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Abstract 
 
Many similarity measures used for classification involve 
the inverse of the group covariance matrices. However, 
the number of observations available in the training set 
for each group is, in many cases, significantly inferior to 
the dimension of the feature space, what implies that the 
sample covariance matrix is singular. A common solution 
to this problem is to assume the same covariance matrix 
for all groups using the pooled covariance matrix 
computed from the whole training set.  This paper 
investigates an alternative estimate for the group 
covariance matrices, called Mixed Covariance, given by a 
linear combination of the sample group and pooled 
covariance matrices.  This estimate has the same rank of 
the pooled covariance matrix without assuming equal 
covariance for all groups. Experiments were carried out to 
evaluate the performance associated with the proposed 
estimate in two automatic recognition applications: face 
and facial expression. The average recognition rates 
obtained by using the mixed covariance were higher than 
the usual sample group and pooled covariance estimates. 
 
 

1. Introduction 
 
Many similarity measures used for classification involve 
the inverse of the group covariance matrices. Since in 
practical cases these matrices are not known, estimates 
must be computed based on the patterns available in a 
training set. The usual choice for the estimate of the 
covariance matrices is the sample group covariance. 
However, the number of training examples for each group 
is, in many cases, significantly less than the dimension of 
the feature space.  This implies that the sample 
covariance matrix will be singular. 

A common solution to this problem is to assume that 
all populations have the same covariance matrix and to 
use the pooled covariance estimate computed from the 

whole training set. The resulting matrix will have the 
same rank as the data matrix of the training set. 

 This paper investigates a new estimate for the group 
covariance matrices, called mixed covariance, given by a 
linear combination of the sample group and the pooled 
covariance estimates.  It has the property of having the 
same rank as the pooled estimate, while allowing a 
different estimate for each group, what may imply in a 
better modeling of the population involved in the 
problem.  

In order to evaluate the proposed approach two pattern 
recognition applications were considered: automatic face 
recognition and automatic facial expression recognition. 
The evaluation used different image database for each 
application and two dimensionality reduction techniques 
were applied: Principal Component Analysis (PCA) and 
Linear Discriminant Analysis (LDA).  The mixed 
covariance estimate attained the best performance in the 
experiments for both applications. 

 

2. Maximum Probability Classifiers 
 
The basic problem in the decision-theoretic methods for 
pattern recognition consists of finding a set of g 
discriminant functions d1 (x), d2 (x), ..., dg (x), (g is the 
number of groups) with the property that if the n-
dimensional pattern vector x belongs to the group πi (1 ≤ i 
≤ g) then di (x) ≥ dj (x), for all i ≠ j, 1 ≤ i ≤ g. 

The Bayes classifier designed to maximize the total 
probability of correct classification, where equal prior 
probabilities for all groups are assumed, corresponds to a 
set of discriminant functions equal to the respective 
probability density functions, that is, ( ) ( )xx ii fd =  for all 

classes. 
Many proposed pattern recognition systems assume 

that the population of all groups can be properly modeled 
by a multivariate normal distribution [13]. Its density 
function can be expressed by: 
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for 1 ≤ i ≤ g, where µi and ∑i are respectively the mean 
and the covariance of group πi . Since those values are 
seldom available, estimates must be provided. This works 
focus on the usual sample estimate for the mean and on 
three estimates for the covariance, as described below. 

 
 
2.1. Sample Group Covariance Matrix 
 
The most commonly used estimate for  ∑i  is the Sample 
Group Covariance matrix defined by: 
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where xij are the training examples of group πi, ki is the 

number of them, and ix  is the corresponding sample 

mean.  By using this estimate, equation (1) takes the 
form: 
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The matrix Si will be singular if ki is less than the 
dimension of the feature space. 
 
2.2. Pooled Covariance Matrix 
 
One way to get around this problem is to assume that all 
groups have equal covariance matrices, and to use as its 
estimate the weighted average of each sample group 
covariance matrix, given by 
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  By introducing the equal covariance assumption in 
equation (1), and after some simplifications [13], the 
following set of discriminant functions can be derived: 
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 Since more observations are taken to calculate Spooled, it 
will pottentially have a higher rank than Si and will be 
eventually full rank.  Although the pooled estimate does 
provide a solution for the algebric problem arising from 
the insufficient number of training patterns in each group, 
assuming equal covariance for all groups may bring about 
distortions in the modeling of the recognition problem. 
 
2.3. Mixed Sample Covariance Matrix 
 
The Mixed Covariance Matrix is a tradeoff between Spooled 
and Si.  It is given by 
 

ipooledimix aa SSS )1( −+= , where 0 < a < 1.  (6) 
 

 Figure 1 gives the geometric interpretation of the 
proposed Mixed Sample Covariance Matrix.  The 
ellipsoids correspond to the contour of the constant 

density for three groups. The dashed gray lines represent 
the different sample group covariance estimates, while the 
pooled estimate is represented in dotted gray lines. The 
proposed mixed sample estimates assume that the 
ellipsoid corresponding to the true covariance is placed 
somewhere between both ellipsoids, as shown by the solid 
black lines. 
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Figure 1: Geometric interpretation of Si, Spooled and Smix. 
 

Each Smix i matrix has the important property of 
admitting an inverse if Spooled does. Let the dimension of 
the feature space n be such that Spooled is full rank 
(invertible) and Si is not full rank (non invertible). Thus 
Spooled and Si are respectively positive definite and positive 
semi-definite matrices.  Since 0<a<1, a and (1-a) are both 
positive numbers.  Therefore, a Spooled and (1-a)Si are still 
positive definite and positive semi-definite matrices.  For 
a matrix A positive definite and a matrix B positive semi-
definite the next inequality is valid [5] 

 

( ) ( )ABA detdet ≥+        (7) 

Hence, 
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  Since a > 0, this implies that Smix will be non singular.   
By using Smix  in the place of  the group covariance matrix, 
equation (1) takes the form: 
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3. Projection spaces in recognition 
 
One of the most successful approaches to the problem of 
creating a low dimensional image representation is based 
on Principal Component Analysis (PCA).  It was firstly 
proposed by Sirovich and Kirby [7] for representing face 
images. After the classical work of Turk and Pentland [8], 
many extensions were proposed [1,2,10,11,12,15]. Swets 
and Weng called the selected eigenfaces the Most 
Expressive Features (MEF) [3], since they give the 
minimum mean square reconstruction error and describe 
the major variations in the set of samples. 

While the goal of PCA is to minimize the 
reconstruction error, the Linear Discriminant Analysis 



  

(LDA) provides a procedure to determine a set of axes 
whose projections of different groups have the maximum 
separation. It can be shown [3,13] that the discriminants 
axes are given by the eigenvectors of BWC 1−= , where 
W is the sample within groups covariance matrix, and B 
is the sample between groups covariance matrix. 

In many applications, like these considered in this 
work, the number of patterns available in the sample (K) 
is  less than the number of features and W is singular.  As 
Swets and Weng [3] observed, this problem can be 
circumvent by first applying the PCA to the entire sample 
and then choosing  p, the number of Most Expressive 
Features, such that p+g ≤ K.  The LDA procedure is then 
applied on the sample projected on the MEF subspace, 
where the matrix W will be full rank. The resulting g-1 
axes define the basis of a new subspace, called the Most 
Discriminant Features space (MDF) [3]. 
 

4. Experiments 
 
With the evaluation purpose six distinct recognition 
systems were built.  Each system is characterized by one 
out of two basis (MEF and MDF) and one out of three 
estimates for the covariance matrices (Si, Spooled ,Smix i).  In 
all systems the maximum probability classifier was 
applied, each time using one of the three covariance 
estimates. The linear combination factor a corresponding 
to the mixed sample covariance matrix proposed assumed 
the following values: 0.1, 0.3, 0.5, 0.7 and 0.9. 
 
4.1. Database 
 

The experiments to evaluate the classification schemes 
for the face recognition problem make use of the ORL 
Face Database [4,14], containing ten images for each of 
40 individuals, a total of 400 images. 

The facial expression database was provided by the 
Tohoku University [6,9].  It is composed of 193 images of 
expressions posed by nine Japanese females.  Each person 
posed three or four examples of each six fundamental 
facial expressions: angry, disgusting, fear, happy, sad and 
surprised, as define in [9]. The database has at least 29 
images for each fundamental facial expression.  For 
implementation convenience all images were first resized 
to 64x64 pixels. 
 
4.2. Training and Testing Sets 
 
The face recognition classifiers were implemented using 
for each individual 5 images to train and 5 images to test.  
For the MEF´s computation, the PCA eigenvectors 
corresponding to the top 70 eigenvalues were kept. The 
Experiments have shown that the use of more than 70 
components brings no performance improvement. 

Since the number of MDF's is limited by the number of 
groups and there are 40 people to recognize, the MDF 
features took values in the range [1, 39].  The MDF’s 
were computed based on the first 50 MEF’s. No 

improvement was observed in the experiments by using 
more than 50 MEF’s in the computation of the MDF’s. 

For the facial expression recognition problem, 29 
images of each fundamental facial expression were used. 
The training image set included a total of 120 images, 
consisting of 20 images of each facial expression, and the 
testing set contains the remaining 54 expression images.  
Our experiments on the MEF subspace used till 65 
principal components and the computation of the MDF’s  
was based on the first 55 MEF’s. The number of MDF´s 
was limited by 5, since there are 6 fundamental facial 
expression to recognize. 

 

5. Results 
 
The main results of the experiments are summarized in 
figures 2, 3 and 4.  Figure 2 shows the average 
recognition rate for each covariance matrix estimate as a 
function of the number of MEF components.  The six 
curves represent the performance of the Spooled estimate 
against the five Smix estimates corresponding to a linear 
combination factor a equals to 0.1, 0.3, 0.5, 0.7 and 0.9.  
Since only 5 images of each individual were used to form 
the training set, the results relative to the sample group 
covariance estimate were limited to 4 MEF components 
and, therefore, does not appear on the graph of figure 2.  
It shows that the Smix produced a better performance than 
the Spooled estimate, for all number of MEF components and 
for all values of the linear combination factor a 
considered in these experiments. The best recognition rate 
for the Smix estimate was 96.88% with 40 MEF 
components and a equals to 0.7.  The performance is 
similar to the best results reported in previous works 
[4,14] which used the same database. 
 Figure 3 shows the average recognition rate for each 
covariance estimate as a function of the number of MDF 
components.  Again, because of the training size of each 
group, the sample group covariance results are not shown. 
No evident superiority of any estimate is shown in figure 
3. Depending on the value of the linear combination 
factor a and on the number of components, Smix may have 
a better or worse performance than Spooled. The best 
recognition rate – 96.52% – for all the MDF components 
considered is reached by the Smix estimate with the linear 
factor a equals to 0.7 for 39 MDF components. 

 One of the results of the facial expression 
recognition is summarized in figure 4.  In this case, seven 
curves representing the performance of the Sgroup, Spooled, and 
the five Smix estimates (for a = 0.1;0.3;0.5;0.7;0.9) are 
presented.  From figure 4 it can be observed that for more 
than 20 MEF components, in which case the Sgroup 
becomes singular, the Smix estimate reaches better 
recognition rates than the Spooled estimate for all values of a 
considered in the experiment.  The best recognition rate 
of these experiments – 85.19% – was obtained by the Smix 
estimate with a linear combination factor a equals to 0.3 
and for 65 MEF components. This performance is similar 
to the best results reported so far [6,9] for the same 
database.
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  Figure 2: Face Recognition     Figure 3: Face Recognition    Figure 4: Facial Expression Recognition 
 
There is no clear superiority of any covariance estimator 
for the facial expression recognition as a function of the 
number of MDF components.  Therefore, these results are 
not shown. 
 

6. Conclusion 
 
This work proposed a new estimate for the covariance 
matrix for object recognition applications, called mixed 
covariance matrix.  The new estimate has the same rank 
of the data matrix and is, therefore, invertible even in the 
cases where the usual sample group estimate does not 
admit an inverse due to an insufficient number of patterns 
for each group in the training set.  Behind this advantage, 
the proposed estimate does not assume equal covariance 
matrices for all groups.  This allows a better 
representation for the population of each group. 

Extensive experiments were carried out to evaluate this 
approach on two recognition tasks: face recognition and 
facial expression recognition.  A maximum probability 
classifier was built using the proposed estimate, the usual 
sample group and pooled estimates.  In both tasks the best 
recognition performance was reached by the mixed group 
covariance estimate, especially when the MEF projection 
was used. 
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