of control labelled test data correctly classified as control.  Analogously, the false 
positive rate is the fraction of truly preterm examples incorrectly classified as control.  The ROC curve of the 
PCA+MLDA classifier using the leave-one-out method is plotted in Figure 1.  It highlights the effect of setting the 
decision line at various points from the control to the preterm samples.  When 0% of false positive rate is assumed, that 
is all the preterm examples are correctly classified, the PCA+MLDA classifier achieves a top of 89.47% of controls 
correctly classified.  For a false positive rate of 4.55%, or preterm classification accuracy of 95.45%, the approach 
achieves a control classification accuracy of 94.74%.  These results confirm the PCA+MLDA classifier’s ability to 
discriminate brains of controls from those of preterm infants with high classification rates. 

Figure1: ROC curve based on leave-one-out method. 

Figure 2 presents the PCA+MLDA most discriminant feature of the infant database using all the control and preterm 
samples as training data.  The vertical axis is illustrative only and represents the corresponding index of each image in 
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the sample set.  Circles and crosses describe respectively the control and preterm observations.  The post-menstrual age 
(PMA) at birth and scan of the infants on the extremes of correct classification and near the boundary of misclassification 
are also presented in the plot.  For instance, the control infant on the right most place of the plot has 41.86 and 42.00 
PMAs at birth and scan respectively.  Analogously, the nearest preterm infant to the control group has 34.00 and 41.29 
PMAs at birth and scan respectively.  As reference values, we have indicated in the plot with arrows the infants of each 
group with maximum and minimum PMAs at scan.  As can be seen, when we move from the preterm (left) to the control 
(right) samples the infants on the extremes of each group are not the ones with extreme ages. 

Figure 2: Scatter plot of the most discriminant feature (all controls and preterms as training data). 

The other main task that has been carried out by this two-stage multivariate statistical classifier is to visually analyse the 
most discriminant feature described by the PCA+MLDA hyper-plane.  Assuming that the clouds of the control and 
preterm points follow a multidimensional Gaussian distribution and applying limits to the variance of each cloud, such as 

3± standard deviations, we can move along this most discriminant feature and map the result back into the image 
domain.  We can understand this mapping procedure as a way of defining volume changes that come from “definitely 
preterm” and “definitely control”  samples, and consequently investigating differences captured by the classifier that are 
beyond the average volume change described by each sample group. 
 
In order to avoid the use of raw units, which are quite arbitrary or lack meaning outside the investigation, we have 
expressed regional volume changes between two groups in units of variability by calculating the effect size )(xε  of the 
differences, that is 
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Here )(xv p  and )(xvc  denote the volume changes at x  for “definitely preterm” and “definitely control”  samples 
(statistical extremes) calculated at 3 standard deviations from each corresponding sample group on the most discriminant 
feature space, while )(xcp �σ  denotes the standard deviation of the volume changes at x  for the corresponding pooled 
group. 
 
Figure 3 illustrates+ the spatial distribution of the effect size 5.0)( ≥xε  of the volume changes when using the average 
(figure 3a) and statistical extreme (figure 3b) described by each sample group superimposed on a reference image.  In red 
the tissues contained within the isoline are more contracted in the preterm at term equivalent age group compared to the 
term controls.  The isolines in blue show areas of relative tissue expansion in the preterm group compared to the term 
infants.  We can see clearly that by exploring the most discriminant direction found by the PCA+MLDA classifier we are 
able to identify more complex patterns of morphological group differences that are often not detectable. 

(a) (b) 

Figure 3: Detection of volumetric changes associated with preterm birth ( 5.0)( ≥xε ): (a) comparing the average volume changes 
described by each sample group; (b) comparing the statistical extremes of each sample group found by the PCA+MLDA classifier. 

Figures 4 and 5 show+ respectively the effect size maps (ESMs) of the volumetric contraction and expansion areas of the 
statistical extremes previously illustrated in Figure 3b.  In both figures the colour-scale shows relative volume change as 
a range of the effect size )(xε .  That is, tissues contained within the isoline in the spectrum of blue show areas of 
relatively small effect size 0.1)(5.0 <≤ xε .  The isolines in the spectrum of green and red show areas with more 
expressive changes and correspond to 0.2)(0.1 <≤ xε  and 0.2)( ≥xε  respectively.  As can be seen, the area of most 
volume loss is within basal ganglia and thalami.  This most expressive result is consistent with previous results published 
by other investigators [3, 7] and the less expressive ones highlight patterns of morphological group differences that are 
often not detectable. 

Figure 4: ESM - Contraction areas in detail. Figure 5: ESM - Expansion areas in detail. 
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7.   CONCLUSION 

This paper describes the idea of using deformation-based morphometry (DBM), multivariate statistical hyper-plane 
(PCA+MLDA), and effect size maps to analyse changes associated with pre-term birth.  The methodology described has 
been performed directly on the MR intensity images rather than on segmented versions of the images.  The pivotal step 
of this multivariate statistical analysis is registration. 
 
Using a neonatal MR brain data set that contains images of 88 preterm infants at term equivalent age and 19 term 
controls, the model described makes clear the statistical differences between the control and preterm samples, showing a 
leave-one-out classification accuracy of 94.74% and 95.45% respectively.  In addition, finding the most discriminant 
direction between the groups and using DBM features and effect size maps we are able to identify not only what are the 
changes between preterm and term groups but also how relatively relevant they are in terms of volume expansion and 
contraction.  We believe that applying such multivariate statistical analysis we can detect subtle and perhaps spatially 
more complex patterns of morphological group differences that are often not detectable. 
 
Since the methodology described is not restricted to any particular set of features, there is thus scope for augmenting or 
replacing the input features.  We are currently investigating and comparing the performance of the multivariate statistical 
model on voxel and deformation-based morphometries.  Initial experiments carried out have shown complementary 
results between the two methods of morphometries. 
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