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Abstract

In classification problems, when the number of examples per class is less than (or
comparable to) the dimension of the feature space, the performance of statistical pattern
recognition techniques tends to deteriorate. This problem, called the “limited sample size
problem”, is indeed quite common nowadays, especially in image recognition
applications. For instance, in face recognition each individual or class is defined by a
small number of pictures but the features used for recognition may be hundreds of pre-
processed image attributes.

In the statistical approach, the region of the feature space occupied by each class is
generally determined by the probability distribution of the observations belonging to each
class, which must be either specified or learned. Many of these probability distribution
estimations are based on Gaussian kernels that involve the inverse of the true covariance
matrix of each class. The usual choice for estimating the true covariance matrices is the
maximum likelihood estimator defined by the corresponding sample group covariance
matrices. However, these matrices are either poorly estimated or cannot be inverted when
the group sample sizes are smaller than the number of features or parameters.

In this thesis, a new covariance estimate called Maximum Entropy Covariance
Selection (MECS) is proposed. This estimate is based on combining covariance matrices
to take into account the principle of maximum uncertainty. When limited information is
provided, we show that the problem of estimating covariance matrices for classification is
affected not only by the way this information is optimised but also by its reliability. The
new covariance method does not require an iterative optimisation procedure and, hence,
its estimation, differently from others, is not exclusive to the parametric Bayesian
classifier. In fact, we demonstrate that MECS can be used in the parametric as well as
non-parametric Bayesian classifiers whenever the sample group covariance matrices are
ill-posed or poorly estimated.

The singularity and instability of covariance matrices is a critical issue not only for
Bayesian classifiers but also other statistical covariance-based analysis, such as the Linear
Discriminant Analysis (LDA). We also show that the novel method of combining
covariance matrices in limited sample size problems improves the LDA classification
performance, with or without an intermediate dimensionality reduction step and using

few linear discriminant features.
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Chapter 1

Introduction

Pattern recognition is known as an important area of research in Computer Science and
Mathematics. More specifically, statistical pattern recognition is a well-established field
of study that has been successfully applied in several domains, such as Engineering, Bi-
ology, Psychology, and Medicine.

Although the concept of statistical pattern recognition reflects theoretical approaches
to problems of clustering and feature extraction or selection, its primary goal is classifi-
cation [JDMOO]. In other words, the main idea of a statistical pattern recognition system
is to formulate a decision-making process where a pattern is assigned to one of a finite
number of pre-specified classes characterised by their respective probability density
functions. This is essentially our main topic of research here.

In the next two sections of this first chapter, we explain our motivation for this work
and provide the details of the objective to be achieved. An outline of the dissertation is

described in the last section.

1.1 Motivation

In many pattern recognition applications nowadays there are often a large number of
features available, but the number of training patterns per class or group may be signifi-
cantly less than the dimension of the feature space. For instance, in image recognition
problems, each group is commonly defined by a small number of pictures but the number
of features used for recognition may be thousands of pixels or even hundreds of pre-

processed image attributes. This implies that the performance of classical statistical pat-



Introduction 2

tern recognition techniques, which have been used successfully to design several recogni-
tion systems, deteriorate in such limited sample size settings.

In the statistical approach, a pattern is represented by a set of features or parameters
and the region of the feature space occupied by each class is determined by the probabil-
ity distribution of its corresponding patterns, which must be either specified (parametric
approach) or learned (non-parametric approach). There are a number of classification
rules available to define appropriate statistical decision-making boundaries. The well-
known Bayes’ decision rule that assigns a pattern to the class with the highest posterior
probability is the one that achieves minimal misclassification risk among all possible
rules (see, e.g., [And84]).

The idea behind Bayes’ rule is that the main information available about class mem-
ber-ship is contained in the set of conditional probability densities. Among the various
density functions that have been investigated, none has received more attention than the
multivariate normal or Gaussian density [DHS01]. The main reason for choosing a
Gaussian kernel to model a class-conditional probability density is not only its relatively
simple analytical properties, which can be completely specified by its corresponding true
mean and covariance matrix, but also because Gaussian distributions are frequently
found experimentally in natural systems.

The class membership similarities given by Gaussian kernel functions involve the in-
verse of the true covariance matrix of each class. As in real-world problems, the true
covariance matrices are seldom known and estimates must be computed based on the
patterns available in a training set. The usual choice for estimating the true covariance
matrices is the maximum likelihood estimate defined by the corresponding sample group
covariance matrices. However, in limited sample size applications the inverse of sample
group covariance matrices is either poorly estimated or cannot be calculated when the
number of training patterns per class is smaller than the number of features. Therefore,
the most common Bayesian classification methods, which are based on the inverse of the
sample group covariance matrices, cannot be used.

In the last 25 years, several researchers have proposed different modifications to the
sample group covariance matrices that increase their stability when limited information is
available [VNe80, Fri89, Fuk90, GR89, GR91, HFT96, HL96, OSA00]. However, as we

will present in this work, most of these covariance estimate approaches rely on optimisa-
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tion techniques that are time consuming and exclusive to the type of Bayesian classifier
used. Therefore, to some extent, the tractability of Gaussian kernels have been lost be-
cause the sample group covariance matrices have been replaced with covariance esti-
mates that are mathematically invertible, but not necessarily computationally feasible
when the number of classes is large. It would be certainly rewarding if we could restore
the simplicity and tractability of the Gaussian distribution in such limited sample size and

high dimensional problems.

1.2 Objective

The objective of this thesis is to investigate and develop a new covariance approximation
for the sample group covariance matrices used in Bayesian classifiers. Our main concern
here is with pattern recognition problems composed of limited training sets, a large num-
ber of features, and several groups. Biometric image recognition applications, such as
face recognition and fingerprint recognition, are examples of the applications studied.
The geometric idea of sample group covariance matrices for parametric Bayesian clas-
sifiers can be illustrated as follows. Let there be a two-dimensional feature space con-
taining three hypothetical samples drawn randomly from three distinct classes normally

distributed, as shown in Figure 1.1.
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Figure 1.1. Geometric idea of covariance matrices for parametric classifiers.

The coloured ellipses correspond to contours of constant probability densities gov-
erned by the sample group covariance matrices centred at the corresponding mean vec-
tors. That is, the principal directions of the ellipses are aligned with the eigenvectors of

the respective sample group covariance matrices and the magnitude of these eigenvectors
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are given by the square root of each corresponding eigenvalue [Fuk90]. However, in
sparse and high dimensional problems, these ellipses become ellipsoids that cannot be
represented because some of those eigenvalues are zero.

One way to overcome this problem in parametric Bayesian classifiers is to assume that
all groups have equal covariance matrices and to use as their estimates the weighted av-
erage of each sample group covariance matrix, given by the pooled covariance matrix
calculated from the whole training set. The pooled covariance matrix is shown as dotted
grey ellipses in Figure 1.1. As we can see, the pooled covariance estimate is not a con-
venient approximation for all the three hypothetical sample group covariance matrices
presented.

Considering the same three hypothetical samples described previously, Figure 1.2 il-
lustrates the geometric idea of the sample group covariance matrices for non-parametric
Bayesian classifiers. Since non-parametric Bayesian classifiers are not restricted to uni-
modal distributions, each class can be described by more than one Gaussian kernel.
However, analogously, in sparse and high dimensional problems the ellipses become
ellipsoids that cannot be represented because some of the sample group covariance ei-

genvalues are zero.

X +

X
Figure 1.2. Geometric idea of covariance matrices for non-parametric classifiers.

The usual way to overcome this limited sample size problem in non-parametric Bayes-
ian classifiers is to assume that each sample group covariance matrix has a diagonal
form. As a consequence, all the ellipses described in Figure 1.2 would have the same

principal directions, as shown by the corresponding coloured dotted ellipses. Again, we
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can see that this approximation for the sample group covariance matrices would not nec-
essarily suit all the three hypothetical classes shown.

Therefore, in order to propose a new covariance estimate for sample group covariance
matrices, we need to address the following question: Is it possible to develop an ap-
proximation for singular or poorly estimated covariance matrices that (1) improves the
classification accuracy in limited sample size settings; (2) is computationally feasible if
several classes are considered; (3) does not have a unique or restrictive form; and (4) is
valid for parametric and non-parametric Bayesian classifiers and any other statistical
covariance-based analysis ? We believe that this thesis will show that the answer to this

question is: “Yes! It is possible.”

1.3 Outline of the Thesis

This thesis can be summarised as follows.

In Chapter 2, we present some mathematical concepts that have been used throughout
this work. These concepts are essentially fundamental topics from linear algebra, infor-
mation theory, and probability theory that are important within multivariate statistical
analysis. The reader will be referred to the detailed background material for a compre-
hensive exposition of these topics. The notations for the most commonly occurring
quantities used in this dissertation are shown in the last section of this chapter.

In Chapter 3, we present the main idea of the parametric Bayes plug-in classifier and
review its most important non-conventional implementations, such as the Regularised
Discriminant Analysis (RDA) [Fri89] and the Leave-One-Out Likelihood (LOOC)
method [HL96], which address the difficulties caused by limited sample size problems.
Experiments carried out by a number of researchers have shown that choosing a non-
conventional Bayes plug-in classifier improves the classification accuracy in settings for
which sample sizes are limited and the number of features is large. These ideas have
proved to be true in cases where no more than 20 groups are required, but have not been
verified for a large number of groups.

Chapter 4 analyses the performances of several non-conventional Bayes plug-in co-
variance estimators, reviewed previously, in pre-processed image recognition problems

that consist of small and moderate training sets, a large number of features, and a moder-
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ate number of groups. Experiments carried out on face and facial expression recognition
confirm the findings of other researchers that choosing a non-conventional Bayes plug-in
classifier between the linear and quadratic ones improves the classification accuracy in
settings for which sample sizes are small and the number of features is large. However,
in those well-framed applications where the sources of variation are the same from group
to group and consequently a similar covariance shape might be assumed for all groups,
linear combinations of the sample group covariance matrices and the pooled covariance
matrix may lead to a loss of covariance information. An initial approach to understand
this problem will be presented and shows the importance of taking into account the dis-
tinct information provided by the sample group covariance matrix and the pooled covari-
ance matrix in the whole high-dimensional feature space.

In Chapter 5, a new non-conventional Bayes Plug-in classifier is proposed. This clas-
sifier is based on a new covariance matrix estimate, called Maximum Entropy Covari-
ance Selection (MECS) method, which combines covariance matrices under the principle
of maximum uncertainty. The main idea of the MECS approach is to expand in a
straightforward way the smaller and consequently less reliable eigenvalues of the sample
group covariance matrix while trying to keep most of its larger eigenvalues unchanged.
The results indicate that in image recognition applications where the sources of variation
are commonly the same from group to group, limited training samples sizes are consid-
ered, and high concerns about computation costs exist, the MECS approach is preferable
to RDA and LOOC non-conventional quadratic classifiers.

In Chapter 6, we initially present the basic concepts of the Parzen Window classifier
and review its most relevant non-conventional approaches for limited sample size prob-
lems. Since the MECS approach is a direct procedure that is not exclusive to the para-
metric Bayes Plug-in classifier, we then investigate the MECS performance as a new
kernel covariance estimator for the non-parametric Parzen Window classifier. The ex-
perimental results carried out on synthetic and image data indicate that the less restricted
MECS covariance estimate improves the classification performance of the Parzen Win-
dow classifier with Gaussian kernels, especially when the sample size is small and the
data parameters are highly correlated.

In Chapter 7, a new Fisher-based method of linear discriminant analysis (LDA) is pro-

posed. Analogously to the procedure described in the chapter 5, the new LDA-based
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method is a straightforward approach that considers the issue of stabilising the ill posed
or poorly estimated within-class scatter matrix with a multiple of the identity matrix. In
order to evaluate its effectiveness, experiments on face recognition using benchmark
databases are carried out and compared with other LDA-based methods. The results
indicate that our method improves the LDA classification performance when the within-
class scatter matrix is singular as well as poorly estimated, with or without a Principal
Component Analysis intermediate step and using fewer linear discriminant features.

In Chapter 8, we conclude the thesis and discuss some issues that have emerged from
this work, such as the feasibility of quantifying the assumption that the covariance matrix
estimations share some similarities and the association of the MECS approach with other

regularisation methods of combining singular and non-singular covariance estimates.



Chapter 2

Mathematical Foundations

In this chapter, we present a number of basic mathematical concepts from linear algebra,
information theory, and probability theory that are important within statistics and have
been used throughout this work.

The chapter is organised in three parts. The first part, consisting of Sections 2.1 and
2.2, provides some definitions and results of linear algebra, more specifically matrix al-
gebra, that have been used in the study of multivariate statistical analysis. A comprehen-
sive exposition of these topics can be found in [Sea66, Str88]. The second part of the
chapter, consisting of Section 2.3, discusses briefly the idea of entropy as a quantitative
measure of information, which leads to the maximum entropy statistical inference used in
this thesis. For a broad treatment of information theory, the reader is referred to the book
by Cover and Thomas [CT91]. In the final and third part, consisting of Sections 2.4
through 2.8, we describe some relevant topics in one of the most general frameworks to
formulate solutions to pattern recognition problems, the statistical pattern recognition
approach. The chapter concludes with the notation used throughout this dissertation,

which is presented in Section 2.9.

2.1 Vectors and Matrices

An array x of n real numbers x,,x,,...,x, is called a vector, and it is written as

n

x=| . or xTz[xl,xz,...,xn], (2.1)
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where x” is its transpose.

A vector can be represented geometrically as a point in an n-dimensional space or a
line in #» dimensions with component x, along the first axis, x, along the second axis,
..., and x, along the nth axis [JW98]. In statistics, vectors are often referred as patterns
and are used to represent the measurements of a number of variables.

A matrix is defined as a rectangular array of real numbers arranged into rows and col-
umns. It is said to be square if it has as many rows as it has columns. A particular square
and diagonal matrix is the identity matrix / whose on-diagonal elements are 1’s and all
off-diagonal elements 0. The matrix / plays the same role in matrix multiplication as
the number 1 does in ordinary multiplication [Jam85]. In other words, the following

equation

A=Al =4 (2.2)

is valid for any matrix 4 of the appropriate size so that the multiplications can be per-
formed.

There are two other particular square matrices that are of special importance in multi-
variate statistical analysis: the symmetric and orthogonal matrices. A square nxn ma-

trix A is called symmetric if
A=AT. (2.3)

For example, covariance matrices are symmetric matrices. A real square matrix is said to

be orthogonal if

AA" =A"A=1 or A'=4" (2.4)

and its columns are orthonormal. Thatis, for A=[a,,a,,...,a,]

>n

1 for i=j
T
a,a; = 2.5

! {0 for i#j. 2:5)

The eigenvector matrix of a covariance matrix is, for instance, an orthogonal matrix. It is
important to mention that although a rectangular matrix can still have the property that
AA" =1 or A"A=1, it cannot have both and, consequently, is said to be a semi-

orthogonal matrix [MN99].



Mathematical Foundations 10

2.2 Eigenvectors and Eigenvalues

One of the most important results of matrix algebra that finds application within statistics
is the topic of eigenvectors and eigenvalues. We can describe the main idea of this linear
transformation as follows.

Let 4 be an nxn square matrix. The eigenvalues of A are defined as the roots of the

following equation

det(4—AI)=|4-all=0, (2.6)

where [ is the nxn identity matrix. Equation (2.6), which is called the characteristic
equation [MN99], has n roots. These roots can be complex numbers. Let 4 be an ei-

genvalue of 4. Then there exists a vector x such that

Ax=1x. (2.7)

The vector x is called an eigenvector of A associated with the eigenvalue 4. Ordinar-
ily, we normalise x so that it has length one, that is, xIx=1.

In general, the vector Ax defined in equation (2.7) is a new vector that will not be
simply related to x. That is, x changes direction when multiplied by 4, so that Ax is
not a multiple of x. This means that only certain special numbers A are eigenvalues,
and only certain special vectors x are eigenvectors. However, as pointed out by Strang
[Str88], if 4 were a multiple of the identity matrix, then no vector would change direc-
tion and all vectors would be eigenvectors.

Although eigenvalues are in general complex, the eigenvalues of a real symmetric ma-
trix are always real [MN99]. This is a fundamental and remarkable result for the covari-
ance matrices used in multivariate statistical analysis, because not only do the eigenvec-
tors exist but also there exists a complete set of n eigenvectors and their corresponding
eigenvalues. In other words, there exist an orthogonal nx»n matrix ® whose columns
are eigenvectors of the covariance matrix X and a diagonal matrix A whose diagonal

elements are the eigenvalues of X, such that

'Y d=A. (2.8)
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Therefore, the linear transformation given by the eigenvectors matrix @ diagonalises

the covariance matrix X, in the new coordinate system, creating a set of new variables

y=0x 2.9)

that are uncorrelated. In fact, as we will describe later in this chapter, this linear trans-

formation essentially finds the principal components of the covariance structure.

2.3 Entropy and Information

In 1948, Claude Shannon introduced the mathematical foundations of information theory
and the remarkable concept of entropy as an information measure in statistics [Sha48].
At that time, Shannon’s original work on information theory was in direct response to the
need for electrical engineers to design communication systems that are both efficient and
reliable [Hay99].

Despite its practical origin, information theory as it is known nowadays is not only a
deep mathematical theory concerned with the very essence of the communication proc-
ess, but also a framework of study that provides a constructive criterion for setting up
probability distributions on the basis of partial knowledge or limited information [Jay82].
This is essentially our main context of study here and, hence, the purpose of this section
is to discuss the idea of entropy as a quantitative measure of information, which leads to
the type of statistical inference used in this work, the maximum entropy estimate [Jay57].

Let an event X have N possible values, that is, X is capable of assuming the dis-
crete values x; (j=12,...,N ). Each one of these values x; has p(x;) probability of

occurrence with the two fundamental requirements that

0<p(x)<l and > p(x;)=1. (2.10)

=

The amount of information gained after observing the event X =x; with probability

p(x;) is defined by the following equation [Hay99]

Xj

I(xj)zln( ! Jz—lnp(xj). (2.11)
p(x))
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Equation (2.11) states basically that the amount of information described by the value
x; is related to the inverse of its probability of occurrence. In other words, if the N
possible values for the event X occur with different probabilities and, in particular, the
probability p(x;) is low, then there is more surprise and, consequently, more informa-
tion when X takes the value X; rather than another value x, (k=12,...,N ) with higher
probability [Hay99].

The entropy H(X) of the event X is defined as the expected value, or mean, of the

information described in equation (2.11), such that
N N
H)=E{(x)}=Y p(x )I(x,) == p(x)In p(x,) . (2.12)
j=1 Jj=1

In case any of the probabilities vanish, that is, p(x;)=0 for any 0< j< N, we use the
fact that lim ., ,, p(x)In p(x) =0 to take 0InO to be O0[DHSO1]. Analogously, for a

continuous n-dimensional random vector X,, the entropy 4(.X,) is given by [Hay99]

h(X;) == [ p()In p(x) dx =—Efin p(x)}, (2.13)

—00

where x =[x,,x,,...,x,]" and p(x) is the probability density function of X .

Equation (2.12), or equivalently equation (2.13), describes a quantity that increases
with increasing uncertainty. As pointed out by Jaynes [Jay57], this is an impressive re-
sult because not only is the entropy a unique and unambiguous criterion for the amount
of uncertainty inherent in a discrete or continuous event, but also it agrees with our intui-
tive notions that a broad distribution represents more uncertainty than does a sharply
peaked one. In other words, the higher the entropy, the higher the uncertainty as to
which possibility of the analysed event will occur.

Therefore, when we are making inferences on the basis of limited information it is
natural to think that we should use that probability distribution which has the maximum
uncertainty or entropy. In fact, as stated by Jaynes [Jay57], this is the only unbiased as-
signment we can make because any other would amount to an arbitrary assumption of
information, which by definition we do not have.

In the discrete case, H(X) is strictly non-negative and will be maximised when the

distribution is uniform, i.e. all outcomes are equally likely. However, in the multivariate
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continuous case, the entropy A(X,;) may be negative and its maximum value, among all
continuous probability density functions having a given mean and covariance matrix for
the random vector X,, will be attained by the multivariate Gaussian distribution

[DHSO1].

2.4 A Typical Statistical Pattern Recognition System

Although a pattern recognition investigation may consist of several steps, a fairly typical
statistical recognition system is commonly partitioned into components such as the ones

shown in Figure 2.1.

ORIGINAL/NEW
DATA

!

P PRE-PROCESSING

!

FEATURE
EXTRACTION

!

————— CLASSIFICATION

l_--__--__-ﬁl-_--__--_
v

Figure 2.1. A typical statistical pattern recognition system.

The pre-processing and feature extraction (or selection) stages operate on the original
(or new) samples (or data) in a way that normalises the pattern of interest, segmenting it
from the background, diminishing noise, and removing redundant or irrelevant informa-

tion. These stages attempt to transform data in a way that input vectors belonging to
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distinct classes should occupy as compact and disjoint regions in a lower dimensional
feature space as possible for a subsequent classification.

The task of the classification stage or the classifier component, which is our main con-
cern in this work, is to use the feature vectors provided by the previous stages to assign
the object to a specific class or group. In the formal setting, an object is assumed to be a
member of one, and only one, class and an error with an associated cost or loss is in-
curred if it is assigned to a different class [Fri89].

In order to improve the classification results of both the original and new data, those
pre-stages might often be revisited (feedback) during the decision-making process. This
feedback procedure can essentially use the output of the classifier to recommend further
adjustments on the statistical recognition system to improve its classification perform-

ance.

2.5 Principal Component Analysis

Principal Component Analysis, or simply PCA, is a feature extraction procedure con-
cerned with explaining the covariance structure of a set of variables through a small
number of linear combinations of these variables. It is a well-known statistical technique
that has been used in several image recognition problems, especially for dimensionality
reduction. A comprehensive description of this multivariate statistical analysis method
can be found in [Fuk90, JW98].

Let us consider the face recognition problem as an example to illustrate the main idea
of the PCA. In any image recognition, and particularly in face recognition, an input im-
age with n pixels can be treated as a point in an n-dimensional space called the image
space [KS90, TP91]. The coordinates of this point represent the values of each pixel of
the image and form a vector x” =[x,,x,,...,x, | obtained by concatenating the rows (or
columns) of the image matrix.

Figure 2.2 shows an example of concatenating the rows of a 64x64 (or 4096) pixels
image to represent a feature vector in the 4096-dimensional space. For this representa-
tion to make sense in classification problems, we are assuming implicitly that two images
that look like one another correspond to two close points in the high dimensional image

space.
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150 152 ... 151
|153 154 .. 155
254 255 ... 252 64 x 64 pixels
[150 152 ... 151 153 154 ... 155 .. 254 255 ... 252].0coei

Figure 2.2. An example of concatenating the rows of an image matrix to form a vector.

It is well-known that well-framed face images are highly redundant not only owing to
the fact that the image intensities of adjacent pixels are often correlated but also because
every individual has one mouth, one nose, two eyes, etc. As a consequence, an input
image with n pixels can be projected onto a lower dimensional space without significant
loss of information.

Let an N xn training set matrix X be composed of N input face images with n pix-
els. This means that each column of matrix X represents the values of a particular pixel
observed all over the N images. Let this data matrix X have covariance matrix X,
with respectively @ and A eigenvector and eigenvalue matrices, as described in equa-
tion (2.8). It is a proven result that the set of m (m <n) eigenvectors of X, which cor-
responds to the m largest eigenvalues, minimises the mean square reconstruction error
over all choices of m orthonormal basis vectors [Fuk90]. Such a set of eigenvectors that
defines a new uncorrelated coordinate system for the training set matrix X is known as
the principal components. In the context of face recognition, those components are fre-
quently called eigenfaces [TP91].

Therefore, although n variables are required to reproduce the total variability (or in-
formation) of the sample X , much of this variability can be accounted for by a smaller
number m of principal components [JW98]. That is, the m principal components can

then replace the initial » variables and the original data set, consisting of N measure-
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ments on 7 variables, is reduced to a data set consisting of N measurements on m prin-
cipal components.

There is always the question of how many m principal components to retain in order
to reduce the dimensionality of the original sample X . Unfortunately, there is no defini-
tive answer to this question. As pointed out by Fukunaga [Fuk90], one useful property of
such a linear transformation to consider is the effectiveness of each principal component.
In terms of representing the total information of X, this effectiveness is determined by
the magnitude of its corresponding eigenvalue [Fuk90].

Although the absolute value of the eigenvalue does not give adequate information for
selection, the ratio of the eigenvalue to the summation of all eigenvalues expresses the
percentage of the mean square reconstruction error introduced by eliminating the corre-
sponding eigenvector or principal component [Fuk90]. Thus, it is possible to use as a

criterion for eliminating or retaining the ith principal component the following ratio

A, A,

1 1

b

i Z 1 TwE,) (2.14)

J=1

where ¢ is a threshold value such that 0<¢ <1, and the notation ‘tr’ denotes the trace of
a matrix. For example, if we choose #=0.1 then every eigenvalue which explains 10%
or less of the total variance is eliminated.

Since the criterion described in equation (2.14) for determining an appropriate number
of principal components would give different results for different pattern recognition
problems, we have carried out our image recognition tests by considering several num-
bers of principal components and selecting the best number of principal components

experimentally, based on the classification accuracy.

2.6 The Statistical Decision Making Process

In the statistical pattern recognition approach, the decision-making process consists of
assigning a given pattern with n pre-processed feature values x =[x,,x,,...,x,]" to one
of g groups or classes 7,,7,,...,7, on the basis of a set of measurements or observa-

tions obtained for each pattern.
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The measurements associated with the population of patterns belonging to the 7, class
are assumed to have a distribution of values with probability conditioned on the pattern
class (or probability density function). That is, a pattern vector x belonging to class 7;
is viewed as an observation drawn randomly from the class-conditional probability func-
tion p(x|z;) [JDMOO].

The misclassification risk is the usual measure of the decision-making process (or
classifier) performance. This measure can be defined as the expected misclassification
loss over the sample to be classified [Fri89]. In most pattern recognition problems, it is
customary to consider as the loss function the 0/1 or symmetrical function, which assigns
no loss to a correct decision and assigns a unit loss to any error [DHSO01]. Therefore, we
are assuming basically that all errors are equally costly and, consequently, the misclassi-
fication risk is then just the classification error rate, that is, the percentage of new pat-
terns that are assigned to the wrong class. Thus, it is common to evaluate the decision-
making process by seeking maximum classification accuracy or, equivalently, minimum
error rate classification.

There are a number of decision rules available to define appropriate statistical deci-
sion-making boundaries. However, it is a proven result [And84] that the Bayes decision
rule that assigns a pattern to the group with the highest conditional probability is the one

that achieves minimal misclassification risk among all possible rules.

2.7 The Bayes Decision Rule

The idea behind the Bayes decision rule is that all of the information available about
group membership is contained in the set of conditional (or posterior) probabilities.
In the case of a 0/1 or symmetrical loss function, the Bayes decision rule for minimis-

ing the risk can be formally stated as follows: Assign input pattern x to class 7, if
P(r; |x)>P(r; | x), (2.15)
forall j#i and i,j=12,...,g groups. If there is more than one group with the largest

conditional probability then the tie may be broken by allocating the object randomly to

one of the tied groups [Jam85].
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Although quantities such as P(r, | x) are difficult to find by standard methods of es-
timation, this is not the case, however, for quantities such as p(x|z,). The probability
of getting a particular set of measurements x given that the object comes from class 7,
that is the class-conditional probability p(x|7;) or likelihood information, can be esti-
mated simply by taking a sample of patterns from class 7, .

Fortunately there is a connection between P(7z;|x) and p(x|7z;) known as the Bayes

theorem [Jam85]:

P(r. _ p(x|7z,)p(r;) ’
=S e pl) (2.16)
allk

where k=1,2,...,g groups. As we can note, all the items on the right-hand side of the
equation (2.16) are measurable quantities and so can be found by sampling. The item
p(r;) defined as the prior probability is simply the probability that the pattern comes
from class 7, in the absence of any information, i.e. it is the proportion of class 7z; in the
population.

Use of Bayes theorem as described in equation (2.16) with the previous Bayes rule de-

scribed in (2.15), gives the following decision rule: Assign input pattern x to class 7z; if

p(x|7;)p(x;) S p(x|7[j)p(7fj)
> pxlz)p(m) D pxla)p(r,)’ (2.17)

allk allk

forall j#i and k=12,...,g. As on both sides of the inequality the denominators are

equal, Bayes rule can be conveniently written as follows: Assign pattern x to class 7z; if
px|m)p(z) =max p(x|7;)p(r,;). (2.18)
The classification rule defined in (2.18) is the final practical form of the optimal Bayes

decision rule. This practical form of Bayes decision rule is also called the maximum a

posteriori rule.
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2.8 Parametric and Non-Parametric Statistical Methods

Several methods have been utilized to design a statistical pattern recognition classifier.
Strategies for choosing the most appropriate method basically depend on the type and the
amount of information available about the class-conditional probability densities.

The optimal Bayes rule discussed in the previous section can be used to design a clas-
sifier when all of the class-conditional densities are specified. In practice, however, the
true class-conditional densities are typically not known and must be estimated from the
available samples or training sets. If at least the form of the class-conditional densities is
known (e.g. multivariate Gaussian distributions) but some of the parameters of these
densities (e.g. mean vectors and covariance matrices) are unknown, then this problem is
defined as a parametric decision problem. A common strategy to tackle this problem is
to replace the unknown parameters in the density functions by their respective estimated
values calculated from the training sets. This strategy is often referred to as the Bayes
plug-in classifier, which will be described in the next chapter.

When the form of the class-conditional densities is either not known or assumed, non-
parametric models have to be considered. In non-parametric problems, either the density
functions must be estimated by using kernel functions or the class decision boundary has
to be directly constructed based on the available training samples. These ideas form
respectively the bases of the two most common non-parametric models: the Parzen Win-
dow classifier and the k-nearest neighbour (k-NN) classifier. The Parzen Window classi-
fier will be the topic of discussion in Chapter 6.

As mentioned previously, another subtle point in choosing a convenient statistical pat-
tern method is related to the amount of information available. Although intuitively it
could be expected that an increase in the number of features or dimensionality (more
details) of a particular problem would lead to a better classification performance, it has
been found in practice that beyond a certain point and when no additional information
(more samples) is available, exactly the opposite occurs. This apparently paradoxical
and well-known behaviour is commonly called the curse of dimensionality or peaking
phenomena [Fuk90, Bis97, JDMO00]. For fixed and limited sample sizes, as the number
of features increases, the reliability of the parameter estimates decreases, degrading the

corresponding classifier performance.
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In addition, when a classifier is designed using a finite number of training samples, the
expected probability of error is greater than if an infinite number of training samples
were available. It is reasonable to expect that the probability of error decreases as more
training samples are added and this behaviour obviously depends on the complexity of
the classifier used. Raudys and Jain [RJ91] found that the additional error due to finite
training sample size decreases more quickly for parametric classifiers than for non-
parametric ones. As a result, non-parametric methods rely on more densely populated

feature spaces for reliable classification than parametric ones.

2.9 Notation

Table 2.1 presents the notations for the most commonly occurring quantities used in this
work. Other variables or functions, which are not listed below, have their specific defini-

tions and usages clarified in the text.

Symbol Description

n Number of features or dimensionality
g Number of total classes or groups

N Number of total samples or observations
N, Number of class i samples

T, Class i

x=[x,%,,..,x,]"  Vector of features

H; True mean vector of 7,

Z True covariance matrix of 7,

p(x;) A priori probability of 7;

p(x|r;) A class conditional probability of x
P(r;|x) A posteriori probability of 7, given x

Table 2.1. Notation used throughout this work.



Chapter 3

The Bayes Plug-in Classifier

The Bayes plug-in classifier is one of the most common parametric methods applied to
statistical pattern recognition systems. This classifier is based on similarity measures
that involve the inverse of the true covariance matrix of each class or group. Since in
practical cases these matrices are not known, estimates must be computed based on pat-
terns available in a training set. The usual choice for estimating the true covariance ma-
trix is the maximum likelihood estimator defined by its corresponding sample group co-
variance matrix. However, in limited sample size applications the sample group covari-
ance estimates become highly variable or even not invertible. Thus, a considerable
amount of effort has been devoted to the design of other non-conventional Bayes plug-in
classifiers, for use in limited sample and high dimensional problems. This chapter pre-
sents the basic concepts of the Bayes plug-in classifier and reviews its most important

implementations.

3.1 The Conventional Bayes Plug-in Classifier

The Bayes plug-in classifier, also called the Gaussian maximum likelihood classifier, is
based on the n-multivariate normal or Gaussian class-conditional probability densities

px|z)= fi(x|p;,x) = _%(x_/ui)Tzi_l(x_lui)} 3.1

R
———exp
(27[)"/2|Zi|1/2
where g, and X, are the true class 7; population mean vector and covariance matrix,
and n is the dimension of the pattern vector x. The notation | |” denotes the determi-
nant of a matrix. The class-conditional probability densities f;(x|x;,Z;) defined in

(3.1) are also known as the likelihood density functions.
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Substituting equation (3.1) into the maximum a posteriori rule (2.18) defined in the
previous chapter, leads to the following Bayes classification rule form: Assign pattern x

to class z; if

Six|lw, Z2)p(x;) = lrgjzg;f;(x ‘ /ujaz_;')p(”j) > (3.2)

where, as a reminder, p(z;) is the prior probability associated with the ith group and g
is the number of groups or classes. Another way to specify equation (3.2) is to take the

natural logarithms of the quantities involved, such as

d,(x) =h[f,(x| 4,2 p(r))]

n Wexp{—%(x— lui)TZi*] (x— /ll):|p(7[l)]
4 i

— =22 = Tz - - )5 - )+ ()

(3.3)

where d,(x) is often called the quadratic discriminant score for the ith class. Since the
constant (n/2)In(27x) is the same for all classes, it can be ignored. Therefore, the opti-
mal Bayes classification rule defined in equation (3.2) may be simplified even further to:
Assign pattern x to class 7; if

4,0 =max= T |~ v )2 - ) + In(p(r )

I<j<g 2

= min[InfS [+ (x = ;)" T, (x = 1) = 2In(p(x )] (3.4)

1<j<g
. *
=mind;(x)

1<j<g

The Bayes classification rule specified in (3.4) is known as the quadratic discriminant
rule (QD). Also the measure d; (x) without the prior probability information p(z;) is
sometimes referred to as the generalized distance between x and ;. The first term is
related to the generalized variance of the jth group and the second term is the Mahalano-
bis distance between x and the mean vector for the jth group.

In practice, however, the true values of the mean and covariance matrix, i.e. 4 and
Y., are seldom known and must be replaced by their respective estimates calculated from

the training samples available- this is where the term “plug-in” of the Bayes plug-in clas-
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sifier takes its name. The mean is estimated by the usual sample mean X, which is the
maximum likelihood estimator of z; [And84], that is

1 &

y72 E)_Ci :szi’j , (3.5)

where x; ; is observation j from class 7,, and N, is the number of training observations
from class 7;. The covariance matrix is commonly estimated by the sample group co-
variance matrix S; which is the unbiased maximum likelihood estimator of X, [And84],
that is

1
TN, =)

N;

D, =X, - %) (3.6)
j=1

In addition, on the assumption that the data is not only normally distributed but also sta-
tistically independent, the sample mean and the sample group covariance matrix esti-
mates have the property of maximising the joint likelihood of the training observations
[JW98]. In other words, the maximum likelihood estimates maximise the product of the

marginal normal density functions:

NI
(%,.8,) =argmax | [ f;(x,; | ;%)) - (3.7)

oLy Jj=1

After replacing (“pluging-in”) the true values of the mean and covariance matrix in
(3.4) by their respective estimates, the Bayes rule can be rewritten as: Assign pattern x to

class i that minimises:

d.(x)=n[S|+(x=%)"S, " (x- %) - 2In(p(r,)). (3.8)

The rule described in equation (3.8) is also known as the standard or conventional

quadratic discriminant function (QDF) classifier.

3.2 Limited Sample Size Problem

According to the previous section, the similarity measures of the Bayes plug-in classifier

use the inverse of the true covariance matrices. Since in practice these matrices are not
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known, estimates must be computed based on patterns or observations available in a
training set.

Although x; and §; are maximum likelihood estimators of ; and X, , the misclassifi-
cation rate calculated from equation (3.8) approaches the optimal rate obtained by equa-
tion (3.4) only when the sample sizes in the training set approach infinity [And84]. In
fact, the performance of (3.8) can be seriously degraded if there are only limited samples
owing to the instability of X, and most significantly of S;. For instance, the use of S; is
especially problematic if for n-dimensional patterns less than » + 1 training observations
from each class 7, are available. Since the sample group covariance matrix is a function
of (N, —1) or fewer linearly independent vectors (see equation (3.6)), its rank is (N, —1)
or less. Therefore, S; is a singular matrix if N, is less than the dimension of the feature
space. As a general guideline, Jain and Chandrasekaran [JC82] have suggested that the
class sample sizes N, should be at least five to ten times the dimension of the feature
space n.

The effect of the sample group covariance instability on the conventional QDF classi-
fier can be explicitly seen by representing those matrices in their spectral decomposition

forms [Fuk90]

hY :q)iAicDiT :Z;Lik ik ,-3; > 3.9)
k=l

where 4, is the kth eigenvalue of S, and ¢, is the corresponding eigenvector. Accord-

ing to this representation, the inverse of the sample group covariance matrix is

s =(@A00)!
=(@))"(A) (@)
=D\, 0 (3.10)
St
k=1 Z’ik
where the following property described in the previous chapter for orthogonal matrices is
used: @' =®" . Since the determinant of a matrix is equal to the product of all its ei-
genvalues [Str88], substituting equation (3.10) into equation (3.8) gives the spectral de-

composition form of the conventional Bayes plug-in classifier, as follows:
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d;(x)
:ln(li[/lik) + (x_)—ci)T{Zn“ ¢ﬁ¢; }(X—)_ci) ~2In(p(x,))
ik
_zlni,ﬁz[(x x)" ¢,;][¢,k(x D in(p(r) (3.11)
ik

= Zln)’tk + Z[¢zk (xﬂ/ )C )] 21n(p(7z ))
k=1

ik

where the following relationship is used: for any product of a 1 by n vector y, (the row
vector (x—X;)" ) witha n by 1 vector y, (the column vector @, ) ¥/ v, = v3 y, [Str88].

As can be observed, the discriminant score in equation (3.11) is heavily weighted by
the smallest eigenvalues and the directions associated with their eigenvectors [Fri89].
Therefore, a poor or unreliable estimation of the sample group covariance matrices tends
to exaggerate the importance associated with the low-variance information and conse-
quently distorts the quadratic discriminant analysis.

Another problem related to the first two terms of equation (3.11) is the upward bias of
the large sample group covariance eigenvalues and downward bias of the smaller ones.
When the sample size decreases the estimates based on the maximum likelihood equation
(3.6) produce biased estimates of the corresponding eigenvalues, that is, the largest ei-
genvalues are larger than the eigenvalues of the true covariance and the smallest ones are
biased toward lower values. This effect is most pronounced when the true eigenvalues
tend to be equal rather than highly different [Fri89]. In fact, when the sample covariance
matrix is singular the smallest (n— N, +1) eigenvalues are estimated to be 0 and the
corresponding eigenvectors are arbitrary, though constrained by the orthogonality as-
sumption.

In the past, several investigators [Haf79, Haf80, DS85, LP85] demonstrated that
Stein-like biased estimators, which basically shrink or expand the sample eigenvalues
depending on their magnitude, dominate the sample covariance matrix under a variety of
loss functions. Moreover, in [EM76] an estimate for the inverse of the sample covari-
ance matrix that shrinks the eigenvalues of the sample group covariance matrix toward a

common value was developed. In these works, the problem of estimating the covariance
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matrix S, was based on its distribution, often called the Wishart distribution! [And84].
Since the probability density function of a Wishart distribution does not exist unless the
sample size N, is greater than the number of parameters n [JW98], in all of these eigen-

values shrinkage methods quoted the sample covariance matrix S, must be non-singular.

This constraint has been shown quite restrictive in practice.

3.3 Linear Discriminant Classifier

One straightforward method routinely applied to overcome the limited sample size prob-
lem and consequently deal with the singularity and instability of the sample group co-
variance matrices S; is to employ the so-called linear discriminant function (LDF) classi-
fier.

The LDF classifier can be obtained by replacing the S, in (3.8) with the pooled sam-

ple covariance matrix defined as

£ N, -DS, +(N, -DS, +---+(N, -DS
Sp:Nl Z(Ni_l)si:( D N) : ( - ) -, (3.12)
_gi:1 - &

where N=N;+N,+---+N,. Since more observations are taken to calculate the
pooled covariance matrix, S, is indeed a weighted average of all the S;, S, will poten-
tially have a higher rank than S; and would normally be a full rank matrix.

Although, theoretically, S, is a consistent estimator of the true covariance matrices
X, only when X, =%, =---=%_, studies have shown that the LDF classifier is not only
simple and easy to use but also works particularly well in small sample size situations
[MD74, WK77]. In such situations, the LDF classifier can outperform the conventional
QDF even though the true covariance matrix of each group is known to differ.

In the classification context, as long as the covariance matrices are not quite dissimilar
and small sample sizes are available, the ellipsoidal symmetry associated with the normal
distribution seems to be the relevant aspect to consider rather than its detailed shape
[Lac75, Jam85]. In fact, it has been argued [Jam85] that in regions where the groups are
most represented, the linear discriminant functions would be close to the quadratic ones,

giving similar results for observations that are located near the sample mean of each

! The Wishart distribution is a multivariate generalization of the gamma distribution. It is originally derived as the sam-
pling distribution of the sample group covariance matrices.
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group. These regions are obviously where the majority of the cases to be classified sup-
posedly occur. Furthermore, it is known that the QDF classifier often requires larger
samples than those based on the LDF classifier and seems to be more sensitive to the
violation of the normal distribution assumption. These practical advantages have made

the LDF classifier one of the most popular methods of classification.

3.4 Unconventional Bayes Plug-in Classifiers

As discussed previously in this chapter, a critical issue for the Bayes plug-in classifier is
the instability and singularity of the sample group covariance estimates. Hence, a con-
siderable amount of effort has been devoted to the design of other unconventional Bayes
plug-in classifiers, for use in limited sample and high dimensional problems. By “un-
conventional Bayes Plug-in classifiers” we mean any quadratic classifier that is not based
solely on the data via the sample group covariance estimate. In the following sub-
sections, most of these approaches that essentially bias the sample group covariance es-

timates towards non-singular matrices are described.

3.4.1 Regularised Discriminant Analysis Method

Regularisation methods have been used successfully in solving poorly and ill-posed in-
verse problems [OSu86].

An estimation problem can be defined as a poorly posed problem when the number of
patterns or observations available (training set) is not considerably larger than the num-
ber of parameters (dimension of the feature space) to be estimated and ill-posed if this
number of parameters exceeds the training sample size. As a result, such parameter es-
timates become highly variable owing to limited training set size.

Regularization methods attempt to reduce the variability of poorly and ill-posed esti-
mates by biasing them toward values that are considered to be more “physically plausi-
ble” [Fri89]. The idea behind the term “regularization” is to decrease the variance asso-
ciated with the limited sample based estimate at the expense of potentially increased bias.
The extent of this variance-bias trade-off is controlled by one or more regularization pa-

rameters [Fri89].



The Bayes Plug-in Classifier 28

Friedman [Fri89] has proposed one of the most important regularization procedures for
QDF classifiers called “Regularised Discriminant Analysis” (RDA) classifier. RDA is an
alternative to the usual Bayes plug-in classifier and can be viewed as an intermediate
classifier between the LDF and QDF classifiers.

Friedman’s RDA approach is basically a two-dimensional optimisation method that
shrinks both the §; towards S, and also the eigenvalues of the §; towards equality by
blending the first shrinkage with multiples of the identity matrix. In this context, the
sample covariance matrices S; of the discriminant rule defined in (3.8) are replaced by

the following S, (4,)

rda
SE L) == )S () + y[—”(s — ”))jf,

(1-A)(N, =DS, + AN - 2)S, (3.13)

(I- )N, + AN

S/“(2) =

where the notation “tr” denotes the trace of a matrix, that is, the sum of all its eigenvalues
[Str88]. Thus the regularization parameter A controls the degree of shrinkage of the
sample group covariance matrix estimates toward the pooled covariance estimate, while
the parameter y controls the shrinkage toward a multiple of the identity matrix. Since
the multiplier #(S/“(1))/n is just the average eigenvalue of Sl.rd“ (1), the shrinkage
parameter y has the effect of decreasing the larger eigenvalues and increasing the
smaller ones [Fri89]. This effect counteracts the aforementioned upward and downward
biases of the sample group covariance estimates and favours true covariance matrices
that are some multiples of the identity matrix. In fact, the RDA method provides a num-
ber of regularization alternatives. Holding the mixing parameter y at 0 and varying A
yields classification models between LDF and QDF classifiers. Holding A4 at 0 and in-
creasing y attempts to unbias the sample-based eigenvalue estimates while holding A at
1 and varying y gives rise to ridge-like estimates of the pooled covariance matrix
[DPi77, Cam80].

The mixing parameters A and y are restricted to the range 0 to 1 (optimisation grid)
and are selected to maximise the leave-one-out classification accuracy based on the dis-

criminant rule defined in (3.8). In other words, the following classification rule is devel-
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oped on the N —1 training observations exclusive of a particular observation x;, and

then used to classify x;, , : Choose class k such that
dy(x;,)=mind (x,;,), with
’ I<j<g ’
(3.14)

rda - rda -1 —
d;(x,) =InfST (A )| + (= 5, (S50 20) (i, — X, ~ 2n(p(z,)

where the notation /v represents the corresponding quantity with observation x;, re-
moved. Each of the training observations is in turn held out and then classified in this
manner. The resulting misclassification loss, i.e. the number of cases in which the obser-
vation left out is allocated to the wrong class, averaged over all the training observations
is then used to choose the best grid-pair (4,7).

Although Friedman’s RDA method is theoretically a well-established approach and
has the benefit of being directly related to classification accuracy, it has practical draw-
backs. RDA is indeed a computationally intensive method. For each point on the two-
dimensional optimisation grid, RDA requires the evaluation of the proposed estimates of
every class. In situations where the optimisation has to be done over a fine grid and a
large number of g groups is considered, for instance g is a number of order 10°, the
RDA becomes unfeasible. Also, despite the substantial amount of computation saved by
taking advantage of matrix updating formulas based on the Sherman-Morrison-
Woodbury formula [GL89], which we will discuss in detail in chapter 4, RDA requires
the computation of the eigenvalues and eigenvectors for a (# by n) matrix for each value
of the mixing parameter A .

In addition to the computational limitation, Greene and Rayens [GR91] have observed
that RDA has the disadvantage of partially ignoring information from a considerable
portion of the data in the selection of the mixing parameters A and y - the same error
rates could take place over a wide range of parameter values - and the optimal values of
the grid-pair (4,y) are not unique. Therefore, a tie-breaking method needs to be applied.
Finally, as RDA maximises the classification accuracy calculating all covariance esti-
mates simultaneously, it is restricted to using the same value of the mixing parameters for

all the classes. These same values may not be optimal for all classes.
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3.4.2 Empirical Bayesian Method

The Bayes plug-in classifier is completely specified by both the true mean g, and the
true covariance XZ,. In this sense, the statistical approach can be viewed as a problem of
estimating properly these parameters on the basis of a sample of patterns or observations.

Several authors [EM76, Haf79, Haf80, And84] have observed that the method of unbi-
ased maximum likelihood estimation for the true covariance matrices may be improved
by other considerations, such as empirical Bayes estimators, which are better with re-
spect to certain squared-error loss functions.

Following this idea, Greene and Rayens [GR89] have developed the empirical Bayes
covariance estimator which provides a theoretical basis for controlling the shrinkage of
the S; in such a way that the amount of shrinkage is related to the number of training
samples N, and the estimated concentration of the true covariance matrices X, .

According to Anderson [And84], the assumption of normal n-dimensional observa-

tions implies that, conditionally on the Z,, the sample group covariance matrices S; are

mutually independent with Wishart distribution:
JiSi~W,(Zi, 1), (3.15)

where f, =N, -1, and W, (Z,,f;) denotes the central Wishart distribution with f; de-
grees of freedom and parameter matrix X;. The family of inverted Wishart distributions
for X, is conjugate to the family of Wishart distributions, i.e. when there is a sufficient
statistic (sample mean or sample covariance matrix) there will exist a family of prior
distributions for the estimated parameter such that the posterior distribution is a member
of this family. Then the family of inverted Wishart distributions provides a convenient
family of prior distributions for true covariance X; [And84].

Assuming that X, are mutually independent, Greene and Rayens [GR8&9] have pro-

posed that X, have the following prior distribution
X, ~W  (m—n—-1)¥,m), (3.16)
where m>n+1, and W, is the inverted Wishart distribution with parameters ¥ and

m . The parameter ¥ represents the central location of the prior distribution of X, i.e.

¥ is the expected value or prior mean of X,, and m represents the degree of concentra-
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tion of the X, around ¥ . Under equations (3.15) and (3.16), and following the inverted
Wishart distribution’s properties [And84], the posterior distribution of X, given

51,8500 S, is

WS, +(m—n—-D)Y, f, +m), (3.17)

and the Bayes estimator of X, (posterior mean), under squared error loss, is

/i S 4 m—n-—1

_fi+m—n—1 "o firm—n—1 (3.18)

Equation (3.18) shows that ii(‘P,m) approaches S, as the degrees of freedom
f; > and approaches ¥ as the concentration parameter m — 0. Also the Bayes
estimator ii(‘P,m) can be simply written as a weighted average between S, and ¥
given by

m—-—n-—1

S.(P.w)=>1-w)S, +w¥,  where w,=—— .
fi+m—n-1

(3.19)
As pointed out by Greene and Rayens [GR89], it is important to observe that equation
(3.19) is intuitively plausible regarding the similarity of the X,. For instance, when there
are large training samples and/or large variation among the X, , that is, f; is high and/or
m — n +1, the shrinking parameter w, will be small and consequently fli(‘l’,wi) =S, .
Analogously, when there are small training samples and/or similar X, i.e. f; is low
and/or m>>n+1, w, will be large and so Z,(¥,w,) ~ ¥ .

In order to estimate the Bayesian parameters ¥ and m of equation (3.18), Greene and

Rayens have employed the following empirical approaches. For a given m , it is possible

to compute the generalised least squares estimator of ¥, designated as S; (m), as:

* g f -1 g f
S = l S 3.20
»(m) izzllfl_er—n—] izzll.fi'l'm_n—ll ( )
Note that when the number of training observations in each class is equal, that is

Ji =/, == f,, the least squares estimator of ‘¥ does not depend on the concentration

parameter m and S; (m)=S§,=S, where
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S:lZS,. (3.21)

is called the unweighted common covariance estimate of the sample group covariance
matrices. Substituting S; (m) for ¥ in equation (3.18) gives the following empirical

Bayes estimate of X, for known m :

Ak f m—n—l *
>.(m)= ! S+ S (m).
i (m) [ T A re—— p(m) (3.22)

For the remaining concentration parameter m, Greene and Rayens have suggested
three different estimators, where two of them depend on probabilistic assumptions con-
cerning X; and the third one is based on the generalized distances between the training
set observations and the mean vectors of the corresponding classes. In this latter crite-
rion the parameter m has been expressed in terms of the shrinking parameter w;, as

_wi(f;-n-1)+n+1
I-w,

m ) (3.23)
and a grid of values for m is given by 0 <w; <1. Analogous to Friedman’s RDA ap-
proach, the empirical Bayes estimate of X, has been again modified by shrinking the

eigenvalues of X (m) towards equality to form the estimator
o o tr(3; (m))
Zi(my)=(1-y)Z;(m)+ 7(7 I, (3.24)

where 0<y <1. The two mixing parameters m and y should be chosen to minimise

over a grid of candidate values (m,y) the following leave-one-out generalized distance

g N
A Ak — T, &F —1 —_
Bmy)= 3 S 0fS m |+ (o =50 G m ) - 50)) (329)
i=l v=I
where again the notation /v represents the corresponding quantity with observation x,
left out. According to Greene and Rayens results, this leave-one-out generalized distance
criterion performs at least as well as the first two other probabilistic estimators of m

while requiring fewer distribution assumptions for their justification.
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In their research, Greene and Rayens have also enhanced the important result related
to the optimisation of the leave-one-out discriminant distance. They have observed that
minimising the leave-one-out generalized distance of each training observations group is
indeed equivalent to minimising the Kullback-Leibler (KL) distance measure of each
class [Sil86, GR91]. The KL distance is often called relative entropy [Hay99] and meas-
ures basically the divergence (distance) between two density functions. In this case, it

can be defined as the following:

~
m
i X

KL (m) = J' ﬁ(x)log{ /i ((x )de (3.26)

where ]}l’” () denotes the n-multivariate normal density function with mean vector x; and
covariance matrix flf(m, 7), and f;(-) denotes the true density of the ith group which
may or may not be a multivariate normal.

Although Greene and Rayens method of biasing S, towards the pooled covariance and
identity matrix is similar to Friedman’s RDA approach, their respective parameter op-
timisations are different. The empirical Bayes estimator does not optimise its parameters
with respect to classification accuracy, but to a loss function based on the generalized
distance between the training set observations and their respective group means. There-
fore, the Bayes estimator is able to circumvent the RDA non-unique “optimal” problem
related to ignoring a considerable portion of the data in the selection of the corresponding
mixing parameters. However, although Greene and Rayens have also proposed a conven-
ient rank-one updating algorithm based on the Sherman-Morrison-Woodbury formula
[GL89], the computational issues involving the empirical Bayes covariance approach are
as severe as in Friedman’s RDA approach. In addition, both methods are restricted to
using the same values of mixing parameters for all classes, which may not be optimal
especially for Greene and Rayens method, which is based on the optimisation of a maxi-

mum likelihood generalized distance.

3.4.3 Leave-One-Out Likelihood Method

The RDA [Fri89] and the empirical Bayes [GR89, GR91] methods described in the pre-

vious sub-sections use the leave-one-out procedure to optimise their respective mixing
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parameters under different loss functions. Since both loss functions depend on calculat-
ing all covariance estimates simultaneously, Friedman’s as well as Greene and Rayens’
approaches must employ the same mixing parameters for all classes. In practice, how-
ever, it is common to have classes with different forms and, consequently, different co-
variance matrices. In such situations, it seems appropriate to allow these covariance ma-
trices to be estimated by distinct mixing parameters.

Hoffbeck [Hof95] has proposed a leave-one-out covariance estimator (LOOC) that de-
pends only on covariance estimates of single classes. In LOOC each covariance estimate
is optimised independently and a separate mixing parameter is computed for each class
based on the corresponding likelihood information. The idea is to examine pair-wise
mixtures of the sample group covariance estimates S, and the unweighted common co-
variance estimate S (defined in equation (3.21)), together with their diagonal forms.

The LOOC estimator has the following form:

(1-a;)diag(S,) +a.S,; 0<a, <1

S ()= 1Q2-a)S, +(a, — S l<a, <2, (3.27)
B-a;)S +(a;, -2)diag(S) 2<a; <3

where the mixing or shrinkage parameter «; determines which covariance estimate or
mixture of covariance estimates is selected. That is: if ; =0 then the diagonal of sam-
ple covariance is used; if &; =1 the sample covariance is returned; if o, =2 the common
covariance is selected; and if o, =3 the diagonal form of the common covariance is con-
sidered. Other values of ¢; lead to mixtures of two of the aforementioned estimates
[Hof95].

In order to select the appropriate mixing parameter «;, the leave-one-out likelihood
(LOOL) parameter estimation has been considered. In the LOOL technique [Fuk90], one
training observation of the ith class training set is removed and the sample mean and
sample group covariance are estimated from the remaining N, —1 samples. Then the
likelihood of the excluded sample is calculated given the previous mean and covariance
estimates. This operation is repeated N, —1 times and the average log likelihood is
computed over all the N, observations. Hoffbeck’s strategy is to evaluate several values

of a; over the optimisation grid 0 < ¢, <3, and then choose the ¢; that maximizes the
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average log likelihood of the corresponding n-multivariate normal density function, com-

puted as follows:

N,

LOOL;(e;) :%Z[f(xi,v |)_Ci/v’Sil/osc(ai))]
1' . 1 . " B (3.28)
= Fl;[_ ln‘Si;):c (a; )‘ - E(xi,v = X;/,) (Si(/)gc (ai)) ('xi,v - )_Ci/v):|’
where the notation /v represents the corresponding quantity with observation x;,, left out.
Once the mixture parameter ¢; is selected, the corresponding leave-one-out covariance
estimate S/°*(e,) is calculated using all the N, training observations and substituted for
S, into the Bayes discriminant rule defined in (3.8) [Hof95].

As can be seen, the computation of the LOOC estimate requires only one density func-
tion be evaluated for each point on the «¢; optimisation grid, but also involves calculating
the inverse and determinant of the (n by n) matrix S/°“(e,) for each training observa-
tion belonging to the ith class. Although this is a one-dimensional optimisation proce-
dure for each sample group and consequently requires less computation, for instance,
than the two-dimensional RDA estimator, LOOC is still computationally expensive.
Hoffbeck has reduced significantly the LOOC required computation by considering valid
approximations of the covariance estimates and using the Sherman-Morrison-Woodbury
formula [GL89] to write the estimates in a form that allows the determinant and inverse
of each corresponding class to be computed only once, followed by a relatively simple
computation for each left out observation. The final form of the LOOC requires less
computation than the RDA estimator.

LOOC differs from the similar covariance methods already described in the mixtures it
considers and the optimisation index utilised to select the best estimator. Although both
RDA and the empirical Bayes estimator make use of the sample covariance matrix,
pooled covariance matrix and the identity matrix multiplied by a scalar, LOOC employs
the sample covariance matrix, unweighted common covariance matrix and the diagonal
forms of these matrices. In LOOC the optimisation search is one-dimensional and lim-
ited to pair-wise mixtures, while in RDA and the empirical Bayes estimator more general
two-dimensional mixtures are considered. Moreover, the optimisation index maximised

in LOOC is the leave-one-out group likelihood that allows a separate mixing parameter
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to be computed for each class. On the other hand, RDA and the empirical Bayes estima-
tor use leave-one-out optimisation procedures based on all the training observations of all
classes and are restricted to using the same mixing parameters for all classes.

Hoffbeck and Landgrebe have carried out several experiments with computer gener-
ated and remote sensing data to compare LOOC and RDA performances [Hof95, HL96].
In about half of these experiments, LOOC has led to higher classification accuracy than

RDA and required less computation.

3.4.4 Bayesian Leave-One-Out Likelihood Method

In 1998, Tadjudin has proposed another covariance estimation method [Tad98] called
Bayesian leave-one-out covariance estimation (bLOOC). This method is essentially an
extension of the previous works RDA [Fri89], empirical Bayesian approach [GRS89,
GRO91], and LOOC [Hof95, HL96].

Basically, Tadjudin has developed two covariance estimators. The first one
(bLOOCT) intends to represent a wide variety of covariance matrices, including the RDA

identity matrix multiplied by a scalar for estimating spherical structures, and has the fol-

lowing form [Tad98]:
(-a)™S g5 0<a, <1
P
SN a) =42 = a)S; +(a; =S, (m) 1<a, <2, (3.29)
Goa)S+(a, -2 1< <3
n

where S is the sample group covariance matrix, S,(m) is the Bayesian generalised least
squares estimator defined in (3.20), and S is the unweighted common covariance esti-
mate defined in (3.21). In addition, in order to consider group covariance matrices that

are highly ellipsoidal, Tadjudin has proposed a second estimator (bLOOC2) defined as:

(1-a,)diag(S;) +«;S; 0<q, <l
S (@) =12 -a)S; +(a;~1S,(m) 1<a;<2. (3.30)
B—-a;)S +(a; —2)diag(S) 2<q;<3
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Note that bLOOC?2 is quite similar to Hoffbeck LOOC estimator described in (3.27). In
fact, when all classes have equal number of training samples, bLOOC2 has the same
form as LOOC.

Analogously to Hoffbeck approach, Tadjudin has used the leave-one-out average like-
lihood to select the appropriate mixing parameter for both bLOOCI1 and bLOOC2 esti-
mators. In terms of computational costs, Tadjudin has shown that an efficient implemen-
tation of the two methods can be achieved again by using rank-one down-data based on
the Sherman-Morrison-Woodbury formula [GL89]. The computational issues involved
in bLOOC1 are much more severe than LOOC, but not as severe as Friedman’s and
Greene and Rayens’ approaches. The bLOOC2 second estimator requires almost the
same computation as LOOC and, consequently, less computation than RDA and the em-
pirical Bayesian estimator.

In [Tad98, TL99], Tadjudin has presented various experimental results from computer
generated and remote sensing data. These results essentially compared both bLOOCI1
and bLOOC2 with LOOC. In addition, the effects of substituting the Bayesian covari-
ance estimations for the pooled covariance matrix on the linear discriminant analysis
(LDA) feature extraction technique have been discussed. Situations where the sample
sizes are unequal and the training set size is large enough to reflect the true covariance
matrices favour the estimators derived under the Bayesian framework. Moreover, the
first Bayesian estimator bLOOC1 combined with LDA can achieve better performance
when the total number of training samples N is less than the dimension of the feature
space n. These results confirm that the ridge estimator gives rise to a better pooled co-
variance estimate by counteracting the upward and downward biases described previ-
ously. On the other hand, when the pooled covariance matrix is non-singular, the other
estimator bLOOC2 should be used. Under these conditions, the proposed estimators
perform better than the LOOC , LDF and QDF classifiers. No comparison results with
Friedman’s RDA or Greene and Rayens’ empirical Bayesian approaches have been pro-

vided.
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3.4.5 Simplified Quadratic Discriminant Function Method

The Simplified Quadratic Discriminant Function (SQDF) classifier has been proposed by
Omachi et al. [OSA00] and can be viewed as an approximation method of the standard or
conventional quadratic discriminant function (QDF) classifier.

The main idea of the SQDF approach is to divide the n-dimensional feature space into
two subspaces: a primary subspace of dimension s (s <#n) containing the largest eigen-
values of the sample group covariance matrices and a complementary subspace of dimen-
sion n —s containing the smallest ones. All the largest eigenvalues (associated with the
primary subspace) are estimated by using the actual eigenvalues calculated from the sam-
ple group covariance matrices, while the smallest eigenvalues (associated with the com-
plementary subspace) are replaced by a constant determined by maximum likelihood
estimation. Similar approaches of splitting the quadratic discriminant feature space into
two subspaces were investigated by other researchers [Wol76, FF89].

In order to partition the n-dimensional feature space, the SQDF method approximates
the spectral decomposition form of the QDF classifier described in (3.11) by the follow-

ing function:

s n S 167 (x — TP n T — ¥\
di(x)zglnﬂik +,§+11M+;[¢lk(%k 3l +1§‘m [ ( 7 3l —2In(p(z;)) (3.31)
where (4.4, ) are the k-th eigenvalue-eigenvector pair of S;, A is the simplification
constant and s <n. In the case of s=n, SQDF is exactly the conventional QDF classi-
fier described in (3.11).

Performing the maximum likelihood estimation on the n —s complementary subspace,
Omachi et al. [OSA00] have determined that the constant value A of each group is de-
fined as the mean value of the small n—s eigenvalues of the corresponding sample

group covariance matrix, that is

1 n
A= z Ay s 3.32)
n—s k=s+1
where A, correspond to the smallest eigenvalues of §,. However, the procedure to de-
termine the parameter s, that is, the number of reliable eigenvalues to preserve, is not

straightforward. The parameter s should be defined arbitrarily, experimentally or by
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minimising information criteria such as Akaike’s Information Criteria or Minimum De-
scription Length [OSA00].

In [OSA00] Omachi et al. have presented experimental results from some computer
generated data and character recognition of digits ‘0’ and ‘1°. These results were com-
pared only with the conventional QDF classifier and showed that the SQDF classifier
reduces the computation cost and improves the classification accuracy in small sample
settings. However, as SQDF approximates the standard QDF classification rule consider-
ing solely the information provided by each sample group covariance matrix, it seems to
be more sensitive to poor sample covariance estimation than other unconventional QDF
classifiers. In addition, SQDF addresses the conventional QDF problem when the sam-
ple group covariance matrices S, are singular, but does not avoid the covariance estima-

tion instability of S; when these matrices are non-singular but poorly estimated.

3.5 Summary and Conclusions

In this chapter, the conventional Bayes Plug-in classifier, Linear Discriminant Function
classifier and a number of non-conventional Bayes plug-in classifiers available in statis-
tical pattern recognition have been reviewed with regard to the difficulties caused by
limited sample size problems.

Several simulation experiments carried out by various researchers have shown that
choosing an unconventional Bayes plug-in classifier, mostly either the linear and quad-
ratic ones, improves the classification accuracy in settings for which sample sizes are
limited and the number of parameters or features is large. In situations, however, where
the class sample sizes are all very large compared with the number of features, and con-
sequently the maximum likelihood estimators of the true covariance matrices are not ill-
posed or poorly estimated, all aforementioned approaches obtain little benefit from the
unconventional methods and sometimes display a small degradation in classification
performance.

From computer-generated data, comparisons between classifiers like RDA [Fri89], the
Empirical Bayes method [GR89], LOOC [Hof95] and the both bLOOC1 and bLOOC2
[Tad98] have been provided by previous studies of several researchers. In these com-

parisons, standard small samples considering equal/unequal spherical covariance matri-
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ces, equal/unequal highly ellipsoidal covariance matrices, as well as equal/unequal train-
ing set sizes have been analysed. In short, problems with spherical true covariance ma-
trices frequently favour estimators that shrink the sample group covariance matrices to-
wards the identity matrix, such as RDA, the Empirical Bayes method and bLOOCI1. On
the other hand, in cases where highly ellipsoidal forms for the true covariance matrices
are used, LOOC and bLOOC2 commonly outperform the other estimators. Therefore, it
has been generally accepted that different Bayes plug-in classifiers should be optimal
depending not only on the true covariance statistics of each class, but also on the number
of training observations, the dimension of the feature space and even the ellipsoidal
symmetry associated with the normal multivariate distributions.

In the context of real data, the aforementioned unconventional classifiers have been
evaluated in applications that involve mostly remote sensing data. In fact, several related
results have been produced in this field during the last eight years [Hof95, HL96, Tad98,
TL99, BL00]. According to these remote sensing experiments, one important point can
be drawn. All the compared mixing parameters of RDA, LOOC, bLOOC1 and bLOOC2
have been optimised inside the range that requires solely blending the sample group co-
variance matrices towards the pooled estimate for almost all classes. In the case of rec-
ognition applications where the sources of variation are often the same from group to
group, this suggests that when no information about the true covariance forms are avail-
able and when the total number of the training observations N is larger than the number
of features n (so the pooled covariance matrix is non-singular), the sample group covari-
ance matrices and the pooled covariance matrix may be reasonable covariance extremes
for intermediate estimations, especially when concerns about computational costs exist.

Finally, the unconventional Bayes plug-in classifiers have been shown to improve the
classification accuracy for limited training set recognition problems and small number of
groups. These ideas have proved to be true in cases where no more than 20 groups are
required, but have not been verified for a large number of groups. In this way, biometric
image recognition problems, such as face recognition, which involve extremely small
training sets, a large number of features and a large number of groups, are examples of

promising applications for further research.



Chapter 4

The Sample Size Problem in Image
Recognition

In image recognition applications, patterns are frequently composed of thousands of pix-
els or even hundreds of pre-processed image features, but the number of training exam-
ples per class is limited. In such situations, the conventional Bayes Plug-in or Quadratic
Discriminant Function (QDF) classifier based on maximum likelihood covariance esti-
mation either performs poorly or cannot be calculated when the group sample sizes are
smaller than the number of features or parameters.

As described in the previous chapter, other unconventional QDF classifiers have been
proposed in order to overcome the difficulties of estimating reliable covariance matrices
in limited sample, high dimensional classification problems. However, most of these
quadratic approaches rely on optimisation techniques that are time consuming and do not
necessarily lead to the highest classification accuracy for all circumstances.

This chapter analyses the performance of the aforementioned Bayes Plug-in covari-
ance estimators in image recognition problems that consider limited training sets, large
number of features and a number of groups. Biometric image recognition problems, such

as face recognition, have been chosen as the applications to study.

4.1 Mixing Sample Group and Pooled Covariance Matrices

The maximum likelihood covariance estimate (or sample group covariance matrix) and
the pooled covariance estimate represent two possible estimates for the true covariance
matrices of Bayes Plug-in classifiers. In this section, we carry out experiments on face

and facial expression recognition applications in order to investigate in practice the com-
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bination of these two covariance matrices, called mixture covariance matrices [TFV00,

TGFOla, TGF03a].

4.1.1 Definition

We define the mixture covariance matrix as being simply a linear or convex combination
between the sample group covariance matrix S; (defined in equation (3.6)) and the

pooled sample covariance matrix S, (defined in equation (3.12)). It is given by

Simix (w,)= WiSp +1=-w)S;, 4.1)

where the mixture parameter w, takes on values 0 <w; <1 and is different for each class.
This parameter controls the degree of shrinkage of the sample group covariance estimates
toward the pooled one.

The motivation of combining solely the sample group and pooled covariance matrices
comes from one of the conclusions of the previous chapter that the sample group covari-
ance matrices and the pooled covariance matrix may be reasonable extremes for interme-
diate estimations, especially when concerns about computational costs exist and the total
number of real data training patterns is larger than the number of features.

We can visualise the geometric idea of the mixture covariance matrix as follows. Let
a two-dimensional feature space contain three hypothetical normally distributed classes,
as illustrated in Figure 4.1. The constant probability densities contours of §; and S, are
represented by the dashed and dotted grey ellipses, respectively, and defined as surfaces
of ellipsoids centred at the corresponding sample mean vectors x; [JW98], that is

(x=%)"S (x-%)=¢]

(=)', (v -5 =17, (“2
where ¢; and ¢, are constants. The mixture covariance estimates assume geometrically
that the ellipses corresponding to the true covariance matrices are placed somewhere in
between §; and S, contours, as shown by the solid black ellipses [TFV00, TGFOla,
TGFO03a].
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X2

Figure 4.1. Geometric idea of the mixture covariance matrix.

Each mixture covariance matrix S defined in equation (4.1) has the important prop-
erty of admitting an inverse if the pooled estimate S, does so [MN99]. This implies that
if the pooled estimate is non-singular and the mixture parameter takes on values w; >0,
then S will be non-singular.

Therefore the important question is [TGF0la, TGF03a]: what is the value of w; that
gives a relevant linear mixture between the pooled and sample covariance estimates ? A
method that determines an appropriate value of the mixture parameter, which is based on
the Hoffbeck approach [Hof95, HL96] discussed in the previous chapter, is described in

the next sub-section.

4.1.2 The Mixture Parameter

According to Hoffbeck and Landgrebe [Hof95, HL96], the value of the mixture parame-
ter w, can be appropriately selected so that a best fit to the training samples is achieved.
Their technique is based on the leave-one-out likelihood parameter estimation and allows
different mixing parameters for each class without increasing highly the computational
burden.

In this leave-one-out likelihood method [Fuk90], one observation of the class 7z, train-
ing set is removed and the mean and covariance matrix from the remaining N, —1 exam-
ples is estimated. Afterwards the likelihood of the excluded sample is calculated given
the previous mean and covariance matrix estimates. This operation is repeated a further

N, —1 times and the average log likelihood is computed over all the N, observations.

1
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The strategy is to evaluate several different values of w; in the range 0 <w, <1, and then
choose the w, that maximizes the average log likelihood.

The sample mean of class z; (defined in equation (3.5)) without observation » may be

1 W ~
Xor = (N.—1) H}Z_;XHJ xi,r:| s 4.3)

where x; ; is the n-dimensional observation j from class 7; and, as a reminder, N, is the

1

computed as

number of training observations from class 7;. The notation \ 7 conforms to the Hoff-
beck and Landgrebe [Hof95, HL96] works. It indicates that the corresponding quantity is
calculated with the -th observation from class 7; removed.

Following the same idea, the sample group covariance matrix of class z; (defined in

equation (3.6)) without observation r is
1 _
Si\r (N 2) |:[Z( X; . xz\; )(xz J xl\l J - (xi,r - xi\r)(xi r xl\l ] . (4.4)

On the assumption that all classes have the same number of training observations, the

pooled covariance matrix (defined in equation (3.12)) without observation r is

ZLHZS].J—SI. +sl.\,}, (45)
g\ a

where, as a reminder, g is the number of groups or classes. Thus the average log likeli-

hood with the excluded observations can be calculated as follows:

i

N;
l_‘i (w;)= NL{Zln[fz (xi,r | Xi\» Szr\nrlY (w; ))]} > (4.6)
=l

where fi( |xl\,,Sl'\'fx(wl.)) is the Gaussian class-conditional probability function (de-

mix
i\r

fined in equation (3.1)) with x,, mean vector and S/ (w;) covariance matrix given by

S (w;) = WiSp,.\,_ +(1=w)S;, . 4.7)

i\r
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As Hoffbeck and Landgrebe pointed out, this approach, if implemented in a straight-

forward way, would require computing the inverse and determinant of the S/ (w,) for

i\r
mix
i\r

each training observation. Since the S/”(w;) is an n by »n matrix and 7 is typically a
large number, this computation would be quite expensive [Hof95, HL96]. However, they
showed that it is possible to significantly reduce the required computation by using the
Sherman-Morrison-Woodbury formula [GL89, p. 51] given by
A uu" 4™

(A+uuT)_l =47 - =

(4.8)

where 4 isa n by n matrix and u is a n by 1 vector. This allowed them to write the

log likelihood of the excluded samples in an analogous form as follows:

2
e 1 1( N, d
nlf;(x,,, 1%, )] = -2 in2m) - ol - va)]- E(ﬁj [m} . (49)
where
PN !

©° [(l T 2)}& S @10
v N, [1—wi (g_l)}, (4.11)

(N, DV, -2) g
d=(x,-%) 07 (x, -%). 4.12)

As can be seen from equations (4.10) and (4.11), the matrix O and the value v do not
depend on the removed training observation. Therefore, the determinant and inverse of
matrix @ calculated in equations (4.9) and (4.12) respectively, as well as the value v
calculated by equation (4.11), can be computed only once for each mixing parameter w;,
reducing significantly the computational burden.

Finally, when the parameter w, is selected, the mixture covariance matrix estimate de-
fined in equation (4.1) is calculated using all the training examples and placed into the

quadratic discriminant rule defined in equation (3.8).
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4.1.3 Experiments

As mentioned before, experiments on face and facial expression recognition applications
were carried out in order to investigate the mixture of sample group and pooled covari-

ance matrices on the QDF classifier.

4.1.3.1 ORL Face Database

In the face recognition experiments the Olivetti Face Database' (ORL) was used. This
database contains a set of face images taken between April 1992 and April 1994 at the
Olivetti Research Laboratory in Cambridge, U.K, with ten images for each of 40 indi-
viduals, a total of 400 images. All images were taken against a dark homogeneous back-
ground with the person in an upright frontal position, with tolerance for some tilting and
rotation of up to about 20 degrees. Scale varies about 10%. The original size of each
image is 92x112 pixels, with 256 grey levels per pixel. Figure 4.2 shows as an example

of the set of 10 images of one individual cropped to the size of 64x64.

Figure 4.2. A set of ten images of one individual from the ORL Face Database.

4.1.3.2 Facial Expression Database

Tohoku University has made available a database which was used for the facial expres-
sion experiment. This database is composed of 193 images of expressions posed by nine
Japanese females [LBA99]. Each person posed three or four examples of each of six

fundamental facial expression: anger, disgust, fear, happiness, sadness and surprise. The

! The ORL database has been available online on the website http://www.cam-orl.co.uk/facedatabase.html
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database has at least 29 images for each fundamental facial expression. Figure 4.3 illus-
trates some examples of each one of the six fundamental facial expression images (from
top left to bottom right) of the Tohoku Facial Expression database, cropped to the size of
64x64 pixels.

Figure 4.3. Anger, disgust, fear, happiness, sadness, and surprise (top left - bottom right).

4.1.3.3 Implementation

Instead of analysing the unconventional QDF classifier directly on the face or facial ex-
pression images, the standard and lower dimensional image representation [TP91] using
Principal Component Analysis (PCA), described in the previous chapter, was applied
first to provide dimensionality reduction.

Thus, the experiments were carried out as follows. First PCA reduces the dimension-
ality of the original images (which were resized to 64x64 pixels for implementation con-
venience) and secondly the discriminant quadratic rule (defined in equation (3.8)) was
applied using each one of the three following covariance estimates: S, (or Sgroup),
S, (or Spooled), and S (or Smix). Each experiment was repeated 25 times using sev-
eral PCA dimensions. Distinct training and test sets were randomly drawn, and the mean
and standard deviation of the recognition rate were calculated.

The face recognition classification was computed using for each individual 5 images

to train and 5 images to test. In the facial expression recognition, the training and test
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sets were respectively composed of 20 and 9 images. The size of the mixture parameter

(0<w; <1) optimisation range was taken to be 20, that is w; =[0.05,0.10,0.15,...,1].

4.1.4 Results

The training and test average recognition rates (with standard deviations) of the face and
facial expression databases, respectively, over the different PCA dimensions are pre-
sented in Tables 4.1 and 4.2.

Since only 5 images of each individual were used to form the face recognition training
set, the results relative to the sample group covariance estimate were limited to 4 PCA
components. Table 4.1 shows that in all but one experiment the S* (or Smix) estimate
led to higher accuracy than did both the pooled covariance and sample group covariance
matrices. In terms of how sensitive the mixture covariance results were to the choice of
the training and test sets, it is fair to say that the S standard deviations were similar to

the pooled estimate.

PCA Sgroup Spooled Smix
Components  Training Test Training Test Training Test
4 99.5(04) 51.6(44) 733(3.1) 59.5(3.0) 90.1(2.1) 70.8(3.2)
10 96.6(1.2) 88.4(1.4) 99.4(0.5 92.0(L.5)
20 99.2(0.6) 91.8(1.8) 100.0(0.1) 94.5(1.7)
30 99.9(0.2) 94.7(1.7) 100.0(0.0) 95.9(1.5)
40 100.0 (0.0) 95.4(1.5) 100.0 (0.0) 96.2(1.6)
50 100.0 (0.0) 95.7(1.2) 100.0 (0.0) 96.4(1.5)
60 100.0 (0.0) 95.0(1.6) 100.0 (0.0) 95.8(1.6)
70 100.0 (0.0) 94.9 (1.6) 100.0 (0.0) 95.4(1.6)

Table 4.1. ORL face recognition results (Smix)

Table 4.2 shows the results of the facial expression recognition. For more than 20
components when the sample group covariance estimate became singular, the mixture
covariance estimate reached higher recognition rates than the pooled covariance estimate.
Again, regarding the computed standard deviations, the S estimate was shown to be

as sensitive to the choice of the training and test sets as the other two estimates.
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PCA Sgroup Spooled Smix
Components  Training Test Training Test Training Test
5 41504.2) 20639 323@3.00 21.6(3.8) 3493.3) 21341
10 76.3(3.6) 38.8(5.6) 49.6(3.9) 26.5(6.8) 585(3.7) 27.9(5.6)
15 99.7(0.5) 643(64) 69.1(3.6) 44.4(53) 829(29) 49.7(7.7)
20 81.2(2.6) 559(7.7) 914(2.8) 61.3(.1)
25 86.9 (2.8) 64.9(69) 94.8(22.2) 683(5.1)
30 919 (1.7) 70.1(7.8) 96.8(1.3) 72.3(6.2)
35 943 (1.7) 72.0(7.4) 97.7(1.1) 75.6(5.5)
40 959(1.4) 75.6(7.1) 983 (1.1) 77.2(57)
45 96.7 (1.3) 78.4(6.5) 98.6(0.8) 79.1(5.4)
50 97.6 (1.0) 79.4(5.8) 99.2(0.7) 81.0(6.6)
55 98.5(0.9) 81.6(6.6) 99.5(0.6) 82.8(6.3)
60 99.1 (0.8) 82.1(5.9) 99.6(0.6) 83.6(7.2)
65 99.5(0.6) 83.3(5.5) 99.8(0.4) 84.5(6.2)

Table 4.2. Tohoku facial expression recognition results (Smix).

4.1.5 Discussion

An important result revealed by these experiments is related to the mixture parameters
w, optimised by the leave-one-out likelihood procedure described in the sub-section
4.1.2.

Table 4.3 shows the average (with standard deviations) of the optimised mixture pa-

rameter w; over the common face and facial expression PCA components.

PCA Linear Mixture Parameter
Components Face Facial Expression
10 0.58 (0.25) 0.76 (0.19)
20 0.65 (0.21) 0.49 (0.15)
30 0.71 (0.18) 0.56 (0.15)
40 0.77 (0.16) 0.67 (0.15)
50 0.82(0.13) 0.77 (0.11)
60 0.85(0.11) 0.85 (0.09)

Table 4.3. The average (with standard deviations) of the optimised mixture parameters.

It can be seen from Table 4.3 that as the dimension of the feature space increases, the

average and standard deviation of the mixture parameter w, in all but one experiment
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increases and decreases respectively, making the mixture covariance of each class S;"*
more similar to the pooled covariance S, than the sample group one ;.

Although this behaviour depends on the applications considered, it suggests that in
both well-framed and pre-processed image classification tasks the sparseness of the sam-
ple group covariance matrix could influence its linear combination to the pooled covari-
ance matrix. In other words, it seems that when the group sample sizes are small com-
pared with the dimension of the feature space, the pooled information is more reliable

than that provided sparsely by each group.

4.2 The Loss of Covariance Information

Motivated by the results presented in the preceding section, we have observed that in
situations where the sample group covariance matrices S, are singular, linear combina-
tions of S, and, for instance, the pooled covariance matrix S, may lead to a “loss of
covariance information”.

In the following sub-sections, we define the problem of “loss of covariance informa-
tion” and describe an initial approach to understand this concept in practice, called the
Covariance Projection Ordering (COPO) method. Experiments on face and facial ex-
pression databases are shown and compared with the RDA and LOOC methods described
in the previous chapter [TGO1, TGF01b].

4.2.1 Definition

The theoretical interpretation of the “loss of covariance information” can be described as

follows. Let a matrix S/"* be given by the following linear combination:

S"™ =aS; +bS,, (4.13)

where the mixing parameters a and b are positive constants that sum to 1, and the
pooled covariance matrix S, is a non-singular (or full-rank) matrix.

The S eigenvectors and eigenvalues are given by the matrices @ and A”™, re-
spectively. From the covariance spectral decomposition formula (defined in equation

(3.9)), it is possible to write



The Sample Size Problem in Image Recognition 51

i

((I):niX)T SlmlJC@lmlx — Aflﬂlx — = diag[ﬂ,lmix’l;nix’...,i;nix] 9 (4-14)

0 e

where 4", 25" ,..., A" are the S/ eigenvalues and 7 is the dimension of the measure-
ment space considered. Using the information provided by equation (4.13), equation

(4.14) can be rewritten as:

Arinix — dl-ag[iinix’irznix"”’lmix:l

n

= (@) [as, +bS, o7 150
= (@) S, + h(DI) S I e

=aZ' +bZ".

The matrices Z' and Z” are not diagonal matrices because ®”"™ does not necessarily
diagonalises both matrices simultaneously. However, as @ is the eigenvector matrix
of the linear combination of S; and S, the off-diagonal elements of 7' and Z” neces-
sarily cancel each other in order to generate the eigenvalues matrix A”™. Therefore, the

string of equalities in (4.15a) can be extended to

A" =aZ' +bZ7
= diag[ag“f,ag“é,...,a{,’;] +diag[bl,bC7 ,....bS )] (4.15b)
=diaglal| +b¢ ! ,al; +bSY ...al, +bC )]

where ¢/,¢&5,...,¢0 and &F,¢7,...,¢7 are respectively the variances of the sample and
pooled covariance matrices spanned by the S eigenvectors matrix ®”*. Then, the
spectral decomposition form of the conventional QDF (defined in equation (3.11)) be-

comes:

n n mix\T —=1\12
d,' (x) — Zln i;{m’x + z [(¢ik ) (X —X; )] _ 2111(17(”, ))
k=1 k=1

mix
/’{’k

n n mix\T _¥ 2
=Yinlag] +5¢7 )+ [(¢”; ;,- J(rxbg);l X on(p(z,))
k=1 k=1 k k

(4.16)

mix

where @™ is the corresponding k-th eigenvector of the matrix S and, as a reminder,

p(r;) is the prior probability associated with the ith group.
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The discriminant score described in equation (4.16) considers the dispersions of sam-
ple group covariance matrices spanned by all the S/"* eigenvectors. However, when the
group sample sizes N, are small or not large enough compared with the dimension of the
feature space n, the corresponding lower dispersion values are often estimated to be 0 or
approximately 0, implying that these values are not reliable. Therefore, a linear combi-
nation of §; and S, that uses the same parameters a and b as defined in (4.16) for the
whole feature space fritters away some pooled covariance information.

The geometric idea of a hypothetical “loss of covariance information” on a three-
dimensional feature space is illustrated in Figure 4.4. The constant probability density

contour of §; and §, are represented by the two-dimensional (x;,x,) dark grey ellipse

and three-dimensional (x,,x,,x;) light grey ellipsoid, respectively.

=

X m =
\

P/
!

\

|m——— =

Figure 4.4. Geometric idea of a hypothetical “loss of covariance information”.

As can be seen, S; is well defined on the plane (x,,x,) but not defined at all on
(x,,x,,x;). In fact, there is no information from S; on the x; axis. As a consequence, a
linear combination of S; and S, that shrinks or expands both matrices equally all over
the feature space simply ignores this evidence from §,. Other covariance estimators

have not addressed this problem.
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4.2.2 Covariance Projection Ordering Method

The Covariance Projection Ordering (COPO) method is an intuitive, initial, approach to
understand in practice the problem of loss of covariance information [TG01, TGFO1b].
It assumes that all groups have similar covariance shapes and has the property of having
the same rank as the pooled estimate.

The COPO idea is, basically, to use all the sample group covariance information avail-
able whenever possible and the pooled covariance information otherwise. Looking at
equations (4.13) and (4.15) and writing the covariance matrix on its spectral decomposi-

tion form (defined in equation (3.9)), this idea can be derived as follows:

Scopo Z copo copo ( ¢cop0)
ik s

o= £ if 1<k <rank(S,)

¢l otherwise,

4.17)

copo

where ¢, is the corresponding £-th eigenvector of the matrix given by S, +5, ordered
in sample group ¢, variance decreasing values. Thus, the discriminant score described

in (4.16) becomes:

d,(x) = Zln§k+ ZIHQ Z[( $:7)' (X X)) Z [($:7) (x =X . (4.18)

k=r+1 k=1 k=r+1 k

where r =rank(S,) .

The Covariance Projection approach provides another combination of the sample
group covariance matrices S; and the pooled covariance matrix S, in such a way that
this combination is strongly related to the rank of S; or, equivalently, to the number of
training samples N,. It can be viewed as an n-dimensional non-singular approximation
of an r-dimensional singular matrix that considers explicitly the sample group singularity
effects.

The COPO requires an eigenvector-eigenvalue ordering process to select information
from the projected sample group covariance matrices whenever possible and the pooled
covariance otherwise. Therefore, the COPO method is not restricted to use the same
covariance combination for all classes, allowing a better understanding of the loss of

covariance information issue.
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4.2.3 Experiments

In order to evaluate the COPO method, experiments on face and facial expression recog-
nition applications, using the same ORL Face and Tohoku Facial Expression databases
described in the sub-sections 4.1.3.1 and 4.1.3.2, respectively, were carried out.

Following the same procedure of the section 4.1 experiments, first PCA reduced the
dimensionality of the original images (which were resized to 64x64 pixels for implemen-
tation convenience) and secondly the discriminant quadratic rule (defined in equation
(3.8)) was applied using each one of the following five covariance estimators: 1) Sample
group covariance matrix (Sgroup) defined in equation (3.6); 2) Pooled covariance matrix
(Spooled) defined in equation (3.12); 3) Covariance projection ordering matrix (Scopo)
defined in equation (4.17); 4) Friedman’s RDA matrix (Srda) defined in equation (3.13);
5) Hoftbeck’s covariance matrix (Slooc) defined in equation (3.27). Each experiment
was repeated 25 times using several PCA dimensions. Distinct training and test sets
were randomly drawn, and the mean and standard deviation of the recognition rate were
calculated.

The face recognition classification was computed using for each individual 5 images
to train and 5 images to test. In the facial expression recognition, the training and test
sets were respectively composed of 20 and 9 images. The RDA optimisation grid was
taken to be the outer product of 1=[0,0.125,0.354,0.650,1] and y =[0,0.25,0.5,0.75,1],
identically to that in Friedman’s work [Fri89]. Analogously, the size of the LOOC mix-
ture parameter [HL96] was «; =[0,0.25,0.5,...,2.75,3.0].

4.2.4 Results

Tables 4.4 and 4.5 present the training and test average recognition rates (with standard
deviations) of the ORL and Tohoku face and facial expression databases, respectively,
over the different PCA dimensions. Also presented are the mean of the optimised RDA
and LOOC parameters. For the ORL face database, only 6 out of the 40 LOOC parame-
ters corresponding to the subjects 1, 5, 10, 20, 30 and 40 are shown. The notation “-” in
the Sgroup rows indicates that the sample group covariance was singular and could not

be used to classify the samples.
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As a reminder, the RDA parameter A controls the degree of shrinkage of the sample
group covariance matrix estimates toward the pooled covariance one, whereas the pa-
rameter y controls the shrinkage toward a multiple of the identity matrix. Analogously,
the LOOC parameter ¢; in between 0 and 1 leads to mixtures of the diagonal of the sam-
ple group covariance and sample group covariance itself, in between 1 and 2 it leads to
mixtures of the sample group covariance and the common covariance (which in this case
is equal to the pooled one), and in between 2 and 3 to mixtures of common covariance

and the matrix of its diagonal elements.

PCAs
4 10 20 40 60

Training
Sgroup 99.5(0.4) - - - -
Spooled 73.3(3.1) 96.6(1.2) 99.2(0.6) 100.0(0.0) 100.0(0.0)
Scopo 97.0(1.1)  99.9(0.2) 100.0(0.0) 100.0(0.0) 100.0(0.0)

Srda 81.2(2.8) 99.5(0.7) 99.9(0.2) 100.0(0.0) 100.0(0.0)
Slooc 89.4(1.9) 98.9(0.7) 99.6(0.4) 99.8(0.3) 99.9(0.2)
Test

Sgroup 51.6(4.4) - - - -
Spooled 59.5(3.0) 88.4(1.4) 91.8(1.8) 95.4(1.5) 95.0(1.6)
Scopo 69.8(3.4) 90.2(2.5) 94.0(1.9) 96.4(1.6) 95.9(1.5)

Srda 64.7(3.9) 92.4(1.9) 94.0(1.4) 96.0(1.7) 95.6(1.6)

Slooc 70.1(3.1) 90.8(2.2) 93.5(2.2) 93.0(1.8) 92.0(1.8)
RDA

A 0.1 0.1 0.2 0.3 0.3

y 0.0 0.0 0.1 0.2 0.3
LoOC

al 16 2.0 2.6 2.9 3.0

a5 1.3 16 1.6 1.7 1.8

alo 2.3 2.4 2.2 2.8 2.9

20 16 16 1.9 2.3 2.7

30 15 15 1.6 1.6 1.8

40 1.4 16 1.8 2.1 2.5

Table 4.4. ORL face recognition results (COPO).

Table 4.4 shows that on the training set and for less than 20 PCA components the
Scopo estimator led to higher face recognition classification accuracy than the linear
covariance estimator (Spooled) and both optimised quadratic discriminant estimators
(Srda and Slooc). For the test samples, the Srda and Slooc estimators often outperformed
the Scopo in lower dimensional space, but these performances deteriorated when the
dimensionality increased, particularly the Slooc ones. It seems that in higher dimen-
sional space, when the Sgroup estimate became extremely poorly represented, the RDA

and LOOC parameters, despite the optimisation of the classification accuracy and likeli-
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hood indexes respectively, did not counteract the Sgroup mixing singularity effect. The
Scopo estimator achieved the best recognition rate — 96.4% — for all PCA components
considered. In terms of how sensitive the covariance results were to the choice of train-
ing and test sets, the covariance estimators had similar performances, particularly in high

dimensional space.

PCAs
10 30 50 70 100

Training
Sgroup 76.3(3.6) - - - -
Spooled 49.6(3.9) 91.9(1.7) 97.6(1.0) 99.6(0.5) 100.0(0.0)
Scopo 66.6(3.2) 95.8(1.6) 99.2(0.8) 100.0(0.0) 100.0(0.0)

Srda 75.0(6.7) 96.7(2.9) 98.5(1.0) 99.2(1.0) 99.9(0.2)
Slooc 51.4(4.9) 91.0(4.1) 95.8(2.0) 98.8(1.3) 99.9(0.3)
Test

Sgroup 38.8(5.6) - - - -
Spooled 26.5(6.8) 70.1(7.8) 79.4(5.8) 83.9(7.0) 84.4(6.5)
Scopo 31.5(5.8) 68.3(5.5) 79.5(5.8) 85.0(7.0) 84.1(6.0)

Srda 37.8(5.9) 73.0(7.4) 80.1(6.2) 79.9(8.7) 81.3(6.7)
Slooc 26.3(5.3) 65.2(5.6) 71.2(8.2) 79.9(8.7) 87.2(5.8)
RDA
A 0.0 0.4 0.8 0.7 0.7
y 0.0 0.0 0.0 0.1 0.3
LOOC
al 2.3 0.6 0.9 2.9 3.0
o2 2.4 1.4 2.3 2.9 2.9
o3 2.8 1.0 1.7 2.8 3.0
od 2.8 2.3 2.1 3.0 3.0
o5 2.8 0.6 0.9 2.3 3.0
a6 2.6 0.5 1.1 2.8 3.0

Table 4.5. Tohoku facial expression recognition results (COPO).

The results of the Tohoku facial expression recognition are presented in table 4.5. For
more than 50 PCA components on the training set, the Scopo estimator performed as well
or better than all the other covariance estimators considered. Regarding the test samples,
however, there is no overall dominance of any covariance estimator. In lower dimension
spaces, Srda led to higher classification accuracies, followed by Scopo, Spooled and
Slooc. On the other hand, when the dimensionality increased and the true covariance
matrices became apparently equal and highly ellipsoidal, Srda performed poorly while
Scopo, Spooled and Slooc improved. In the highest dimensional space the LOOC opti-
misation, which considers the diagonal elements of the pooled estimate, took advantage

of the equal-ellipsoidal behaviour (for more than 70 PCAs all «; parameters are close to
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the value 3) achieving the best recognition rate — 87.2% — for all PCA components calcu-
lated. In this recognition application, all the computed covariance estimators were quite

sensitive to the choice of the training and test sets.

4.2.5 Discussion

This section described the problem of loss of covariance information when singular sam-
ple group and non-singular covariance matrices, such as the pooled estimation, are line-
arly combined using the same parameters all over the feature space.

In limited sample size and well framed image recognition applications, like the face
and facial expression classification problems presented, an eigenvector-eigenvalue order-
ing procedure that selects information from the projected sample group covariance matri-
ces whenever possible and the pooled covariance otherwise showed the significance of
the loss of covariance information problem when blending singular and non-singular
covariance matrices. It seems that when limited information is provided, the problem of
estimating covariance matrices for classification is affected not only by the way that in-
formation is optimised but also by its reliability.

Although the COPO method can be viewed as a valid n-dimensional non-singular ap-
proximation of an r-dimensional singular matrix that considers explicitly the sample
group singularity effects, it is still strongly related to the reliable information provided by
the sample group covariance matrices. In image recognition applications, where the
sample group covariance matrices would be eventually full rank but not accurately esti-

mated, this initial approach may not perform well.

4.3 Summary and Conclusions

In this chapter, the performances of several unconventional Bayes plug-in covariance
estimators were evaluated in pre-processed image recognition problems that used small
and moderate training sets, a large number of features, and a moderate number of groups.

Experiments carried out on face and facial expression recognition confirmed the find-
ings of other researchers that choosing an unconventional Bayes plug-in classifier be-
tween the linear and quadratic ones improves the classification accuracy in settings for

which sample sizes are small and the number of features is large. In those well-framed
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applications, however, where the sources of variation were the same from group to group
and consequently a similar covariance shape might be assumed for all groups, linear
combinations of the sample group covariance matrices and the pooled covariance matrix
led to a loss of covariance information.

An initial and intuitive approach to understanding this problem was developed and
showed the importance of taking into account the distinct information provided by the
sample group covariance matrix and the pooled covariance matrix in the whole high-
dimensional feature space. When limited information is provided, the problem of esti-
mating covariance matrices for classification is affected not only by the way that infor-

mation is optimised but also by its reliability.



Chapter 5

Covariance Matrix Estimation

The previous chapter’s investigations demonstrated that linear combinations of singular
and non-singular covariance matrices may lead to a loss of reliable covariance
information in small sample size problems. In this chapter, a new unconventional Bayes
Plug-in or Quadratic Discriminant Function (QDF) classifier is proposed. This classifier
is based on a covariance matrix estimation that combines covariance matrices under the
principle of maximum entropy. It assumes that the sources of variation are similar from
group to group and consequently a similar covariance shape may be expected for all
classes. This has often been the case for pre-processed image recognition applications.
The new covariance matrix estimation not only deals with the singularity and instability
of the maximum likelihood covariance estimator, but also is computed directly without

requiring a time-consuming optimisation procedure.

5.1 The Maximum Entropy Covariance Selection Method

The Maximum Entropy Covariance Selection (MECS) method considers the issue of
combining the sample group covariance matrices and the pooled covariance matrix based

on the maximum entropy (ME) principle, stated briefly as:

“When we make inferences based on incomplete information, we should draw
them from that probability distribution that has the maximum entropy permitted

by the information we do have.” [Jay82]

In the problem of estimating covariance matrices for Gaussian classifiers, it is known

that different covariance estimators might be optimal depending not only on the true
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covariance statistics of each class, but also on the number of training observations, the
dimension of the feature space and even the ellipsoidal symmetry associated with the
normal distribution [Jam85, Fri89, Hof95]. In fact, such covariance optimisation can be
viewed as a problem of estimating the parameters of Gaussian probability distributions
under uncertainty. Therefore, the ME criterion that maximises the uncertainty under an

incomplete information context should be a promising solution [TGF02, TGF03b].

5.1.1 Definition

The Maximum Entropy Covariance Selection (MECS) method assumes that the sources
of variation are similar from group to group and consequently a similar covariance shape
may be expected for all classes.

Let an n-dimensional sample X, of class 7, be normally distributed with true mean
4; and true covariance matrix X,, i.e. X, ~N,(u,,Z;). As described in chapter 2, the
entropy 4(X,) of such a sample X, is defined as the expected value of the natural

logarithm of the inverse of the probability density function of X;, which in this case can

be written as (e.g., [Fuk90]):

WX, =-E{n[p(x|z)]}

1 Ty -l
{ [(2 )n/2|Z |1/2 |:_E(x_ltli) Z; (x_,ui):u

E—%ln(27r)——ln|2|——(x 1) (x - /1,)} (5.1)

__pl_n _pl_L ) B N S P
= E{ 21n(27r)} E{ 21n|2i|} E{ 2(x u)' 7 (x y,.)}

=2In2x +lln|21.| + 2
2 2 2

As can be seen from equation (5.1), the first (n/2)In27z and third (n/2) terms are
constants and can be ignored. Consequently, the entropy /(.X;) is simply a function of
the determinant of X,, which is invariant under any orthonormal transformation. Thus,

when @, consists of n eigenvectors of X, it is possible to write [Fuk90]

1n\q>fz,.cpl.\ =1In[A,|= ilnik , (5.2)
k=1
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where A, is the diagonal A, eigenvalues matrix of %,. In order to maximise (5.2) or
equivalently (5.1), we must select the covariance estimation of X, that gives the largest
eigenvalues.

If we consider linear combinations S/"* between the sample group S, and pooled S »

covariance matrices, equation (5.2) can be rewritten (by using equations (4.15)) as

In|(@7")" (as, + S, Jorr™

— ln‘a(q);niX)T Si(I);niX +b((I);niX)T Spq);nix
= Inldiag[a¢{,as3,....ad )+ diaglbs! ¢t ...bS ) ]
- ln‘diag[ag“f +bCP,all +bCE . alt +bEP ]

. (5.3)
=In(] Jagi +6¢)
k=1
=2 In(ag +bP),
k=1
where ¢/,¢5,...,¢0 and &F,¢7,...,¢7 are respectively the variances of the sample and

pooled covariance matrices spanned by the S eigenvector matrix @®*. The
parameters ¢ and b are nonnegative and sum to 1.

Since the natural logarithm is a monotonic increasing function, the maximum of the
function “In(a¢; +b¢})” is at the same point in the space as the maximum of
“al, +b< !, we do not change the problem if instead of maximising equation (5.3) we

maximise
D (agi +bSh) . (5.4)
k=1

However, a¢; +b{/ is a convex combination of two real numbers and the following

inequality is valid [HJ85]
al; +bSF <max(<,<l), (5.5)

for any 1<k <n and convex parameters ¢ and b that are nonnegative and sum to 1.
Equation (5.5) shows that the maximum of a{, +b5¢/ depends on k and is attained at
the extreme values of the convex parameters, that is, either a=1 and »=0 or a =0 and
b=1 [TGF03b]. Therefore, in order to maximise equation (5.4) we shall not choose the
same parameters a and b for the whole feature space as previously, but select

appropriately the maximum variances of the corresponding matrices.
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5.1.2 Algorithm

One possible way to maximise equation (5.4) and consequently the entropy given by the
convex combination of §; and S, is to select the maximum variances of the sample and
pooled covariance matrices given by an orthonormal projection basis that diagonalises an
unbiased (a = b ) linear mixture of the corresponding matrices [TGF03b].

If we recall the assumption made that all classes have similar covariance shapes, it is
reasonable to expect that the dominant eigenvectors (i.e., the eigenvectors with largest
eigenvalues) of this unbiased mixture would be mostly orientated by the eigenvectors of
the covariance matrix with largest eigenvalues. The choice of sample group or pooled
information is then made purely on the size of the eigenvalue, which reflects the
reliability of the poor information available. Since any unbiased combination of S, and
S, gives the same set of eigenvectors, an orthonormal basis that would avoid the loss of
covariance information is the one composed of the eigenvectors of the covariance matrix
givenby S, +S5,.

Therefore, the MECS estimator S/ can be calculated by the following procedure:

i. Find the eigenvectors @ of the covariance givenby S, +5,.

ii. Calculate the variance contribution of both S; and S, on the @ basis, i.e.

diag[(®]*)" S, 0“1  =[¢],{3.8,]

. meNT me P P P (5.63)
diag[(®;")" S, @] =[¢{".¢7 58, ]
iii. Form a new variance matrix based on the largest values, that is
77" = diag[max({},¢ 1), max(¢3,¢7),...max(¢,,4 )] (5.6b)
iv. Form the MECS estimator
Simecs — q);nezgne ((D?IE)T . (5.6c)

The new unconventional quadratic classifier is constructed by substituting S for §; in
the Bayes discriminant rule defined in equation (3.8).

The main idea of the MECS approach is to expand in a straightforward way the smaller
and consequently less reliable eigenvalues of S; while trying to keep most of its larger

eigenvalues unchanged. In fact, MECS estimation will select the most reliable linear
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features of a n-dimensional sample X; described by a combination between its sample
group covariance matrix S; and the weighted average of all the sample group covariance
matrices considered. It is a direct procedure that not only deals with the singularity and
instability of S; but also with the loss of information when similar covariance matrices
are linearly combined. Furthermore, as MECS does not require an iterative optimisation
procedure, its computational cost is much less severe than, for instance, the RDA and

LOOC methods described in chapter 3.

5.2 Visual Analysis of Covariance Matrix Estimates

Before evaluating the MECS effectiveness on synthetic and real image recognition data,
we first visually analyse the mixture covariance matrix estimates defined by the linear
combination of the sample group and pooled covariance information. Given the high-
dimensionality of the limited sample size problems, little attention has been paid to
understanding what has happened to the final shape of such covariance matrix estimates
in the recognition space [TG03a].

In this section, we describe an image analysis of the eigenvectors and eigenvalues of
the mixture covariance matrices in the commonly used principal components (or
eigenfaces) space [KS90, TP91]. This analysis is particularly helpful because by using
the characterization of human faces we can distinguish clearly the hyper ellipsoids
formed by the different mixture covariance matrix approaches in the sparse and high

dimensional classification space.

5.2.1 Mixture Covariance Approaches

A number of optimisation approaches can be used to determine the appropriate parameter
w; for mixing the sample group covariance matrices S, and the pooled covariance S ,.

As a reminder (equation (4.1)), the mixture covariance matrices can be defined as

S (w)=w,S, +(1-w,)S,, (5.7

where the mixture parameter w; takes on values 0<w, <1 and could be different for

each class depending on the optimisation technique used to solve the problem.
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In light of the methods described in this chapter and the previous ones, these mixture
covariance matrices can be calculated by using basically the following three approaches:
maximum likelihood, maximum classification accuracy, and maximum entropy.

The maximum likelihood (ML) strategy, adopted in the section 4.1 of the previous
chapter, is essentially a simplification of the Hoffbeck and Landgrebe approach [Hof95,
HL96] described in chapter 3 (equation (3.28)). It consists of evaluating several values of
w; over the optimisation grid 0 < w, <1, and then selecting w; so that a best leave-one-
out fit to the training patterns is achieved. Analogously, the maximum classification
(MC) strategy is a simplification of the Friedman work [Fri89]. In this approach, all the
mixture parameters w; of each class are equal and selected to maximise the leave-one-out
classification accuracy over all the training patterns of all classes (equation (3.14)). The
maximum entropy (ME) approach has been described in the preceding section and
maximises the information contained in the combined sample group and pooled
covariance matrices. It basically selects accordingly the maximum variances of the

corresponding covariance matrices (equations (5.6)).

5.2.2 Experiments

In order to investigate and visualise the different mixture covariance approaches
considered, two experiments using the well known ORL (described in the subsection
4.1.3.1) and FERET face databases were performed. The FERET images pose an

alternative analysis where the faces are better framed than the ORL ones.

5.2.2.1 FERET Face Database

The FERET database is the United States Army Face Recognition Technology facial
database that has become the standard data set for benchmark studies [PWH98]. Sets
containing 4 “frontal b series” images for each of 200 total subjects were considered.
Each image set is composed of a regular facial expression (referred as “ba” images in the
FERET database), an alternative expression (“bj” images), and two symmetric images
(“be” and “bf” images) taken with the intention of investigating the effects of 15 degrees
of pose angle variation. Figure 5.1 illustrates some example images from the FERET

database cropped to the size of 96x64 pixels.
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v

Figure 5.1. Some example images from the FERET Database.

5.2.2.2 Implementation

The experiments were implemented as follows. First the face images from the original
vector space are projected to a lower dimensional space (face subspace) using Principal
Component Analysis (PCA) [KS90, TP91] and then classified using the pooled
covariance matrix and the three mixture covariance approaches described in the previous
sub-section 5.2.1. Each experiment was repeated 25 times using several eigenfaces.
Distinct training and test sets were randomly drawn, and the mean and standard deviation
of the recognition rate, as well as the mean of the likelihood and classification accuracy
mixture parameters, were calculated. Then, based on the best classification accuracy of
the several PCA features used, the number of eigenfaces to visualise and calculate the
covariance eigenvectors and eigenvalues on the face subspace was determined.

The ORL face experiments were computed using for each individual 5 images to train
and 5 images to test. The FERET training and test sets were composed of 3 and 1 images
respectively. Since in all applications the same number of training examples per subject
was considered, the prior probabilities were assumed equal for all classes and recognition

tasks. For implementation convenience, all ORL and FERET images were first resized to
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64x64 and 96x64 pixels. The mixture parameter range was taken to be [0.1,0.2,...,1.0]
for both w;, likelihood and w classification accuracy optimisations.

As can be seen from tables 5.1 and 5.2, the best classification results were obtained by
using 40 and 50 eigenfaces (which we call most effective eigenfaces) for the ORL and
FERET databases. These most effective eigenfaces correspond to approximately 82%

and 83% of the total sample variance explained by the principal components

transformation matrices of ORL and FERET face images respectively.

Eigenfaces Pooled Smix - ML Smix - MC Smix - ME
10 88.4% (1.4%) 91.9% (1.6%) 93.8% (1.7%) 93.5% (1.5%)
20 91.8% (1.8%) 94.4% (1.7%) 94.7% (1.4%) 95.2% (1.8%)
40 95.4% (1.5%) 96.2% (1.5%) 96.5% (1.6%) 96.7% (1.5%)
60 95.0% (1.6%) 95.7% (1.5%) 95.4% (1.6%) 95.9% (1.6%)
80 94.6% (1.9%) 94.9% (1.7%) 94.7% (1.9%) 94.8% (1.7%)

Table 5.1. ORL classification results

Eigenfaces Pooled Smix - ML Smix - MC Smix - ME
10 94.9% (1.1%) 94.7% (1.4%) 95.3% (1.1%) 95.3% (1.2%)
30 96.8% (0.8%) 96.6% (1.1%) 97.0% (0.9%) 97.2% (1.0%)
50 96.9% (0.8%) 96.7% (1.1%) 97.3% (1.0%) 97.8% (0.9%)
70 96.7% (0.9%) 96.5% (0.9%) 96.9% (0.9%) 97.3% (0.9%)

Table 5.2. FERET classification results

5.2.3 Results

Figures 5.2 and 5.3 present the visual analysis of two examples of each ORL and FERET
covariance blending experiments using the most effective eigenfaces of each. These
examples were chosen based on the closeness of the likelihood and classification mixture
parameters to their respective mean values.

The visual results of Figures 5.2a-5.2b, and 5.3a-5.3b, can be described as follows.
The first image row corresponds to the training images of a specific subject, and the
second and third following rows correspond to the eigenvectors (in descending ordering
of eigenvalues, from left to right) of the respective sample group and pooled covariance
matrices transformed back to the image space by using the corresponding principal
components transformation matrix. Accordingly, the fourth, fifth and sixth image rows

correspond to the eigenvectors of the maximum likelihood, maximum classification
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accuracy, and maximum entropy mixture covariance matrices. The numbers below each
image row describe the magnitude of the eigenvalue of each covariance eigenvector with
its corresponding percentage of total variance shown in parentheses.

Since only 5 images of each individual were used to form the ORL training set, the
results of Figures 5.2a and 5.2b relative to the sample group covariance estimates were
limited, in terms of total variation within the subject’s images, to the first 4 eigenvectors.
The remaining eigenvectors (only 4 more shown) are arbitrary, apart from being
constrained by the orthogonality assumption on the face subspace, and should be replaced
or modified using the pooled information. In Figures 5.2a and 5.2b, the likelihood
mixture parameters are respectively 0.9 (with mean value 0.92) and 1.0 (0.83), whereas
the classification accuracy mixture parameter is 0.8 (0.61).

As can be seen on Figures 5.2a and 5.2b, the mixture covariance matrices that preserve
as much of the sample group covariance information as possible were the ones blended
using the maximum entropy approach. It is important to note that although the
percentage of total variation of each eigenvalue was different due to the use of the pooled
information, the first eigenvectors and eigenvalues of the maximum entropy covariance
matrices are quite similar to those of the respective sample group covariance matrix.

Figures 5.3a and 5.3b show the results of the FERET experiments. Analogously to the
ORL experiments, the sample group covariance information became limited to the first 2
eigenvectors. The remaining eigenvectors (only 3 more shown) represent no subject
variation at all and are arbitrary, apart from being constrained by the orthogonality
assumption on the face subspace. In these FERET figures, the likelihood mixture
parameters are respectively 0.5 (with mean value 0.62) and 0.9 (0.95), whereas the
classification accuracy mixture parameter is 0.8 (0.85).

As can be observed in Figures 5.3a and 5.3b, the visual results of the mixture
covariance estimates seem to be more related to the pooled information than the sample
group one. Again, the maximum entropy approach was the one that preserved as much of
the sample group covariance information in the covariance matrix blending as possible.
However, in this application where the face images are well framed thus favouring the
pooled covariance matrix, there is no significant visual improvement in using mixture

covariance matrices.
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Figure 5.2a. ORL visual analysis. The top row shows the 5 image training examples of a
subject and the subsequent rows show the image eigenvectors (with the corresponding
eigenvalues below) of the following covariance matrices: (1) sample group; (2) pooled;
(3) maximum likelihood mixture; (4) maximum classification mixture; and (5) maximum
entropy mixture.
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Figure 5.2b. ORL visual analysis. The top row shows the 5 image training examples of a
subject and the subsequent rows show the image eigenvectors (with the corresponding
eigenvalues below) of the following covariance matrices: (1) sample group; (2) pooled;
(3) maximum likelihood mixture; (4) maximum classification mixture; and (5) maximum
entropy mixture.
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Figure 5.3a. FERET visual analysis. The top row shows the 3 image training examples
of a subject and the subsequent rows show the image eigenvectors (with the
corresponding eigenvalues below) of the following covariance matrices: (1) sample
group; (2) pooled; (3) maximum likelihood mixture; (4) maximum classification mixture;
and (5) maximum entropy mixture.
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Figure 5.3b. FERET visual analysis. The top row shows the 3 image training examples
of a subject and the subsequent rows show the image eigenvectors (with the
corresponding eigenvalues below) of the following covariance matrices: (1) sample
group; (2) pooled; (3) maximum likelihood mixture; (4) maximum classification mixture;
and (5) maximum entropy mixture.



Covariance Matrix Estimation 72

5.2.4 Discussion

A visual study of three mixture covariance matrix approaches for the QDF classifier has
been undertaken in the context of characterising human faces. This analysis allows a
better understanding of not only the final shape of such covariance matrix estimates, but
also the importance and applicability of blending the sample group and the pooled
covariance matrices in small sample size, high-dimensional problems.

The experiments performed in this section show that the maximum entropy approach
preserves as well of the sample group covariance information as possible, achieving a
more intuitive visual performance. This behaviour was especially identified in the ORL
face experiments where moderate changes in facial expressions, pose, and scale,
occurred.

In order to explore and understand the full scope of the MECS approach in limited
sample and high dimensional problems, experiments on synthetic and other real image

data are described in the following sections.

5.3 Synthetic Data Analysis

The main idea of the synthetic data analysis is to evaluate the effectiveness of the
maximum entropy quadratic classifier and possibly predict situations where we might
expect improvement with MECS compared to the other similar approaches
aforementioned.

We have used the classification error as the evaluation criterion to compare the
performance of the competing covariance estimators. This, also called “error-counting
procedure” [Fuk90], is the only feasible possibility when a finite number of samples is

available in practice [MYT87, PJY8S, Fri89, Fuk90, HL96].

5.3.1 Estimation of the Bayes Classification Error

According to Fukunaga [Fuk90], the Bayes classification error of a sample-based
estimate can be determined by a function of two sets of data, that is £(Q,,Q;) where

Q, and Q. are respectively the design (or training) and test sets.
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Fukunaga [Fuk90] has shown that the upper and lower expected values of the Bayes
classification error of the true population € can be calculated by the following estimated

bounds

Ele(€2,.0,)|< 6(Q.0) < B, 16(2,.0,)], 5.8)

where QT is a sample generated from Q independently of Q D-

The formula (5.8) expresses that on the one hand, the rightmost term g(fl D,QT) of
equation (5.8) is calculated by generating two different sample sets, Q p and QT, and
using Q,, for training and Q, for testing. This procedure is called the holdout method
and its expected value gives the upper bound of the Bayes classification error. On the
other hand, the leftmost term g(f) D,Q p) 1s obtained by using the same sample data for
training and testing and its expected value gives the lower bound of the Bayes error. This
procedure is called the re-substitution method [Fuk90].

It is common practice to replace the expectation values of the formula (5.8) by the

average over the available samples randomly replicated.

5.3.2 Experiments

We have used the holdout and re-substitution methods to estimate respectively the upper
and lower bounds of the classification errors of Bayes Plug-in classifiers.

Analogously to the synthetic analyses developed by other researchers [MYTS87, PJYS8,
Fri89, HL96], we have implemented simulation experiments conducted as an n-
multivariate normal repeated-measures design. Our attention is focused on evaluating
covariance estimators while varying the dimension of the space n, the degree of
similarity of the covariance matrices, and, particularly, the intra-class correlation o of all
the groups considered. We believe that the correlation between the n parameters can
play an important role when blending covariance-matrix estimates in limited sample and
high dimensional problems. Other simulation experiments for combining the sample
group and pooled covariance matrices, such as RDA [Fri89] and LOOC [Hof95, HL96]
synthetic analyses, have not addressed this problem.

In all simulation experiments there are 9 groups or classes. We have chosen four

values for the dimension of the space n (5, 10, 20, 40) and three values for the intra-class
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correlation factor p (0.0, 0.1, 0.9). Since the training sample sizes of all classes for all
experiments are fixed at N, =N, =---= N, =20, those four n values would allow us to
analyse the Bayes Plug-in classifiers in situations where the sample group covariance
matrices are non-singular (z=5 or 10) and singular (7= 20 or 40). The three correlation
factors represent the situations where the intra-class data parameters are not correlated
(o =0.0), slightly correlated ( p = 0.1), and highly correlated ( o = 0.9).

For each pair of (m,p) values, the simulation consists of 25 replications of the
following procedure. For each multivariate normal population of the 9 classes, we have
generated 20 n-dimensional training observations and 50 n-dimensional test observations.
From these distinct training and test samples randomly drawn, we have calculated the
lower and upper classification rate of the following six Bayes Plug-in classifiers:
Euclidean distance classifier or simply EUC (i.e., covariance matrices equal to the
identity matrix), QDF (covariance matrices defined in equation (3.6)), LDF (equation
(3.12)), RDA (equation 3.13)), LOOC (equation (3.27)), and MECS (equations (5.6)).

Since the same number of training examples per class is considered, the prior
probabilities are assumed equal for all classes and experiments. Different forms for the 9
true mean vectors u are selected, namely: u, = [0,0,...,0]", My = [1,0,...,rem(n,2)]",
ty =[0Lccrem((n + D2, gty =[LLeedV s gt =[~Llecs "1 g =ty pty =5
Mg =—p, , and gy =—pus, where “rem(y,,y,)” is simply the remainder after the division
of the value y, by the value y,. These values simulate practical recognition problems
where the mean differences are not restricted to a specific subspace but increase as more
features are used. Moreover, the RDA optimisation grid has been taken to be the outer
product of 4=[0,0.125,0.354,0.65,1.0] and y =[0,0.25,0.5,0.75,1.0], as suggested by
Friedman’s work [Fri89].  Analogously, the size of the LOOC parameter was
a; =[0,0.25,0.5,...,2.75,3.0], as given by [Hof95, HL96].

5.3.3 Results

The results of the different covariance structures used to evaluate the six Bayes Plug-in
classifiers are presented in the following sub-sections.

All the corresponding figures can be briefly described as follows. The high-low charts
present the mean of the training (upper bound) and test (lower bound) classification rates

over the 25 replications regarding the four values used for the dimension parameter n (5,
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10, 20, 40) and the three values for the intra-class correlation factor p (0.0, 0.1, 0.9).

6 ”»

The mar in between the high-low bars is illustrative and represents simply the
average value between the upper and lower Bayes classification bounds.

Also presented in separate figures are the mean of the selected RDA and LOOC mixing
parameters for each covariance structure with correlation factor p equals 0.1 and 0.9. As
a reminder, RDA parameter lambda A controls the degree of shrinkage of the sample
group covariance matrix estimates toward the pooled covariance one, whereas the
parameter gamma ¥ controls the shrinkage toward a multiple of the identity matrix.
Analogously, the LOOC parameter alpha «¢; in between 0 and 1 leads to mixtures of the
diagonal of the sample group covariance and sample group covariance itself, in between 1
and 2 to mixtures of the sample group covariance and the common covariance (which in

this case is equal to the pooled one), and in between 2 and 3 to mixtures of the common

covariance and the matrix of its diagonal elements.

5.3.3.1 Equal Spherical Covariance Matrices

In this simulation, each of the i=1,2,...,9 classes was generated from a population with
the true covariance matrix chosen to have the form of a pure intra-class correlation

matrix. That is, all the true covariance matrices X, are given by
(p)=(1-p)I + pl, (5.9)

where / is a nxn identity matrix and 1 is nxn matrix of 1’s [MYTS87, PJY88]. The
classification results of this simulation are shown in Figure 5.4. Figure 5.5 displays the
means of the RDA and LOOC mixing parameters selected for this covariance structure.
As can be seen in the classification charts of Figure 5.4, the differences between the
covariance estimators become more apparent as the dimension parameter n increases
relative to the sample size. Since there were only 20 training observations for each class,
the sample group covariance matrices were singular for n= 20 or 40 and the QDF
classification rate could not be computed. The success of the EUC when the correlation
factor was 0.0 is theoretically expected because in this situation the true covariance
matrices of all the classes were equal to the identity matrix. Not surprisingly, when the
intra-class data parameters became slightly correlated ( o = 0.1), and, more significantly,

highly correlated ( o = 0.9), the EUC classification results deteriorated.
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Figure 5.5. Equal spherical covariance matrices — RDA and LOOC parameters.
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On the training set (or upper part of the classification bounds) the sample group (when
invertible) and the MECS covariance estimators led to higher recognition accuracies than
the pooled (LDF) and both optimised RDA and LOOC covariance estimators. For the
test samples (or lower part of the classification bounds), MECS performed slightly worse
than the LDF, RDA, and LOOC in the lowest dimensional space, but its relative
performance deteriorated when the dimensionality increased, particularly in situations
where the data parameters were slightly correlated ( o = 0.1) or not correlated at all (p =
0.0). This result suggests that MECS depends on the relative size of the dimension of the
space to the total training sample size when the true covariance matrices have essentially
a diagonal form.

When data parameters were highly correlated (p = 0.9) and consequently the
estimation of the off-diagonal elements (co-variances) of the true covariance matrices
becomes as important as the estimation of the diagonal elements (variances), MECS
performed equivalently in the higher dimensional spaces to LDF and LOOC. In this
situation, where a high degree of regularisation for the RDA identity shrinkage parameter
gamma was selected (see top chart of Figure 5.5), RDA achieved the best classification
rates for the test samples. In contrast, RDA recognition accuracies of the training
samples were much lower than the other covariance estimators.

Figure 5.5 illustrates the mean of the RDA and LOOC mixing parameters selected for
the equal spherical covariance structures. As we should expect, when the data parameters
were slightly correlated (o = 0.1), the RDA and LOOC methods selected their
appropriate and available diagonal forms to better estimate the on-diagonal (variances)
elements of the true covariance matrices. However, this strategy is undermined when the

true covariance matrices are calculated based on highly correlated class-sample data.

5.3.3.2 Equal Ellipsoidal Covariance Matrices

In order to simulate equal ellipsoidal covariance matrices, each of the i=1,2,...,9 classes
was generated from a population with the true covariance matrix chosen to have the

following form:

%,(p)=D"R(p)D"?, (5.10)
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where the matrix R(p) is the nxn intra-class correlation matrix given by
R(p)=(1-p)+pl, (5.11)

and D is the diagonal nxn sample variance matrix with exponential decrease values

defined as

exp(%) 0 0
0

D=| | eXp:(%) R (5.12)
R ¥

The exponential decrease described in equation (5.12) simulates practical situations
where a statistical multivariate technique, such as PCA, is applied first to reduce the
dimensionality of the original data and improve the recognition rate of the Bayes Plug-in
classifiers in limited sample size problems.

Figure 5.6 displays the classification results of this simulation. The equal ellipsoidal
covariance results were similar to the equal spherical ones described in the previous sub-
section. In the same manner, when the data parameters were not correlated ( o = 0.0), the
EUC classifier performed well owing to the rapid convergence of the diagonal elements
of the true covariance matrices to 1 in higher dimensional spaces.

Regarding the training set (or upper part of the classification bounds), the QDF (when
computable) and the MECS covariance estimators led, analogously, to higher recognition
accuracies than the other ones. For the test samples (or lower part of the classification
bounds), the classification performance of MECS compared to the other covariance
estimators was slightly better than the one obtained when simulating equal spherical
covariance matrices in lower dimensional spaces. However, likewise, MECS relative
performance deteriorated when the dimensionality increased, particularly in the situations
where the true covariance matrices have essentially a diagonal form (o = 0.0 or 0.1).

When data parameters were highly correlated (o = 0.9), RDA’s previous superior
performance on classifying test samples of equal spherical covariance structures was
minimised because the blending toward a multiple of the identity matrix was not the most

appropriate in this ellipsoidal case (see top chart of Figure 5.7).
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Figure 5.7. Equal ellipsoidal covariance matrices — RDA and LOOC parameters.
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According to the charts of Figure 5.7, RDA and LOOC approaches depended more on
the sample and pooled information when the data were highly correlated ( p = 0.9) rather
than slightly correlated ( o = 0.1). This result was not surprising because when the intra-
class data parameters were highly correlated the estimation of the off-diagonal elements
(co-variances) of the true covariance matrices becomes as important as the estimation of
the diagonal elements (variances), favouring mixtures of covariance estimations that have

both types of elements.

5.3.3.3 Unequal Ellipsoidal Covariance Matrices

In this synthetic experiment, each of the i=12,....9 classes was generated from a
population with the true covariance matrix chosen to have the following unequal

ellipsoidal covariance structure:
PRI R
2, (p)= ED} R(p){g D} ; (5.13)

where R(p) and D matrices are respectively the nxn intra-class correlation and
diagonal matrices defined in the previous equations (5.11) and (5.12). This is a situation
that ought to prove difficult for MECS because the true covariance matrices are
significantly different from each other.

Figure 5.8 displays the classification results of this synthetic design. As can be seen,
the differences between the covariance estimators are apparent not only in the high
dimensional space, like the previous simulations, but also in the lower » dimensions.

When the data parameters were not correlated (0 = 0.0) or slightly correlated (p =
0.1), and the dimension of the space was lower (n= 5 or 10), MECS performed on the
test samples better than the QDF and LDF classifiers and worse than the RDA and LOOC
optimised approaches. In the higher dimensional spaces (n= 20 or 40) and at the same
correlation settings that favour diagonal forms for the covariance estimates (o = 0.0 or
0.1), although MECS classification rates of the training samples were the highest ones, its
relative performance on the test samples deteriorated compared to the RDA and LOOC

approaches.
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Figure 5.8. Unequal ellipsoidal covariance matrices — QDF classification results.
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Figure 5.9. Unequal ellipsoidal covariance matrices — RDA and LOOC parameters.
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In the situation where the intra-class data parameters were highly correlated ( o = 0.9),
the gap between the performance of MECS and the optimised approaches on classifying
test samples was smaller than the ones obtained when the correlation factor was 0.0 or
0.1. In such situation of high data correlation (p = 0.9), LOOC achieved the best
classification rates for the test samples. However, LOOC recognition accuracies of the
training samples were lower than the other covariance estimators.

Figure 5.9 displays the mean of the RDA and LOOC mixing parameters selected for
this covariance structure estimation. As can be seen, more drastically than the previous
simulations, even when the true covariance matrices are unequal and ellipsoidal, but the
intra-class data parameters are highly correlated, RDA and LOOC optimisation
approaches relied mainly on the mixture between solely the sample and pooled

covariance matrices.

5.3.4 Discussion

The simulation experiments presented in this section suggest that when the data
parameters are highly correlated the MECS estimator performs as well as or better than
the QDF (when computable) and the widely used LDF estimator in limited sample and
high dimensional problems.

In the high correlation case, the MECS relative performance compared to the RDA and
LOOC optimised approaches depends on the choice of the training samples. This is not a
surprising result because the MECS procedure of blending the sample and pooled
covariance matrices does not involve an optimisation procedure, but simply a selection of
the most reliable information available. When the data parameters are not correlated or
slightly correlated, there is little benefit to be derived from MECS and, as the experiments
suggest, there is deterioration in performance when the true covariance matrices have
essentially a diagonal form and the relative size of the total training sample size to the
dimension of the space is small.

It would be impossible to analyse the performance of the competing estimators over all
possible covariance structures. Analogously to the results obtained by other researchers
[MYT87, PJY8S, Fri89, HL96], these simulation experiments indicate that there is no
overall optimality of any covariance estimator for all possible configurations. However,

it is worthwhile to mention that the gain of computational simplicity of MECS compared
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to the RDA and LOOC covariance estimators is dramatic when several classes have to be
discriminated. This property could be of great importance, especially in well-framed or
pre-processed image recognition applications where only one limited set of highly

correlated data is available.

5.4 Image Data Analysis

In order to investigate with real data the performance of MECS compared with QDF,
LDF, RDA, and LOOC classifiers, four image based classification applications were
considered: face recognition, facial expression recognition, fingerprint classification and
optical character recognition (OCR).

In the face and facial expression recognition applications, the training sample sizes
were chosen to be extremely small and small, respectively, compared to the dimension of
the feature space. In contrast, moderate and large relative training sample sizes were
considered for the fingerprint and OCR problems. All applications were analysed using

publicly released databases.

5.4.1 Experiments

We used the same FERET and Facial Expression benchmark databases, previously
described in the subsections 5.2.2.1 and 4.1.3.2, for the face and facial expression
recognition experiments. The training and test feature files extracted from the NIST (US
National Institute of Standards and Technology) special datasets were used in the
fingerprint and OCR classification experiments. A brief description of these two feature

datasets is provided in the following sub-sections.

5.4.1.1 Fingerprint Database

The fingerprint classification was performed utilising the training and test feature vectors
extracted from the grey scale images of the standard NIST Special Database 4 [WCG92].
Each feature vector consists of 112 floating point numbers, made by a feature selection

procedure that ends with the PCA transform.
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The fingerprints were classified into one of five categories (arch, left loop, right loop,
tented arch, and whorl) with an equal number of prints from each class (400). There are
2000 first-rolling fingerprint feature vectors for training and 2000 corresponding second-
rolling ones for testing. Figure 5.10 illustrates some example images taken from the
fingerprint database that have been displayed on the NIST Special Database 4 web site
(http://www.nist.gov/srd/nistsd4.htm).

Figure 5.10. (a) Arch, (b) left loop, (c) right loop, (d) tented arch, and (¢) whorl images.

5.4.1.2 OCR Database

In the OCR experiments we used the training and test feature files extracted from NIST
Special Database 3 and NIST Special Database 7 respectively [BCG94]. Each feature
vector consists of 96 floating point numbers made by a PCA transform on the normalized
character image. Each original image is a 32 pixel square binary raster containing a hand

printed numerical digit extracted from a document.
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The characters were classified into one of the ten digits “0” - “9”. There are in total
7400 first-writing character feature vectors for training and 23140 second-writing ones

for testing. Both training and test files contain equal numbers of prints for each digit.

5.4.1.3 Implementation

For implementation convenience, all FERET face images were first resized to 96x64
pixels and transformed into eigenfeature vectors using PCA [TP91]. Each experiment
was repeated 25 times using several of those eigenfeatures. Distinct training and test
samples were randomly drawn, and the mean of the recognition rate was calculated.
Since the LOOC computation requires at least three examples in each class [Hof95,
HL96], the recognition rate was computed utilising for each subject 3 images to train and
1 image to test.

Analogously to the face recognition experiments, first PCA reduces the dimensionality
of the original Tohoku facial expression images (which were resized to 64x64 pixels for
implementation convenience) and secondly the discriminant Bayes’ rule using the
covariance estimators aforementioned were applied. Each experiment was repeated 25
times using several PCA dimensions. Distinct training and test sets were randomly
drawn, and the mean of the recognition rate was calculated. The training and test sets
were respectively composed of 20 and 9 images.

The fingerprint and OCR classifications were performed utilising the feature vector
files extracted from the images of the corresponding NIST Special Databases [WCG92,
BCGY4]. The training/test files of the fingerprint and OCR were composed respectively
of 400/400 and 740/2314 feature vectors with different number of floating numbers.

Since in all applications the same number of training examples per class was
considered, the prior probabilities were assumed equal for all classes and recognition
tasks. Again, the RDA optimisation grid has been taken to be the outer product of
A4 =[0,0.125,0.354,0.65,1.0] and y =[0,0.25,0.5,0.75,1.0], as suggested by Friedman’s
work [Fri89], and the size of the LOOC parameter was «; =[0,0.25,0.5,...,2.75,3.0], as
given by Hoffbeck and Landgrebe [Hof95, HL96].
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5.4.2 Results

Figure 5.11 presents the test average recognition error of the FERET face database. Since
only 3 face images were used to train the classifiers, the sample group covariance
matrices S; were singular and the QDF could not be calculated. Instead, the recognition
rate of the Euclidean distance classifier (EUC) that corresponds to the classical eigenfaces
method proposed by Turk and Pentland [TP91] are displayed. Figure 5.11 shows that for
all the feature components considered the MECS quadratic classifier performed as well or
better than the other classifiers. The MECS quadratic classifier achieved the lowest
classification error — 2.2% — on 50 eigenfeatures. In this application where each S,
seems to be quite similar, favouring the LDF performance, the MECS classifier did better

by using the singular and pooled covariance information.

FERET Face Recognition Error
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Figure 5.11. FERET face database recognition error for Bayes plug-in classifiers.

The results of the Tohoku facial expression recognition are presented in Figure 5.12.
Owing to the fact that 20 images were used to form the training set of each class, the
sample group covariance estimate (QDF) results were limited to 19 PCA features. These

results and the EUC results were much less accurate than the others and were not plotted
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on Figure 5.12. As can be seen, there is no overall dominance of any covariance
estimator. In lower dimension space, RDA led to lower classification error rates,
followed by MECS, LDF and LOOC. When the dimensionality increased and the true
covariance matrices became apparently equal and highly ellipsoidal, RDA performed
poorly while MECS, LDF and LOOC improved. In the highest dimensional space the
LOOC optimisation, which considers the diagonal elements of the pooled estimate, took
advantage of the equal-ellipsoidal behaviour (for more than 70 PCAs all «; parameters
are closest to the value 3) achieving the lowest recognition error rate — 12.8% — for all
PCA components calculated. In this recognition application, all the computed covariance

estimators were quite sensitive to the choice of the training and test sets.

Facial Expression Recognition Error
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Figure 5.12. Tohoku facial expression recognition error for Bayes plug-in classifiers.

The recognition results of the NIST-4 fingerprint database are presented in Figure 5.13.
The EUC results were much less accurate than the others and were not plotted on the
figure. In the lowest and highest dimension spaces (28 and 112 features), RDA led to
marginally lower classification error than MECS estimator. However, for 56 and 84
features the MECS performed better than the other classifiers. Although in this

application the ratio of the training sample size to the number of features is moderate and
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large, favouring the QDF, RDA and LOOC classifiers, the MECS estimator achieved the
lowest classification error — 12.5% — on 84 components. Putting this result in
perspective, a classification error of 12% but with 10% rejection of the fingerprints was

reported on the same training and test sets [WCG92].

NIST-4 Fingerprint Recognition Error
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Figure 5.13. NIST-4 fingerprint error for Bayes plug-in classifiers.

Figure 5.14 presents the test recognition error of the NIST-3/7 OCR databases. In the
lower dimensional spaces, where the ratio of the training sample size to the number of
features were quite large and consequently the sample group covariance matrices were
well-estimated, both LOOC optimised likelihood and RDA optimised classification
classifiers shrank their parameters towards the sample group covariance matrices,
performing identically to the conventional QDF maximum likelihood classifier. As the
dimension of the feature space increased and the sample group covariance matrices
became not so well posed, the sample likelihood QDF and LOOC methods slightly
deteriorated while MECS and RDA improved. At the 72-dimensional space, RDA,
taking advantage of blending mixture of covariance matrices with multiples of the

identity matrix, achieved the lowest classification error (2.6%), followed by MECS
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(3.3%), LOOC (3.6%) and QDF (3.6%). A classification error of 2.5% was reported on
the same NIST OCR feature files, which used probabilistic neural networks [BCG94].

NIST-3/7 OCR Recognition Error
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Figure 5.14. NIST-3/7 OCR databases error for Bayes plug-in classifiers.

5.4.3 Discussion

The effectiveness of the MECS method compared with other covariance estimators for
Bayes plug-in classifiers (QDF, LDF, RDA and LOOC) was evaluated on four image
recognition applications: face recognition, facial expression recognition, fingerprint
classification, and optical character recognition (OCR).

In the face and fingerprint recognition problems, where the training sample sizes were
chosen to be respectively small and moderate compared to the dimensionality of the
feature space, MECS quadratic classifier achieved the lowest classification error. When
the training sample sizes were small and the classes were very similar to each other, as in
the facial expression application, the optimised LOOC classifier that considered the
diagonal elements of the pooled covariance estimate achieved the best performance on

the highest dimensional spaces, followed by MECS, LDF, and RDA. For the OCR



Covariance Matrix Estimation 90

problem, however, where the training sample sizes were not limited and quite large
compared to the dimensionality of the feature space, the standard QDF was the most
parsimonious classifier in terms of the recognition error and number of features required.

These results indicate that the MECS covariance estimator does increase the
classification accuracy in image recognition applications where the sources of variation
are frequently the same from group to group. Also, those real data experiments confirm
the findings of several researchers that choosing an unconventional Bayesian parametric
classifier between the linear and quadratic ones improves the classification accuracy in
settings for which sample sizes are small and the number of features is large [Fri89,
GR&89, GR91, HF96, TGF03a].

However, the MECS new covariance approach shows that in high-dimensional and
highly correlated classification problems where limited training sample sizes are
provided, the problem of estimating covariance matrices for unconventional quadratic
classifiers is essentially an issue of combining the reliable information available rather

than optimising classification or likelihood indexes of well-behaved samples [TGF03b].

Application

RDA LOOC MECS
Features
Face
10 1392.42 2.95 0.04
20 1860.55 7.62 0.14
30 5549.83 23.38 0.56
40 8488.75 36.08 0.98
50 10999.77 57.08 1.75
60 14644.63 73.05 2.47
Facial Expression
10 13.02 0.73 0.01
30 20.48 3.11 0.03
50 44.99 8.37 0.06
70 87.07 17.95 0.13
90 148.73 32.29 0.24
Fingerprint
28 247.24 38.00 0.02
56 953.39 188.47 0.04
84 2106.20 452.56 0.13
112 4251.45 934.06 0.34
OCR
16 1275.96 63.85 0.01
32 2977.54 243.29 0.03
64 8984.08 926.34 0.14
96 20520.84 2333.49 0.40

Table 5.3. Computational time (in seconds) for the quadratic classifiers.
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Table 5.3 illustrates the CPU times for our RDA, LOOC and MECS implementations
on a 1GHz desktop using a Windows based mathematical package, given as inputs the
corresponding identity, sample, and pooled covariance matrices. As can be seen, the
computational time spent in calculating the MECS estimate is remarkably lower than the
RDA and LOOC ones. This can be explained by the fact that both RDA and LOOC
covariance estimation methods require time-consuming searching processes in order to
find the best linear mixture parameter regarding their respective maximum classification
and maximum likelihood optimisation indices. In MECS, there is no optimisation search,
but simply a selection process that maximises the inherent uncertainty when incomplete
information is available.

Therefore, when concerns about the computation costs exist, MECS should be
preferable to the other aforementioned unconventional quadratic classifiers, particularly

when correlation is high and the sample size is limited.

5.5 Summary and Conclusions

In this chapter, the new Maximum Entropy Covariance Selection (MECS) method for the
Bayes Plug-in classifier was introduced. It explored the issue of combining the sample
and pooled covariance matrices under the principle of maximum entropy. The main idea
of the MECS approach is to expand in a straightforward way the smaller and
consequently less reliable eigenvalues of the sample group covariance matrix while trying
to keep most of its larger eigenvalues unchanged.

Before evaluating the effectiveness of the MECS approach on synthetic and real image
recognition data, a visual study of the maximum likelihood, maximum classification
accuracy, and maximum entropy mixture covariance approaches was undertaken in the
context of characterising human faces. This analysis indicated that the maximum entropy
approach preserved as well of the sample group covariance information as possible,
especially in the face experiments where moderate changes in facial expressions, pose,
and scale, occurred.

In the synthetic data analysis, the simulation experiments suggested that when the data
parameters are highly correlated the MECS estimator performs as well as, or better than,

the QDF (when computable) and the widely used LDF estimator in limited sample and
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high dimensional problems. In such highly correlated data, MECS relative performance
to the RDA and LOOC optimised approaches depends on the choice of the training
samples. This is not a surprising result because the MECS procedure of blending the
sample and pooled covariance matrices does not involve an iterative optimisation
procedure, but simply a selection of the most reliable information available. When the
data parameters are not correlated or slightly correlated and, consequently, the true
covariance matrices have essentially a diagonal form, the synthetic results indicate that
there is little benefit to be derived from MECS.

The performance of MECS was also compared with QDF, LDF, RDA, and LOOC
classifiers in the context of real data. The following four image classification
applications were studied: face recognition, facial expression recognition, fingerprint
classification, and optical character recognition. The results indicated that in image
recognition applications where the sources of variation are commonly the same from
group to group, limited training samples sizes are considered, and concerns about high
computation costs exist, the MECS approach is preferable to RDA and LOOC
unconventional quadratic classifiers.

Finally, the MECS estimation, in contrast to the RDA and LOOC ones, is not exclusive
to the Bayes Plug-in classifier. In fact, MECS can be used in the parametric quadratic
classifier as well as in non-parametric Gaussian classifiers whenever the sample group
covariance matrices are ill-posed or poorly estimated. Therefore, in the next chapter, we
investigate the MECS approach as a new kernel covariance estimator for the non-

parametric Parzen Window classifier.



Chapter 6

The Parzen Window Classifier

The Parzen Window Classifier is a popular non-parametric Bayesian classifier. In this
classifier, the class-conditional probability densities are estimated locally by using kernel
functions and a number of group neighbouring patterns. In practice, most of these prob-
ability densities are based on Gaussian kernel functions that involve the inverse of the
true covariance matrix of each class.

As we have seen, the usual choice for estimating the true covariance matrices is the
maximum likelihood estimator defined by the corresponding sample group covariance
matrices. However, as described previously in the Bayes Plug-in classifier chapter, it is
well known that in limited sample size applications the inverse of a sample group covari-
ance matrix is either poorly estimated or cannot be calculated when the number of train-
ing patterns per class is smaller than the number of features. Thus, a significant amount
of research has also been developed to design other covariance estimators for targeting
limited sample and high dimensional problems in non-parametric Bayesian classifiers.

In this chapter we initially present the basic concepts of the Parzen Window classifier
and review the most relevant unconventional approaches to estimating it for limited sam-
ple size problems. Since the MECS approach is a direct procedure that is not exclusive
to the parametric Bayes Plug-in classifier, we then investigate the performance of using
the MECS approach as a new kernel covariance estimator for the non-parametric Parzen
Window classifier. The experimental results carried out on synthetic and image data
indicate that the less restricted MECS covariance estimate improves the classification
performance of the Parzen Window classifier with Gaussian kernels, especially when the

sample size is small and the data parameters are highly correlated.
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6.1 The Conventional Parzen Window Classifier

The Parzen Window classifier is a non-parametric Bayesian classifier based on class-
conditional probability densities that are estimated locally by using kernel functions and
a number of group neighbouring patterns [Fuk90].

If we recall the symmetrical or zero-one loss function described in the chapter 2, that
is if we assume that all errors are equally costly [DHSO01], the Bayes classification rule
stipulates that an unknown pattern x should be assigned to the class 7; with the highest
posterior probability. However, in the context of classification this rule becomes equiva-
lent to assigning pattern x to the class 7z; that has the maximum value obtained, among
all the classes considered, by multiplying the prior probability by the corresponding Par-
zen likelihood density estimate.

In the standard or conventional Parzen classifiers with Gaussian kernels, the class-

conditional Parzen likelihood density estimate is given by

1 1 1 1 o
p(x|7m)=q;(x)=— —exp| ——5(x—x,;)' S, (x=x.;) ||, (6.1)
Nl' /Z_ll (2”)”/2|Si|1/2 hl' 2h1'2 J J

where, as a reminder, 7 is the dimension of the feature space, x; ; is the pattern j from
class 7;, N, is the number of training patterns from class 7z;, and S, is the conventional
sample group covariance matrix defined in equation (3.6). The parameter /4, is the win-
dow-width of class 7, and controls the kernel function “spread” or size.

Since the Gaussian function is symmetric, continuous, and unimodal, equation (6.1)
essentially describes a multimodal probability density estimation where, according to the
corresponding window-width parameter 4, patterns that fall close to x contribute more
to the estimate of this probability density at the point x than patterns that are far away
from x [JR8S].

The choice of the window-width parameter #4; is essentially a trade-off between reduc-
ing the bias of the estimate and increasing the variance [FH87]. In other words, as
pointed out by Jain and Ramaswami [JR88], small values of %, would give spiky or very
biased estimates of p(x|z;) with each spike corresponding to the kernel itself at the

training patterns. In contrast, when #4; are very large each training pattern provides basi-
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cally the same contribution towards density estimation at every point x and the result is
an over-smoothed estimate of p(x|z,;) with almost no bias [JR88] but huge variance.
Although the choice of the window-width parameter 4, is important to the design of
the Parzen classifiers, there has been no clear evidence that an optimal value for #; can
be theoretically determined, particularly in limited sample size and high dimensional
problems [FH87, RJ91, HFT96]. In order to address this issue properly, since our atten-
tion here is focused on estimating the covariance matrices rather than the optimisation of
h,, we follow some authors’ recommendations [FH87, RJ91] of selecting the best 4, of
the Parzen Window classifier experimentally, for each particular recognition application

considered.

6.2 Unconventional Parzen Window Classifiers

Owing to the limited sample size problem, several researchers have imposed, analogously
to the Bayes Plug-in or QDF classifiers, some structures on the sample group covariance
matrices for use in Gaussian Parzen classifiers [VNe80, JR88, Fuk90, HFT96]. Two
approaches commonly employed for overcoming these estimation singularities and insta-

bilities are described in the next sub-sections.

6.2.1 Van Ness Covariance Method

In the late 1970’s, Van Ness described a number of studies [VS76, VNe80] on discrimi-
nant analysis of high dimensional Gaussian data and proposed a flexible diagonal form
for the true covariance matrices of Gaussian Parzen classifiers. This diagonal form for
the covariance matrix of each class is based solely on the estimation of the variances of
each variable [VNe80].

In the Van Ness covariance estimation approach, the sample group covariance matri-
ces S; of the Parzen density estimate defined in equation (6.1) are replaced with the fol-

lowing matrices:

S' (@) =aU,, (6.2)

where o is a smooth or scale parameter and U, is the diagonal nxn sample variance

matrix of each class 7;. The matrix U, is given by
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2
o} 0

U, =diag(s)=| 7% : (6.3)

where 05 is the sample variance for the jth variable calculated from the training data of
each class z;. The smooth parameter « is selected to maximise the leave-one-out clas-
sification accuracy over all classes.

Since only the sample variance of each variable has to be calculated from the training

ness

patterns of each class, S, would be non-singular as long as there are at least two line-
arly independent patterns available per class. However, as equations (6.2) and (6.3) de-
scribe, the Van Ness covariance estimate relies solely on the information provided by the
on-diagonal elements of each sample group covariance matrix, disregarding any informa-
tion available about its off-diagonal elements.

Therefore, although S," could characterise different hyper-ellipsoidal shapes for
each sample group, it considers that all hyper-ellipsoids have the same orientation. In
image recognition applications where there are several classes to discriminate and the
parameters are highly correlated, and consequently the estimation of the off-diagonal
elements (co-variances) of the true covariance matrices becomes as important as the es-
timation of the diagonal elements (variances), the use of Van Ness covariance estimate

seems to be restrictive and likely to undermine the potential recognition accuracy of the

Gaussian Parzen Window classifier.

6.2.2 Toeplitz Covariance Method

Another possible structure for the Parzen Window covariance matrices is the Toeplitz
approximation, based on the stationary assumption [Fuk90]. The basic idea of the Toe-
plitz covariance method is to allow each individual variable to have its own variance,
whereas all covariance elements along any diagonal are multiplied by the same correla-
tion factor.

The Toeplitz approximation of each group covariance matrix can be calculated as fol-

lows:
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S; =|diag(s,)]"” R [diag(s)]”, ©4

where the diag(S;) can be calculated as described in equation (6.3) and

Lop o
4 1 :
R=| 7 . - 6.5)
: P
pl_rF1 e pl_ 1

The correlation factor p, is given by the average of the sample correlation p, ,,, over

k =1,...,n—1 variables [Fuk90], that is

1 n—1 1 n—1 O-]ik_H
Pi=—— P =—— ) — (6.6)
k=1

n—14= n—150,04,

where O',f’kﬂ is the sample co-variance between the k-th and (k+1)-th variables calcu-
lated from the training data of each class =, and the values o, and o,,, are their re-
spective square roots or sample standard deviations. The Parzen Window classifier is
then designed by substituting the sample group covariance matrices S; for the Toeplitz
covariance estimates described in equation (6.4).

As pointed out by Fukunaga [Fuk90], in the Toeplitz approach only (7 +1) parame-
ters, that is o, (k=1,...,n) and p,, are used to estimate the covariance matrix of each
class 7;. Since these calculations do not require an optimisation process, its computa-
tional cost is much less severe than the Van Ness covariance method described in the
previous sub-section.

Although we would not expect the Toeplitz covariance estimate to be well suited to
many pattern recognition applications, Hamamoto, Fujimoto, and Tomita [HFT96] have
shown, based on experiments carried out on artificial data sets, that the Toeplitz estima-
tor can be preferable to the Van Ness [Vne80] and the orthogonal expansion [KTT87]
estimators, particularly in small training sample size problems where concern about

computational costs exists.
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6.3 Synthetic Data Analysis

Analogously to the procedure explained in the chapter 5, more specifically in section 5.3,
this section describes synthetic data experiments carried out to evaluate the MECS classi-
fication performance compared to the aforementioned kernel covariance estimators for
Parzen Window classifiers.

We have adopted the same re-substitution (R) and holdout (H) methods to estimate re-
spectively the lower and upper bounds of the classification errors of the conventional and
unconventional Parzen classifiers with Gaussian kernels. As a reminder, in the R method
the same samples are used to design and test the classifier. In contrast, two different
sample sets are generated by the H method and one is used for training and the other for

testing.

6.3.1 Experiments

Following the synthetic analyses developed by other researchers [VNe80, Fuk90,
HFT96] and similar to the procedure adopted in the previous chapter, we have imple-
mented simulation experiments conducted as an n-multivariate normal repeated-measures
design.

Our attention is again concentrated on evaluating covariance estimators while varying
the dimension of the space n, the degree of similarity of the covariance matrices, and the
intra-class correlation p of all the groups considered. In the non-parametric Parzen
Window classifier, however, the class-conditional probability densities are estimated by
using not the centre or mean of each class as a reference value for closeness but a number
of local group neighbouring patterns. Therefore, we would like to investigate whether
the correlation between the n parameters would play the same important role observed in
the covariance estimation for the parametric Bayes plug-in classifier in limited sample
and high dimensional problems.

In all simulation experiments, we have considered the same 9 classes with the follow-
ing mean vectors: 1, =[0,0,...,0]", &, =[1,0,...,rem(n,2)]", g =[0,1,...,rem((n +1),2)]",
py =L 17 gt =10 (D", g ==ty gty ==ty g =—py, and  pg =—ps.
Equivalently, we have chosen four values for the dimension of the space n (5, 10, 20,

40) and three values for the intra-class correlation factor p (0.0, 0.1, 0.9).
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As previously, for each pair of (n, p) values the simulation consists of 25 replications
of the following procedure. For each multivariate normal population of the 9 classes, we
have generated 20 n-dimensional training observations and 50 n-dimensional test obser-
vations for each class. From these distinct training and test samples randomly drawn, we
have calculated the lower and upper classification rates of the Parzen Window classifier
defined in equation (6.1) using the following covariance kernels: SG (standard sample
group covariance matrices as in equation (6.1)), TOEP (equation 6.4)), VNESS (equation
(6.2)), and MECS (equations (5.6)). For comparison purpose, we have also calculated
the lower and upper classification rates of the Euclidean distance classifier (EUC).

In order to simplify the non-parametric estimation, the Parzen window parameter #4; is
assumed equal for all classes in all applications, and its optimum value was determined
using the following set of ten values: 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 100, 1000.
According to Raudys and Jain [RJ91], this set is usually sufficient to empirically deter-
mine the best 4, for a particular recognition application. Since the same number of train-
ing examples per class is considered, the prior probabilities are assumed equal for all
classes in all experiments. As suggested by Van Ness’ work [VNe80], the best smooth

parameter ¢ is found considering the following optimisation grid « =[0.2,0.4,...,1.6,1.8].

6.3.2 Results

Tables 6.1, 6.2, and 6.3 present the mean of the training (R method) and test (H method)
classification rates over the 25 replications regarding the four values for the dimension
parameter n (5, 10, 20, 40), the three values for the intra-class correlation factor p (0.0,
0.1, 0.9), and different covariance structures. Analogously to the synthetic parametric
results, we considered the three following structures for the true covariance matrices:
equal spherical covariance matrices, equal ellipsoidal covariance matrices, and unequal
ellipsoidal covariance matrices.

As the training set of each synthetic class contains only 20 examples per class, the no-
tation “-” found in a couple of rows of each classification table indicates that the sample
group covariance (SG) matrices were singular. Therefore, in such cases, the standard

Parzen Window classifier could not be used in order to classify the samples.
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Equal Spherical Covariance Matrices

Table 6.1 presents the simulation results of the equal spherical covariance matrices de-
fined in the previous chapter 5 (equation (5.9)).

As theoretically expected, when the correlation factor p was 0 the EUC classifier
achieved clearly the best classification performance among all the classifiers considered.
This result is due to fact that in this situation the true covariance matrices of all classes
were equal to the identity matrix. However, differently from the parametric results de-
scribed in the previous chapter, the EUC performance on the test sets was significantly
superior to the non-parametric classifiers even when the data features became slightly

correlated (p=0.1).
Equal Spherical Covariance Matrices
n Classifier p=0 p=0.1 p=0.9
R H R H R H

5 EUC 52.5% 47.3% 51.9% 45.6% 46.2% 44.4%
SG 78.0% 36.9% 79.9% 37.2% 90.9% 58.0%
TOEP 77.5% 38.9% 77.8% 39.5% 85.8% 61.3%
VNESS  66.0% 40.2% 66.3% 40.2% 85.5% 55.5%
MECS 72.6% 40.9% 74.5% 40.4% 87.8% 61.9%

10 EUC 73.3% 63.4% 65.9% 57.0% 48.1% 44.7%
SG 97.0% 42.8% 98.7% 37.9% 94.0% 57.7%
TOEP 98.3% 49.5% 99.6% 46.0% 95.1% 63.6%
VNESS  94.4% 52.8% 92.7% 48.4% 93.4% 61.5%
MECS 96.7% 51.9% 94.8% 46.0% 94.7% 63.0%

20 EUC 90.7% 80.7% 77.8% 67.6% 49.9% 46.9%
SG - - - - -

TOEP 100.0% 62.9% 100.0% 53.7% 96.7% 64.9%
VNESS  99.8% 65.8% 99.2% 55.6% 98.4% 62.7%
MECS 99.8% 65.5% 95.5% 53.3% 97.8% 63.0%

40 EUC 98.4% 94.0% 85.1% 76.3% 50.8% 47.6%
SG - - - - - -

TOEP 100.0% 77.1% 99.9% 64.1% 98.5% 64.7%

VNESS 100.0% 79.3% 100.0% 64.3% 96.9% 63.5%

MECS  100.0% 80.1% 99.9% 60.9% 99.6% 61.3%

Table 6.1. Equal spherical covariance matrices — EUC and Parzen classification results.

When the data features were highly correlated ( o =0.9), the MECS and Toeplitz co-
variance kernels performed similarly to each other and better than the other classifiers

when the dimension of the space was lower (n =5 or 10), particularly on the test sets. In
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this high correlated situation, the classification achievement of the MECS compared not
only to the Toeplitz but also to the Van Ness kernel deteriorated when the dimensionality
increased, especially when n=40. This result suggests that not only MECS depends
more on the relative size of the dimension of space to the total training sample size, as
observed in the results of the previous chapter, but also that the specific shape and orien-
tation described by the Parzen covariance estimate do not have the same significance as

the one observed for the equal spherical parametric results.

Equal Ellipsoidal Covariance Matrices

The simulation results of the equal ellipsoidal covariance matrices defined in the previ-

ous chapter (equation (5.10)) are shown in Table 6.2.

Equal Ellipsoidal Covariance Matrices
n Classifier p=0 p=0.1 p=0.9
R H R H R H

5 EUC 45.6% 37.7% 42.4% 36.1% 39.1% 36.8%
SG 76.1% 31.5% 77.0% 30.6% 88.4% 54.9%
TOEP 74.6% 32.8% 72.1% 32.4% 83.2% 55.8%
VNESS  64.1% 33.1% 55.0% 33.1% 86.2% 49.1%
MECS 72.4% 34.5% 69.4% 33.1% 82.5% 58.2%

TOEP 100.0% 57.5% 100.0% 49.1% 98.1% 63.7%
VNESS 100.0%  60.2% 99.0% 50.6% 99.4% 62.9%
MECS 99.1% 59.5% 96.7% 47.4% 97.7% 67.6%

40 EUC 97.6% 91.3% 83.2% 74.2% 48.8% 46.2%

TOEP 100.0%  73.7% 99.9% 60.9% 98.7% 64.3%
VNESS 100.0% 76.0% 100.0% 61.2% 99.1% 64.9%
MECS  100.0% 76.8% 99.9% 58.0% 99.9% 68.5%

Table 6.2. Equal ellipsoidal covariance matrices — EUC and Parzen classification results.

As can be seen, analogously to the aforementioned non-parametric results, when the

data parameters were not correlated ( p=0) or slightly correlated ( p=0.1) the EUC
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classifier achieved the best classification performance on the test sets. However, in this
equal ellipsoidal covariance matrices case, the superiority of the MECS estimate on
highly correlated data (0 =0.9) compared to the other approaches was clear. In all di-
mensions with p=0.9, MECS led to higher testing recognition accuracies than the Van

Ness and Toeplitz covariance kernels.

Unequal Ellipsoidal Covariance Matrices

Table 6.3 presents the simulation results of the unequal ellipsoidal covariance matrices

defined in the equation (5.13) of the previous chapter.

n Classifier Unequal Ellipsoidal Covariance Matrices
p=0 p=0.1 p=0.9
R H R H R H
5 EUC 43.7% 36.7% 41.3% 34.3% 37.4% 34.2%
SG 66.7% 35.0% 66.1% 33.5% 80.2% 56.2%
TOEP 62.4% 35.9% 61.6% 35.2% 72.4% 56.6%

VNESS 70.1% 35.9% 67.8% 35.6% 84.1% 51.4%
MECS 69.8% 33.4% 71.0% 32.8% 78.7% 54.3%

10 EUC 62.5% 49.6% 55.4% 45.9% 42.0% 37.7%
SG 98.1% 41.1% 97.8% 38.0% 98.8% 61.2%
TOEP 94.1% 47.5% 91.9% 45.3% 91.0% 68.6%

TOEP 99.9% 61.1% 99.6% 56.9% 99.4% 80.0%
VNESS 100.0% 60.3% 99.5% 55.7% 99.2% 71.1%
MECS 100.0% 54.2% 100.0% 47.0% 100.0% 70.7%

40 EUC 93.6% 80.5% 79.8% 65.7% 45.6% 42.2%

TOEP 100.0% 73.8% 100.0% 67.5% 100.0% 88.0%
VNESS 100.0% 73.5% 100.0% 65.6% 99.9% 75.3%
MECS 100.0% 66.2% 100.0% 51.9% 100.0% 71.5%

Table 6.3. Unequal ellipsoidal covariance matrices — EUC and Parzen classif. results

Although MECS achieved the best classification performance on the training sets
when the data parameters were not correlated ( p=0) or slightly correlated (p=0.1)
and the dimension of the space was lower (n =5 or 10), its performance on the test sets

deteriorated compared to the Van Ness and Toeplitz approaches. However, both Van
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Ness and Toeplitz testing classification results were worse than the EUC classifier when
p =0, and similar to, or slightly better than, the EUC classifier when the intra-class cor-
relation factor was p=0.1.

In the situation where the intra-class data parameters were highly correlated ( p =0.9),
the Toeplitz performance on the training sets was worse than the Van Ness and MECS
covariance estimators when the dimension was lower, that is, when n =5 or 10. On the
test sets, however, the Toeplitz covariance kernel achieved the best classification results
in all dimensions considered.

The overall good performance of the Parzen classifier with the Toeplitz covariance
kernel is explained by the fact that in all covariance simulations we assumed the same
correlation values for all the features considered. This simulation assumption is similar
to the basic idea of the Toeplitz covariance matrix that all covariance elements along any

diagonal are multiplied by the same correlation factor.

6.3.3 Discussion

Since we have used the same synthetic classes and carried out the same n-multivariate
normal simulations, it is possible to compare the classification results of the non-
parametric Gaussian Parzen Window (PZW) classifiers described in this chapter with the
parametric Bayes Plug-in (QDF) classifiers presented in the previous chapter (section
5.3). As the Euclidean classifier achieved good classification performance in those situa-
tions where the data parameters were not correlated or slightly correlated, we restrict our
analysis to the case where the intra-class data parameter was highly correlated ( p =0.9).

Table 6.4 shows the lower classification bounds (based on the holdout method) over
different features of the Toeplitz, Van Ness, and MECS PZW classifiers, and also the
parametric RDA, LOOC, and MECS QDF classifiers on the three covariance structures
previously described: equal spherical covariance matrices, equal ellipsoidal covariance
matrices, and unequal ellipsoidal covariance matrices. As can be seen, the superiority of
the QDF classifiers compared to the PZW classifiers is clear in all but one of the n-
multivariate normal simulations considered. Moreover, in all experiments, the paramet-
ric QDF classifier using the MECS estimate performed better than its non-parametric

PZW version.
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Covariance Structure PZW QDF

Features Toeplitz VanNess  MECS RDA LOOC MECS
Equal Spherical :

5 613%  555% 61.9% | 652%  64.8% 64.4%

10 63.6% 61.5%  63.0% 70.6%  67.4% 66.7%

20 64.9%  62.7%  63.0% | 73.0%  67.2% 65.6%

40 64.7%  63.5% 61.3% | 71.8%  63.5% 62.7%
Equal Ellipsoidal

5 55.8%  49.1%  58.2% 61.7%  61.5% 60.3%

10 61.4% 58.6% 652% | 715% 71.7% 70.4%

20 63.7%  62.9%  67.6% | 762%  74.0% 71.4%

40 643% 64.9%  68.5% | 77.5%  73.3% 71.1%
Unequal Ellipsoidal

5 56.6%  51.4%  54.3% 59.9%  61.0% 58.4%

10 68.6%  622%  64.7% i 72.9%  75.4% 70.2%

20 80.0% 71.1%  70.7% 772%  82.8% 74.1%

40 88.0%  753%  71.5% | 76.1%  86.3% 72.5%

Table 6.4. Lower classification bounds of non-parametric and parametric classifiers.

It has been suggested that even when the underlying data are ideal for the QDF
classifier, that is, the sample data of each group are unimodal with a local maximum, the
non-parametric classifiers formed by unconventional covariance estimators, such as the
Van Ness approach [VNe80], could achieve superior classification accuracy in limited
samples and high dimensional problems.

The results described in Table 6.4 suggest that what has been behind these surprising
findings is an unfair comparison between a poor covariance estimate given by the
conventional maximum likelihood approach (or sample group covariance matrices) used
in the QDF classifier and a more reliable unconventional covariance estimate used in the
non-parametric PZW classifier. When the less restricted MECS covariance estimate is
used in both parametric and non-parametric classifiers, our results indicate that the
parametric classifier is the better choice. Furthermore, parametric classifiers are simpler

and faster to compute.

6.4 Image Data Analysis

For the purpose of investigating in practice the performance of MECS as a covariance

kernel for Gaussian Parzen classifiers, the following three image based classification
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applications were examined: face recognition, facial expression recognition, and finger-
print classification. These experiments were designed to evaluate the effectiveness of the
MECS approach compared with the sample group (when possible), Van Ness, and Toe-
plitz covariance estimation approaches over a comprehensive range of sample and feature

sizes.

6.4.1 Experiments

For the face and facial expression recognition experiments, we used the previously de-
scribed FERET (sub-section 5.2.2.1) and Tohoku facial expression (sub-section 4.1.3.2)
benchmark databases. In these applications the training sample sizes were chosen to be
extremely small and small respectively compared to the dimension of the feature space.
The training and test feature files extracted from the NIST Special Database 4 (sub-
section 5.4.1.1) were used in the fingerprint classification. This dataset represented an
alternative sample size setting where moderate and large training sets compared with the
number of features were considered.

As in the parametric experiments described in the previous chapter with the same data-
sets (section 5.4), PCA [TP91] was first used to reduce the dimensionality of the original
face and facial expression images (resized to 96x64 and 64x64 pixels respectively) and
then the discriminant Bayes’ rule using the non-parametric approaches described previ-
ously in this chapter was applied. Each experiment for both the face and facial expres-
sion applications was repeated 25 times using a number of PCA features. Distinct train-
ing and test sets were randomly drawn, and the mean of the recognition error rate was
calculated.

The face recognition error rate was computed by utilising for each subject 3 images to
train and 1 image to test. The training and test sets of the facial expression experiments
were respectively composed of 20 and 9 images. Analogously, in the fingerprint non-
parametric classification, we used the same 112 floating point training and test feature
vectors used in the parametric experiments presented in the previous chapter. The fin-
gerprints were classified into one of the five categories using from each class 400 prints

to train and 400 prints to test.
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The Parzen window parameter /, was assumed equal for all classes in all applications,
and its optimum value was determined using the following set of ten values: 0.001, 0.01,
0.03, 0.1, 0.3, 1, 3, 10, 100, 1000 [RJ91]. Moreover, the prior probabilities were again
supposed equal for all classes and recognition tasks, and the Van Ness smoothing pa-

rameter was « =[0.2,0.4,0.6,...,1.6,1.8], as suggested by [VNe80].

6.4.2 Results

The results of the Gaussian Parzen Window classifiers using the sample group (SG), Van
Ness, Toeplitz, and MECS covariance estimates are presented in Figures 6.1, 6.2, and
6.3.

Figure 6.1 illustrates the test average recognition error of the FERET face database.
Since only 3 face images were used to train the classifiers, the SG covariance matrices
were singular and the standard Gaussian Parzen Window classifier could not be calcu-
lated.

FERET Face Recognition Error
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Figure 6.1. FERET face database recognition error for Parzen classifiers.

As can be seen from Figure 6.1, the MECS estimator improved significantly the face

classification accuracy of the Parzen classifier compared with the other estimation ap-



The Parzen Window Classifier 107

proaches. The MECS Parzen classifier achieved the lowest classification error — 2.3% —
on 50 eigenfaces. In this application where the off-diagonal elements (co-variances) of
the covariance matrix of each class seem to be as important as the on-diagonal elements
(variances), the Toeplitz approach did better than the Van Ness estimate in all but one

experiment.
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Figure 6.2. Tohoku facial expression recognition error for Parzen classifiers.

An analogous performance of the MECS estimator is shown in Figure 6.2. It presents
the test average recognition error of the Tohoku facial expression database. Since 20
images were used to compose the training set of each facial expression, the results rela-
tive to the Gaussian Parzen Window classifier with the sample group covariance estimate
(SG) were limited. Although there is no clear dominance of any unconventional covari-
ance estimator in the lowest dimension spaces (10 and 15 features), when the dimension-
ality increased and the ratio of the training sample size to the number of features became
small, MECS performed clearly better than the Van Ness and Toeplitz estimators.

In this facial expression application where the true covariance matrices seem to de-
scribe equal-ellipsoidal shapes in the higher dimensional spaces, the restrictive forms of

the Van Ness and Toeplitz approaches undermined the potential recognition accuracy of
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the Gaussian Parzen Window classifier and they achieved approximately the same classi-
fication performance as each other.

Figure 6.3 presents the recognition error results of the NIST-4 fingerprint experiments.
As expected, because in this application the sample group covariance matrices are well
posed and estimated from 400 training patterns per class, the standard Parzen Window
Classifier (SG) in all but one experiment led to lower recognition error than did the
MECS, Van Ness and Toeplitz covariance estimators. According to the number of fea-
tures considered, MECS achieved its best recognition error result — 15.05% — when the
dimensionality of the patterns was reduced to 28 components. This result was slightly
worse than the SG best result — 15.00% of recognition error using, however, 56 pre-
processed features. On comparing the MECS classification performance with both the
Van Ness and Toeplitz estimators, MECS showed again its superiority on discriminating

well-framed image patterns.
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Figure 6.3. NIST-4 fingerprint recognition error for Parzen classifiers.

The computational time of the unconventional covariance kernels for Gaussian Parzen
Window classifiers is shown in Table 6.5. As can be seen, MECS and Toeplitz computa-
tional times are similar to each other and much less severe than the Van Ness covariance

estimation time. This result can be explained by the fact that both MECS and Toeplitz
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approaches do not require a time-consuming optimisation method to estimate their re-

spective covariance matrices.

Application Van Ness Toeplitz MECS
Features
Face
10 943.66 0.13 0.07
20 1370.39 0.27 0.22
30 2020.80 0.39 0.51
40 2893.75 0.54 1.04
50 4016.77 0.83 1.85
60 5428.72 1.19 2.88
Facial Expression
10 15.56 0.01 0.01
30 54.53 0.01 0.02
50 127.81 0.03 0.05
70 236.55 0.06 0.12
90 383.28 0.08 0.24
Fingerprint
28 12754.39 0.02 0.01
56 42181.72 0.08 0.07
84 91019.83 0.22 0.17
112 161273.64 0.68 0.40

Table 6.5. Computational time (in seconds) for the Parzen classifiers.

6.5 Summary and Conclusions

In this chapter, the non-parametric Gaussian Parzen Window classifier and its non-
conventional Van Ness and Toeplitz covariance estimation approaches for solving the
singularity and instability of the sample group covariance matrices have been reviewed
with regard to the difficulties caused by limited sample size in high dimensional prob-
lems.

Since the MECS estimate described in the previous chapter can be used in multidi-
mensional Gaussian classifiers whenever the sample group covariance matrices are ill
posed or poorly estimated, we then evaluated the MECS effectiveness as a new kernel
covariance estimator for the non-parametric Bayesian classifier. Biometric image recog-
nition applications, such as face recognition and fingerprint classification, which in-
volved small and limited training sets compared to the number of features, were used to
compare the MECS classification accuracy with the standard and non-conventional

aforementioned Gaussian Parzen Window classifiers.
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The real data results indicated that when the ratio of the training sample size to the
number of features was small and the inverse of the sample group covariance matrices
could not be calculated, MECS achieved clearly much lower recognition error rates than
did the commonly used Van Ness and Toeplitz estimators. In highly correlated and well-
framed classification problems where the estimation of the off-diagonal elements (co-
variances) of the covariance matrix of each class is as important as its on-diagonal ele-
ments (variances), the restrictive Van Ness and Toeplitz covariance approaches tend to
undermine the potential recognition accuracy of the Gaussian Parzen Window classifier.

Furthermore, as we carried out in this chapter the same synthetic #-multivariate normal
simulations previously described in the chapter 5, it was possible to compare the classifi-
cation results of the non-parametric Gaussian Parzen Window classifiers with the para-
metric Bayes Plug-in classifiers. Our synthetic results suggest that when the less
restricted MECS covariance estimate is used in both parametric and non-parametric
classifiers, the parametric approach is the best choice because it is simpler to calculate
requiring much less computer time, especially for testing the classifiers.

Finally, the singularity and instability of covariance matrices is a critical issue not only
for parametric and non-parametric Bayesian classifiers, but also other statistical
covariance-based analysis that requires the inverse of such covariance matrices. Hence,
in the next chapter, we investigate the maximum entropy covariance selection method of
combining singular and non-singular covariance matrices for the Linear (or Fisher)
Discriminant Analysis in situations where the total number of training samples is

comparable to the number of features.



Chapter 7

Fisher Discriminant Analysis

Fisher Discriminant Analysis, also called Linear Discriminant Analysis (LDA), has been
used successfully as a statistical feature extraction technique in several classification
problems.

Analogously to the Bayesian classifiers described in the preceding chapters, a critical
issue in using LDA is, however, the singularity and instability of the within-class scatter
matrix. In practice, particularly in image recognition applications such as face recogni-
tion, there are often a large number of pixels or pre-processed features available, but the
total number of training patterns is limited and commonly less than the dimension of the
feature space. This implies that the within-class scatter matrix either will be singular if
its rank is less than the number of features or might be unstable (or poorly estimated) if
the total number of training patterns is not significantly larger than the dimension of the
feature space. Hence, a considerable amount of research has also been devoted to the
design of other Fisher-based methods, for targeting limited sample and high dimensional
problems.

In this chapter a new Fisher-based method is proposed. It is based on the straightfor-
ward maximum entropy covariance selection approach that overcomes the singularity and
instability of the within-class scatter matrix when LDA is applied in limited sample and
high dimensional problems. In order to evaluate its effectiveness, experiments on face
recognition using the previously described ORL and FERET face databases were carried
out and compared with other LDA-based methods. The results indicate that our method
improves the LDA classification performance when the within-class scatter matrix is
singular as well as poorly estimated, with or without a PCA intermediate step and using

fewer linear discriminant features.
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7.1 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a well-known feature extraction technique that
has been used successfully in many statistical pattern recognition problems. It has its
origin in the late 1930’s when Fisher proposed a number of studies on separating or dis-
criminating populations [Fis36, Fis38]. For this reason, Linear Discriminant Analysis is
often called Fisher Discriminant Analysis.

The primary purpose of Linear Discriminant Analysis is to separate samples of distinct
groups by maximising their between-class separability while minimising their within-
class variability. Although LDA does not assume that the populations of the distinct
groups are normally distributed, it assumes implicitly that the true covariance matrices of
each class are equal because the same within-class scatter matrix is used for all the
classes considered [JW98].

Let the between-class scatter matrix S, be defined as

Sy =Zg:N,-(J?I- -0 -%" (7.1)

i=1

and the within-class scatter matrix S, be defined as

g g N
- —\T
SWZZ(Ni —-DS; ZZZ(xi,j —x)(x,; —X) (7.2)
i=1 i=l j=1
where, as a reminder, x; ; is the n-dimensional pattern ;j from class 7z;, N, is the num-
ber of training patterns from class 7z;, and g is the total number of classes or groups.
The vector x; and matrix S, are respectively the sample mean and sample covariance
matrix of class 7, previously defined in equations (3.5) and (3.6). The grand mean vec-

tor X is given by
1< 1<
f:— Nf:— x_,’ .
N2 NE = L2, (1.3)

where N is the total number of samples, that is, N=N, + N, +---+ N, . It is important

to note that the within-class scatter matrix §,, defined in equation (7.2) is essentially the
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pooled covariance matrix (previously defined in equation (3.12)) multiplied by the scalar

(N —g), that is

S, = Zg:(zv,. ~DS,=(N-g)S,. (7.4)
i=l

The main objective of LDA is to find a projection matrix P, that maximizes the ratio
of the determinant of the between-class scatter matrix to the determinant of the within-
class scatter matrix (Fisher’s criterion), that is

| s, P)

P, = arg;naxm .

(7.5
Devijver and Kittler [DK82] have shown that £, is in fact the solution of the following

eigensystem problem:

S,P—S,PA=0. (7.6)

Multiplying both sides by ', equation (7.6) can be rewritten as

S'S,P-S.'S PA=0
S'S,P—PA=0 7.7
(S.'S,)P=PA

where P and A are respectively the eigenvectors and eigenvalues of S_'S,. In other
words, equation (7.7) states that if S|, is a non-singular matrix then the Fisher’s criterion
described in equation (7.5) is maximised when the projection matrix B, is composed of
the eigenvectors of S'S, with at most (g —1) nonzero corresponding eigenvalues. This
is the standard LDA procedure.

The performance of the standard LDA can be seriously degraded if there are only a
limited number of total training observations N compared to the dimension of the fea-
ture space n. Since the within-class scatter matrix S|, is a function of (N — g) or fewer
linearly independent vectors, its rank is (N —g) or less. Therefore, S, is a singular
matrix if N is less than (n+ g), or, analogously, might be unstable if N is not at least

five to ten times (n+ g) [JC82].
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In the next section, recent LDA-based methods proposed for targeting limited sample
and high dimensional problems are described. A novel method of combining singular
and non-singular covariance matrices for solving the singularity and instability of the

within-class scatter matrix is proposed in section 7.3.

7.2 LDA Limited Sample Size Approaches

As discussed previously in this chapter, a critical issue for the standard LDA feature ex-
traction technique is the singularity and instability of the within-class scatter matrix.
Thus, a considerable amount of research has also been devoted to the design of other
LDA-based methods, for overcoming the limited number of samples compared to the
number of features. In the following sub-sections, recent LDA-based methods with ap-
plication to face recognition are described. Since the face recognition problem involves
small training sets, a large number of features, and a large number of groups, it has be-
come the most used application to evaluate such limited sample size approaches [SW96,

BHK97, ZCK98, CLK00, YYO0la,YYO01b, YY03, TGO3b].

7.2.1 Fisherfaces Method

The Fisherfaces [BHK97, ZCK98] method is one of the most successful feature extrac-
tion approaches for solving limited sample size problems in face recognition. It is also
called the Most Discriminant Features (MDF) method [SW96].

The Fisherfaces or MDF method is essentially a two-stage dimensionality reduction
technique. First the face images from the original vector space are projected to a lower
dimensional space using Principal Component Analysis (PCA) [TP91] and then LDA is
applied next to find the best linear discriminant features on that PCA subspace.

More specifically, the MDF projection matrix £, can be calculated as
Pryy =Py * Preg> (7.8)
where P, is the projection matrix from the original image space to the PCA subspace,

and P, is the projection matrix from the PCA subspace to the LDA subspace obtained

by maximising the ratio
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|P" PSP, P
=argmax;—— ————
P PRSP P

pca™~wt pca

Bl

a

: (7.9)

As described in the previous section, equation (7.9) analogously states that if PpTcaSprca
is a non-singular matrix then the Fisher’s criterion is maximised when the projection
matrix F,, is composed of the eigenvectors of (PpTcaSprca)_1(PpTcaSprca) with at most
(g — 1) nonzero corresponding eigenvalues.

The singularity problem of the within-class scatter matrix S, is then overcome if the
number of retained principal components varies from at least g to at most N —g PCA

features [SW96, BHK97, ZCK98].

7.2.2 Chen et al.’s Method (CLDA)

Chen et al. [CLKO0O] have proposed another LDA-based method, here called CLDA, that
overcomes the singularity problems related to the direct use of LDA in small sample size
applications, particularly in face recognition.

The main idea of their approach is to use either the discriminative information of the
null space of the within-class scatter matrix to maximise the between-class scatter matrix
whenever S, is singular, or the eigenvectors corresponding to the set of the largest ei-
genvalues of matrix (S, +S,,)”'S, whenever S is non-singular.

The CLDA algorithm for calculating the projection matrix P,,, can be summarised as

follows [CLKO00]:
1. Calculate the rank » of the within-class scatter matrix S, ;

ii. If S, is non-singular, that is » =n, then P,,, is composed of the eigenvectors cor-

responding to the largest eigenvalues of (S, + s Sy

iii. Otherwise, calculate the eigenvectors matrix V =[v,,...,v,,V,,;,...,v, ] of the singu-

lar within-class scatter matrix S,. Let O be the matrix that spans the S, null

space, thatis QO =[v,,;,V, 5,0V, ]5

iv. The projection matrix P,,, is then composed of the eigenvectors corresponding to

the largest eigenvalues of Q0" S, (Q0")".
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Although their experimental results have shown that CLDA improves the performance
of a face recognition system compared with Liu et al.’s approach [LCY93] and the stan-
dard template matching procedure [JDMOO], Chen et al.’s approach will select the same
linear discriminant features as the standard LDA when S, is non-singular [Fuk90] but

poorly estimated.

7.2.3 Yu and Yang’s Method (DLDA)

Yu and Yang [YYO01b] have developed a direct LDA algorithm (DLDA) for high dimen-
sional data with application to face recognition.

The key idea of their method is to discard the null space of S, rather than discarding
the null space of S, by diagonalising S, first and then diagonalising S,,. This diago-
nalisation process avoids the singularity problems related to the use of the pure LDA in
high dimensional data where the within-class scatter matrix S, is likely to be singular.
Also, differently from Chen et al.’s algorithm previously described, DLDA uses all the
within-class scatter matrix information, i.e. both within and outside information of S, ’s
null space [YYO01b].

The DLDA algorithm for calculating the projection matrix P,,, can be described as

follows [YYO1b]:
i. Diagonalise S, , that is calculate the eigenvector matrix ¥ such that V'S,V = A ;

ii. Let Y be the first m columns of V' corresponding to the S, largest eigenvalues,

where m < rank(S,). Calculate D, =Y"S,Y;

iii. Let Z be a whitening transformation of §, that also reduces its dimensionality

from n to m , that is calculate Z = YD,"?;

iv. Diagonalise Z'S, Z, that is compute U and D, suchthat U’ (Z"S,Z)U =D, ;
v. Calculate the projection matrix P, givenby P, =D,*U"Z".

Using computational techniques to handle large scatter matrices, Yu and Yang’s
[YYO1b] experimental results have shown that DLDA can be applied on the original
vector space of face images without any explicit intermediate dimensionality reduction

step. However, they pointed out [YYOI1Db] that by replacing the between-class scatter
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matrix S, with the total scatter matrix S, , given by S, =S, +S,,, the first two steps of

their algorithm becomes exactly the PCA dimensionality reduction technique.

7.2.4 Yang and Yang’s Method (YLDA)

More recently, Yang and Yang [YYO03] have proposed a linear feature extraction method,
here called YLDA, which is capable of deriving discriminatory information of the LDA
criterion in singular cases.

Analogous to the Fisherfaces method described previously in the subsection 7.2.1, the
YLDA is explicitly a two-stage dimensionality reduction technique. That is, PCA
[TP91] is used firstly to reduce the dimensionality of the original space and then LDA,
using a particular Fisher-based linear algorithm called Optimal Fisher Linear Discrimi-
nant (OFLD) [YYO1a], is applied next to find the best linear discriminant features on that
PCA subspace.

The OFLD algorithm [YYO01a] can be described as follows:

i. In the m-dimensional PCA transformed space, calculate the within-class and be-

tween-class scatter matrices S, and S, ;

ii. Calculate the eigenvectors matrix V =[v,,v,,...,v,, ] of S, . Suppose the first ¢

eigenvectors of S, correspond to its positive eigenvalues;

iii. Let a projection matrix be A =[v,,;,V,,3,.-,V,,]. Form the transformation matrix
Z, composed of the eigenvectors of P'S,P,. The first X, YLDA discriminant

vectors are given by Pyllda =PZ,, where generally k, =g —-1;

iv. Let a second projection matrix be P, =[v;,v,,...,v,]. Form the transformation ma-
trix Z, composed of the eigenvectors corresponding to the k, largest eigenvalues
of (P/S,P)"'(P/S,P,). The remaining k, YLDA discriminant vectors are given
by Pyzlda =P, Z,, where k, is an input parameter that can extend the final number

of LDA features beyond the (g —1) nonzero §, eigenvalues;

v. Form the projection matrix P,,, given by the concatenation of Pyllda and Pyz,da.

Yang and Yang [YYO03] have proved that the number m of principal components to

retain for a best LDA performance should be equal to the rank of the total scatter matrix
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S, , given, as a reminder, by S; =S, +,, and calculated on the original space [YY03].
However, no procedure has been shown to determine the optimal value for the parameter
k,. This parameter is context dependent and consequently can vary according to the
application studied. Moreover, although YLDA addresses the PCA+LDA problems
when the total scatter matrix S, is singular, such PCA strategy does not avoid the

within-class scatter instability when S; is non-singular but poorly estimated.

7.3 The Maximum Uncertainty LDA-based Approach

In order to avoid the singularity and instability critical issues of the within-class scatter
matrix S, when LDA is used in limited sample and high dimensional problems, we pro-
pose a new LDA-based approach based on a straightforward covariance selection method

for the S, matrix.

7.3.1 Related Methods

In the past, a number of researchers [DPi79, Cam80, PN82, Ray90] have proposed a
modification in LDA that makes the problem mathematically feasible and increases the
LDA stability when the within-class scatter matrix S, has small or zero eigenvalues.

The idea is to replace the pooled covariance matrix S, of the scatter matrix S, (equa-

tion (7.4)) with a ridge-like covariance estimate of the form

S,(k)=S, +k, (7.10)

where [/ is the n by n identity matrix and & > 0. DiPillo [DPi79] attempted to determine
analytically the optimal choice for the value £ . However, such solution has been shown
intractable in practice and several researchers have performed simulation studies to
choose the best value for £ [DPi79, PN82, Ray90].

According to Rayens [Ray90], a reasonable grid of potential simulation values for the

optimal k£ could be

A <k<A (7.11)

where the values A, and A,  are respectively the non-zero smallest and largest eigen-

n X

values of the pooled covariance matrix §,. Rayens [Ray90] has suggested that a more



Fisher Discriminant Analysis 119

productive searching process should be based on values near A, rather than A__ .
However, this reasoning is context-dependent and a time-consuming leave-one-out opti-
misation process is necessary to determine the best multiplier for the identity matrix.

As described in chapter 3, other researchers have imposed regularisation methods to
overcome the singularity and instability in sample based covariance estimation, espe-
cially to improve the Bayes Plug-in or QDF classification performance [Fri89, GRI1,
Tad98]. Most of these works have used shrinkage parameters that combine linearly a
singular or unstable covariance matrix, such as §,, to a multiple of the identity matrix.

According to these regularisation methods, the ill posed or poorly estimated S, could

be replaced with a convex combination matrix S ,(7) of the form
S,(N=0U=7)S, +(N, (7.12)

where the shrinkage parameter y takes on values 0<y <1 and could be selected to
maximise the leave-one-out classification accuracy. The identity matrix multiplier &

would be given by the average eigenvalue 4 of S , calculated as

— 2 tr(S
izlz,l ZM’

=

- (7.13)

where the notation “tr”” denotes the trace of a matrix.
The regularisation idea described in equation (7.12) would have the effect of decreas-

ing the larger eigenvalues and increasing the smaller ones, thereby counteracting the

biasing inherent in sample-based estimation of eigenvalues [Fri§89].

7.3.2 The Proposed Method

The proposed method considers the issue of stabilising the S, estimate with a multiple
of the identity matrix by selecting the largest dispersions regarding the §, average ei-
genvalue. It is based on the maximum entropy covariance selection idea described in
chapter 5 to improve quadratic classification performance on limited sample size prob-
lems [TGO03b, TGF03b, TG04].

Following equation (7.10), the eigen-decomposition of a combination of the covari-

ance matrix S, and the n by n identity matrix / can be written as [Mar87]
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S,(k) =S, +k

=Y 46,6 K348
,Z_I: 4,(¢ ;‘, v .14

=2 (4 + 0, (4))" + D ke (8)
J=1 j=r+l
where r is the rank of §,(r<n), 4, is the jth non-zero eigenvalue of S,, ¢, is the
corresponding eigenvector, and k is an identity matrix multiplier. In equation (7.14), the
following alternative representation of the identity matrix in terms of any set of or-

thonormal eigenvectors is used [Mar87]
1=Y¢,(8)". (7.15)
j=1

As can be seen from equation (7.14), a combination of S, and a multiple of the identity
matrix / as described in equation (7.10) expands all the S, eigenvalues, independently
of whether these eigenvalues are null, small, or even large.

A possible regularisation method for LDA could be the one that decreases the larger
eigenvalues and increases the smaller ones, as briefly described by equation (7.12) of the
previous sub-section. According to this idea, the eigen-decomposition of a convex com-

bination of S, and the n by n identity matrix / can be written as
S,(k)y =(-p)S,+yA

~1-NX A8 YT 6) 719
= Jj=1

where the mixing parameter » takes on values 0<y <1 and A is the average eigen-

value of S .

Despite the substantial amount of computation saved by taking advantage of matrix
updating formulas [Fri89, Ray90, Tad98], the regularisation method described in equa-
tion (7.16) would require the computation of the eigenvalues and eigenvectors of an n by
n matrix for each training observation of all the classes in order to find the best mixing
parameter ¥ . In recognition applications where several classes and a large total number
of training observations are considered, such as face recognition, this regularisation

method might be unfeasible.
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Yet, equation (7.16) describes essentially a convex combination between a singular or
poorly estimated covariance matrix, the pooled covariance matrix S, , and a non-singular
or well-estimated covariance matrix: the identity matrix /. Therefore, the same idea
described in chapter 5 of selecting the most reliable linear features when blending such
covariance matrices can be used.

Since the estimation errors of the non-dominant or small eigenvalues are much greater
than those of the dominant or large eigenvalues [Fuk90], we propose the following selec-
tion algorithm in order to expand only the smaller and consequently less reliable eigen-

values of §,, and keep most of its larger eigenvalues unchanged:
1. Find the @ eigenvectors and A eigenvalues of S, where S, = S,/IN-gl;
ii. Calculate the S, average eigenvalue A using equation (7.13);

iii. Form a new matrix of eigenvalues based on the following largest dispersion values

A = diag[max(;,1),max(4,,4),....max(4,,4)]; (7.17a)
iv. Form the modified within-class scatter matrix
S, =8, (N-g)= (@A (®) )N -g). (7.17b)

*

The new LDA (NLDA) is constructed by replacing S, with S, in Fisher’s criterion

formula described in equation (7.5). It is a straightforward method that overcomes both
the singularity and instability of the within-class scatter matrix S, when LDA is applied
directly in limited sample and high dimensional problems. NLDA also avoids the com-
putational costs inherent to the aforementioned shrinkage processes.

Figure 7.1 illustrates the geometric idea of the new LDA modification on a two-
dimensional feature space. The constant probability density contours of S, and S; for
two hypothetical “Gaussian-like” sample classes are represented respectively by the grey
and black ellipses respectively. As can be seen, the new LDA expands S, and might
increase slightly the two classes overlap. However, the same optimum linear mapping v

would be found by a Fisher’s criterion based on the within-class variability given by S,

*
or Sp.
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Figure 7.1. Geometric idea of the new LDA-based method.

Therefore, the main idea of the proposed LDA-based method can be summarised as
follows. In limited sample size and high dimensional problems where the within-class
scatter matrix is singular or poorly estimated, it is reasonable to expect that the Fisher’s
linear basis found by minimizing a more difficult “inflated” within-class S; estimate

would also minimize a less reliable “shrivelled” within-class S » estimate.

7.4 Experiments

In order to evaluate the effectiveness of the new LDA-based method (NLDA) on face
recognition, comparisons with the standard LDA (when possible), Fisherfaces, CLDA,
DLDA, and YLDA, were performed using the ORL and FERET face databases previ-
ously described in the sub-sections (4.1.3.1) and (5.2.2.1).

A simple Euclidean distance classifier was used to perform classification in the projec-
tive feature space, analogously to the other approaches we investigated. Each experiment
was repeated 25 times using several features. Distinct training and test sets were ran-
domly drawn, and the mean and standard deviation of the recognition rate were calcu-

lated. The classification of the 40 subjects in the ORL database was computed using for
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each individual 5 images to train and 5 images to test. In the FERET database with 200
subjects, the training and test sets were respectively composed of 3 and 1 images.

For implementation convenience, the ORL face images were resized to 32x32 pixels,
representing a recognition problem where the within-class scatter matrix is singular, that
is the total number of training observations was N =200 and the dimensionality of the
original images was n =1024. The FERET images were resized to 16x16 pixels in order
to pose an alternative pattern recognition problem where the within-class scatter matrix is
non-singular but poorly estimated, i.e. N =600 and n=256.

To determine the number of principal components to be retained in the intermediate
step of Fisherfaces, experimental analyses were carried out based on the best classifica-
tion accuracy of several PCA features in the corresponding interval (g, N —g). The best
results were obtained when the ORL and FERET original images were first reduced re-
spectively to 60 and 200 PCA features.

For the purpose of establishing the number of the YLDA best discriminant vectors de-
rived from the eigenspace of the within-scatter matrix, we used for the ORL database the
eigenvectors corresponding to the remaining 10 largest eigenvalues, as suggested by
Yang and Yang’s work [YY03]. For the FERET database, the eigenvectors correspond-
ing to the remaining 20 largest eigenvectors were sufficient to determine the respective
YLDA best discriminant vectors. We assumed that an eigenvalue A is positive if

round(A) > 0.

7.5 Results

Tables 7.1 and 7.2 present the maximum test average recognition rates (with standard
deviations) of the ORL and FERET databases over the corresponding number of PCA
(when applicable) and LDA features.

Since the ORL face database contains only 40 subjects to be discriminated, the LDA
features of the Fisherfaces, CLDA, DLDA, and NLDA were limited to 39 components.
Using the remaining 10 largest eigenvalues, the number of YLDA discriminant vectors
could be extended from 39 to 49 LDA features. Also, the notation “-” in the standard
LDA (LDA) row of Table 7.1 indicates that the within-class scatter matrix was singular

and consequently the standard LDA could not be calculated.
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Table 7.1 shows that the new LDA (NLDA) led to higher classification accuracies
than the other one-stage approaches. The overall best classification result was reached
by Yang and Yang’s approach (YLDA) — 96.1% (1.4%) — which was not significantly
greater than the NLDA one — 95.8% (1.6%). However, the YLDA used a much larger
two-stage linear transformation matrix compared to the one-stage methods. In terms of
how sensitive the NLDA results were to the choice of the training and test sets, it is fair
to say that the new LDA standard deviations were similar to the other methods.

Features
Method PCA LDA Recognition Rate

Fisherfaces 60 39 94.9% (1.9%)
YLDA 199 45 96.1% (1.4%)

LDA - - -
CLDA 39 95.4% (1.5%)
DLDA 39 94.9% (1.6%)
NLDA 39 95.8% (1.6%)

Table 7.1. ORL (32x32 pixels) LDA classification results.

Table 7.2 presents the results of the FERET database. In this application, the within-
class scatter was non-singular but poorly estimated and the standard LDA (LDA) could

be applied directly on the face images.
Features

Method PCA LDA Recognition Rate

Fisherfaces 200 20 91.5% (1.9%)
YLDA 256 92 94.7% (1.4%)
LDA 20 86.2% (1.9%)
CLDA 20 86.2% (1.9%)
DLDA 20 94.5% (1.3%)
NLDA 10 95.4% (1.4%)

Table 7.2. FERET (16x16 pixels) LDA classification results.
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As can be seen from Table 7.2, the overall best classification result was achieved by
NLDA — 95.4% (1.4%) — using remarkably only 10 features. Again, regarding the stan-
dard deviations, NLDA was shown to be as sensitive to the choice of the training and test

sets as the other approaches investigated.

7.6 Memory Issues

According to Samal and Iyengar [SI92], images with 32x32 pixels and at least 4 bits per
pixel are sufficient for face identification problems. However, it is possible that memory
computation problems would arise when scatter matrices larger than 1024x1024 elements
are used directly in the optimisation of the Fisher’s criterion described in equation (7.5).

In fact, the PCA intermediate step that has been applied to project images from the
original space into the face subspace has made not only some of the aforementioned
LDA-based approaches mathematically feasible in limited sample size and high-
dimensional classification problems, but also has allowed the within-class S, and be-
tween-class S, scatter matrices to be calculable on computers with a normal memory
size [LKM99].

In the experiments described in the previous sections, our attention was focused on
evaluating the new LDA-based performance in situations where the within-class scatter
matrix was either singular or poorly estimated, without a PCA intermediate step of di-
mensionality reduction. However, it would be important to assess the proposed method
in higher resolution images where the PCA intermediate step is made necessary to avoid
such memory computation difficulties.

Thus, we discuss here further experimental results that evaluate the previous top 2
NLDA and YLDA approaches when the standard resolutions of 64x64 pixels and 96x64
pixels were used respectively for the ORL and FERET face images. Analogous to the
previous experiments, the classification of the ORL 40 subjects was computed using in
total 200 examples for training (5 images per subject) and the remaining 200 examples (5
images per subject) for testing. In the FERET database with 200 subjects, the total num-
ber of training and test sets were respectively composed of 600 (3 images per subject)
and 200 (1 image per subject) images. Following Yang and Yang’s work [YY03], we

used again the eigenvectors corresponding to the remaining 10 largest eigenvalues to
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extend the number of YLDA discriminant vectors. For the FERET database, the eigen-
vectors corresponding to the remaining 25 largest eigenvalues were sufficient to deter-
mine the respective YLDA best discriminant vectors.

As described previously, the total number of principal components to retain for a best
LDA performance should be equal to the rank of the total scatter matrix S, =S, +5,
[YYO03]. When the total number of training examples N is less than the dimension of

the original feature space 7, the rank of S, can be calculated as [MN99]

rank(S;) <rank(S,) + rank(S,)
<(N-g)+(g-1D (7.18)
<N-1.

In order to avoid the high memory rank computation of such large scatter matrices and
because both NLDA and YLDA deal with the singularity of the within-class scatter ma-
trix, we used equation (7.18) to assume that the rank of S, in both applications was
N —1. Therefore, we first projected the original ORL and FERET images into the corre-
sponding 199 and 599 largest principal components and secondly we applied the NLDA
and YLDA feature classification methods.

Table 7.3 shows the maximum test average recognition rates (with standard devia-
tions) of the ORL and FERET datasets over the corresponding number of PCA and LDA

features.
Dataset Features

Method PCA LDA Recognition Rate

ORL
YLDA 199 46  96.1% (1.5%)
NLDA 199 39  95.7% (1.5%)

FERET
YLDA 599 220 95.5% (1.2%)
NLDA 599 10 97.6% (1.1%)

Table 7.3. ORL (64x64 pixels) and FERET (96x64 pixels) LDA classification results.

As can be seen, as in the previous experiments, the best classification results for the

ORL dataset was achieved by the Yang and Yang’s approach (YLDA), which was
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slightly better than the NLDA result. However, the YLDA used a larger two-stage linear
transformation matrix. In the FERET application, where the higher resolution images
improved the classification results of both YLDA and NLDA approaches, the NLDA
achieved clearly the best classification performance, using impressively only 10 LDA

features again after the PCA dimensionality reduction.

7.7 Summary and Conclusions

In this chapter, we extended the idea of the maximum entropy selection method used in
Bayesian classifiers to overcome the singularity and instability of the LDA within-class
scatter matrix in limited sample, high dimensional problems.

Analogously to the procedure described in the previous chapter 5, the new LDA-based
method is a straightforward approach that considers the issue of stabilising the ill posed
or poorly estimated within-class scatter matrix with a multiple of the identity matrix.
Although such modification has been used before, our method is based on selecting the
largest and consequently most informative dispersions. Therefore, it avoids the computa-
tional costs inherent in the commonly used optimisation processes, resulting in a simple
and efficient implementation for the maximisation of Fisher’s criterion.

Experiments were carried out to evaluate this approach on face recognition, using the
well-known ORL and FERET databases. Comparisons with similar methods, such as
Fisherfaces [BHK97, ZCK98], Chen et al.’s [CLKO00], Yu and Yang’s [YYOIlb], and
Yang and Yang’s [YYOla, YY03] LDA-based methods, were made. In both databases,
our method improved the LDA classification performance with or without a PCA inter-
mediate step and using fewer linear discriminant features. Regarding the sensitivity to
the choice of the training and test sets, the new LDA gave a similar performance to the
compared approaches.

We have shown that, in limited sample size and high dimensional problems where the
within-class scatter matrix is singular or poorly estimated, Fisher’s linear basis found by
minimising a more difficult but appropriate “inflated” within-class scatter matrix would
also minimise a less reliable “shrivelled” within-class estimate. We believe that such
LDA modification might be suitable for solving not only the singularity and instability

issues of the linear Fisher methods, but also the Fisher discriminant analysis with kernels
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[MRWO99] where the non-linear mapping of the original space to a higher dimensional

feature space would commonly lead to a ill-posed within class scatter matrix.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have studied the importance and relevance of estimating reliable and
computationally feasible covariance matrices for sparse and high dimensional statistical
pattern recognition problems.

We frequently associate a covariance matrix with simple descriptive statistics that al-
low us to calculate the ellipsoidal dispersion of some data. In other words, we know that
the covariance matrix is precisely calculated by a standard sample group covariance for-
mula and its on-diagonal elements describe the spread along the main directions of an
ellipsoidal shape, whereas its off-diagonal terms explain the orientation of this ellipsoid.
However, the use of the covariance matrix in statistical classifiers is far more complex
than its simple mathematical calculation or interpretation suggests.

As described in this thesis, the reason for that apparent contradiction is due to the fact
that in constructing Bayesian classifiers based on Gaussian kernels we need to use the
inverse of the covariance matrices. Hence, to estimate reliable covariance matrices in
high dimensional spaces we need in general a large number of observations compared to
the number of features. This assumption is quite inhibitive in practice and consequently
the intuitive and mathematically convenient Gaussian kernel, which uses the covariance
matrix given by the standard sample group covariance formula, cannot be used in such
classification problems.

In the last years, possible ways of overcoming this limited sample size issue have been

proposed. We have classified these covariance estimation approaches mainly in two
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categories. On the one hand, we have the covariance estimates based on some pre-
defined structure and calculated in a straightforward way. For instance, the Toeplitz
structure has been applied to approximate the sample group covariance matrix in Bayes-
ian classifiers, but its restrictive form has not suited many real pattern recognition appli-
cations. On the other hand, we have flexible but optimised covariance estimates based
on combining the singular sample group covariance estimate with non-singular appropri-
ate covariance estimates. For example, the RDA and LOOC procedures have been used
to maximise respectively the classification accuracy and the sample-group likelihood in
parametric classifiers. As another example, the Van Ness approach has been used to
maximise the classification accuracy as well, but in non-parametric Bayesian classifiers.
Since these flexible approaches are based on optimisation indexes that involve one or
two parameters, they are not only time-consuming but also exclusive to the type of the
Bayesian classifier to be used.

Thus, what all the approaches that are reviewed have failed to suggest is a way of es-
timating reliable covariance approximations for the sample group covariance matrix that
avoids both an over-simplification of its structure as well as an over-complication of its
computation. As a consequence, the classical statistical problem of estimating class-
conditional probability densities, which could be either specified or learned by using
Gaussian kernels, has changed to the problem of estimating covariance matrices for ei-
ther parametric or non-parametric class-conditional probability densities, but not neces-
sarily both.

This thesis demonstrates that it is possible to calculate a reliable estimate for the sam-
ple group covariance matrix that does not have a pre-defined structure and does not re-
quire an iterative computation for its parameter estimation. By using the principle of
maximum uncertainty and assuming that the covariance shapes of all the classes are not
equal but share some similarities, we have shown that the maximum entropy covariance
estimate (MECS) approach is not exclusive to the parametric nor the non-parametric
Bayesian classifiers, and can replace the sample group covariance matrix whenever it is
ill posed or poorly estimated.

In addition, we have demonstrated that this maximum uncertainty idea of combining

singular or unstable covariance matrices with well estimated covariance matrices can
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solve the singularity and instability difficulties found in other multivariate statistical
analysis, such as Linear Discriminant Analysis.

Finally, since the maximum entropy covariance estimate is based on selecting the most
reliable dispersions of a mixture of covariance matrices, we do not expect that it will lead
to the highest classification accuracy in all circumstances. Nonetheless, we believe it
will provide at least a more parsimonious method of estimating efficient covariance

structures for statistical covariance-based classifiers in limited sample size problems.

8.2 Future Work

There are some issues that have emerged from this work, which we believe are out of the
scope of this thesis but might lead to future topics of investigation.

The first two issues, described in the next sub-sections, are more practical and are re-
lated basically to (1) the standard possibility of incorporating a reject option or threshold
in the Bayesian classifiers based on the maximum entropy covariance estimate, and (2)
the feasibility of quantifying the assumption that the covariance matrix estimations share
some similarities. The third and fourth topics, presented in the last sub-sections, are
more fundamental and concern (3) the relationship between the maximum entropy co-
variance estimate approach and the statistical framework of regularisation and (4) the

variance-bias dilemma in limited sample size problems.

The Reject Threshold

In all classification experiments carried out in this work, we have assumed that only pat-
terns belonging to one of the classes still existing in the training database would be pre-
sented to the statistical classifiers. However, there are some situations in which we
should consider the possibility of having a pattern from an unknown class, that is, an
impostor in the biometric context.

For this case we need not only to assign a new pattern x to the class =, that has the
maximum value calculated by multiplying its prior probability p(rz;) with its corre-
sponding likelihood p(x|7;), but also examine the value of its posterior probability, that
is, P(z;|x). We would then be able to decide not to assign a pattern x to any of the

classes if P(r;|x) is less than a specific probability value, that is, a reject threshold.
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If we recall the well-known Bayes theorem described in chapter 2, the posterior prob-

ability of class 7, is given by

p(x|7zi)p(7ri)
> plxlz)p(x;)’ (8.1)

all j

Pz | x)=

where j=1,2,...,g groups or classes. The practical form of the optimal Bayes decision
rule defined for the case of a 0/1 or symmetrical loss function (described previously in
equation (2.18)) can then be modified as follows: Assign input pattern x to class 7z, if

not only

px|z)p(r;)= {gggip(x |z)p(r;) (8.2)

but also

P(r; | x) 21, 8.3)

where ¢ is a threshold in the range of (0,1). The larger the value of ¢, the fewer points
will be classified.

As we can see from equation (8.3), to incorporate the rejection option in the Bayesian
classifiers we need to estimate only the posterior probability of the class =, that satisfies
equation (8.2). This is actually a very easy value to compute because in order to find the
class 7z, we need to calculate and compare the product p(x|z;)p(z;) for all
j=12,...,g. The normalisation factor of the posterior probability P(r;|x) represented
by its denominator does not require the computation of new values, but simply the sum of
all those p(x|7;)p(x;) products already computed.

In general, the total classification error rate would be reduced if the cases that are as-
signed to a class on the basis of a low probability of class membership were rejected
[Jam85]. In fact, there are some situations where those low probabilities are not associ-
ated with “problematic” cases or patterns, but to the assumption of invalid forms for the
true class-conditional densities, such as the multivariate Gaussian distribution. However,
tests of multivariate normality have proved difficult to construct in limited sample size
and high dimensional problems [JW98]. Therefore, in such situations, the use of the

maximum entropy covariance estimate would be very helpful, because we can use not
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only the parametric Bayes Plug-in classifier but also the non-parametric Parzen Window
classifier with Gaussian kernels to discriminate a new pattern and validate its corre-

sponding posterior probability.

The Similarity of Covariance Matrix Estimations

Since the maximum entropy covariance estimate approach is based on the assumption
that the covariance shapes of all classes are not equal but share some similarities, it
would be interesting to investigate methods of quantifying that assumption. This would
be particularly useful in applications where the sources of variation are not similar from
group to group and consequently we could not expect a similar covariance shape for all
the classes.

According to Anderson [And84], we can use a likelihood ratio criterion for testing the
hypothesis that a covariance matrix X is similar to a given matrix X, as follows. Let
X{,X,,...,X, be a sample X of N observation vectors with n features or parameters
drawn from the multivariate normal distribution N,(,X). The ratio criterion for testing
the hypothesis H:X =%, where X, is a specified covariance matrix, is [And84, pg.
435]

ln(Nfl)

1 |-
= e 2 ‘Bz_l‘E(N—l)e—EnBZO (8.4)
N-1 0 ’

where B is the following scatter matrix
N
B=) (x; =%, -0 =(N-DS 8.5)
j=l

and x and S are respectively the mean and covariance matrix of the sample X . As

expected, we can show that x =1 if

D B (8.6)

that is,
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Thus, by using the formula described in equation (8.4), it would be possible to calcu-

late the average similarity of the covariance estimates of all the classes, as follows:

. i . %n(N, -1) 1 7”(1\1 -1 4 %(Nl-fl) *%(N,’*l)trS,’S;] (8 8)
)ZZ N, -1 (N, -1y ‘SiSf‘ ¢ ’ .

i=2 j=1

g(g

where, as a reminder, n is the dimension of the feature space, N, is the number of train-
ing patterns from class 7,, g is the total number of classes or groups, and S; and §; are
respectively non-singular covariance estimates for the samples drawn from group i and
Jj.

It is reasonable to expect that if the covariance shapes of all the classes share some
similarities, the average likelihood ratio criterion k& described in equation (8.8) would
give a result close to 1. However, further investigation must be done in order to evaluate

the effectiveness of this analysis in practice, especially in limited sample and high di-

mensional problems.

Is MECS another regularisation method ?

One of the issues that have been raised in this work is the association of the maximum
entropy covariance estimate with other regularisation methods of combining singular and
non-singular covariance estimates to solve ill-posed or poorly estimated classification
problems.

In order to answer this question, we recall the concept of the term “regularisation”,

previously described in section 3.4.1 of the chapter 3. According to Friedman [Fri89],
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the main idea of regularisation is to decrease the variance associated with the limited
sample based estimate at the expense of potentially increased bias. The attempt is to
approach the variance-bias trade-off by reducing the variability of ill-posed or poor esti-
mates while biasing them toward values that are considered to be more physically plausi-
ble [Fri89].

As we have seen in this work, the idea of the maximum entropy covariance estimate is
essentially to keep the dominant variance associated with the limited sample based esti-
mate at the expense of potentially increased bias. Our attempt is essentially to increase
the reliability of ill-posed or poor covariance estimates while biasing them toward physi-
cally plausible values. Therefore, we cannot say that MECS is another regularisation

method.

The Variance-Bias Dilemma

In classification problems, it is well known that low variance tends to be more important
than low bias. In other words, we are not supposed to be especially concerned if our
estimation is biased, as long as the corresponding variance is kept low [DHSO1]. Then
the following question necessarily arises: Is MECS approaching the variance-bias trade-
off in the wrong way ? The answer is: No, as far as limited information is concerned.

To clarify the previous statement, let us consider the following example. Figure 8.1 il-
lustrates a two-dimensional feature space containing four observations drawn randomly

from a specific small sample group or class.

X

Figure 8.1. Scatter plot of four hypothetical observations belonging to a class.

In order to reduce the variance, we would tend to consider that the dashed black circle

(with low variance) represents a better probability density contour for the sample than the
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dashed grey ellipse (with high variance) which encloses all the four observations. How-
ever there are only four observations to represent this probability density contour and
consequently we cannot be certain that the fourth observation is actually an “outlier” and
should be disregarded.

That is, by chance, we could have selected during the training stage the following four
observations instead, illustrated in Figure 8.2. The two transparent stars are the ones
shown in the previous Figure 8.1 and are displayed only for comparison. Analogously,
we would tend to consider that the dashed black circle (with low variance) represents a
better probability density contour for the new sample than the dashed grey ellipse (with
high variance) which encloses all the four observations. However, as can be seen, the

previous “problematic” fourth observation is not an “outlier” anymore.

X

Figure 8.2. Scatter plot of other four hypothetical observations belonging to the class.

Although the example given above is simple, it illustrates our inevitable uncertainty in
estimating reliable covariance structures when few examples per class are available. In
such situations, we believe that the principle of maximum uncertainty should dominate
the principle of minimum variance because in sparse conditions a high variance does not

necessarily imply a weak match.
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