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ESTIMATION OF WITHIN-CLASS MATRIX
IN IMAGE CLASSIFICATION

[0001] The invention relates to a method of computing an
image classification measure, and to apparatus for use in such
a method.

[0002] Image processing techniques can be used to classify
an image as belonging to one of a number of different classes
(image classification) such as in automated recognition of
hand-written postcodes which consists in classifying an
image of a hand-written digit as representing the correspond-
ing number. Recently, there has been increasing interest in
applying classification techniques to medical images such as
x-ray images of the breasts or magnetic resonance images of
brain scans. The benefits of reliable automated image classi-
fication in the medical field is apparent in the potential of
using such techniques for guiding a physician to a more
reliable diagnosis.

[0003] In classification of images coming from a popula-
tion of subjects from different groups (for example, healthy
and ill) it is clear that images need to be mapped to a common
coordinate system so that corresponding locations in the
images correspond to the same anatomical features of the
subjects. For example, in the analysis of brain scans, it is a
prerequisite of any cross-subject comparison that the brain
scans from each subject be mapped to a common stereotactic
space by registering each of the images to the same template
image.

[0004] Known approaches to the statistical analysis of
brain images involve a voxel by voxel comparison between
different subjects and/or conditions resulting in a statistical
parametric map, which essentially presents the results of a
large number of statistical tests. An example of such an
approach is “Voxel-based morphometry—the methods™ by J.
Ashburner and K. J. Friston in Neuro-Image 11, pages 805 to
821, 2000.

[0005] In addition to the voxel-wise analysis discussed
above, anatomical differences may be analysed by looking at
the transformations required to register images from different
subjects to a common reference image: see for example
“Identifying Global Anatomical Differences: Deformation-
Based Morphometry” by J. Ashburner et al, Neural Brain
Mapping, pages 348 to 357, 1998.

[0006] Since it is unlikely that individual voxels will cor-
relate significantly with the differences in brain anatomy
between groups of subjects, a true multi-variate statistical
approach is required for classification, which takes account of
the relationship between the ensemble of voxels in the image
and the different groups of subjects or conditions. Given the
very large feature space associated with three-dimensional
brain images at a reasonable resolution, prior art approaches
relied on techniques such as Principle Component Analysis
(PCA) to reduce the dimensionality of the problem. However,
when the number of principle components used in the subse-
quent analysis is smaller than the rank of the covariance
matrix of the data, the resulting loss of information may not
be desirable.

[0007] The invention is set out in the claims. By applying
linear discriminant analysis to image data registered to a
common reference image using a suitably conditioned
within-class scatter matrix, the dimensionality of the feature
space that can be handled is increased. As a result, dimen-
sionality reduction by PCA may not be necessary or may only
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be necessary to a lesser degree than without conditioning.
This enables the use of more of the information contained
even in very high dimensional data sets, such as the voxels in
a brain image.

[0008] An embodiment of the invention will now be
described, by way of example only and with reference to the
drawings in which:

[0009] FIG. 1 shows an overview of a classification method
according to an embodiment of the invention; and

[0010] FIG. 2 is a block diagram illustrating the calculation
of a classification measure of the method of FIG. 1.

[0011] In overview, the embodiment provides a method of
classifying an image as belonging to one ofa group of images,
for example classifying a brain scan as coming from either a
pre-term child or a child born at full-term. With reference to
FIG. 1, the images from all groups under investigation are
registered to a common reference image at step 10, a classi-
fication measure is calculated at step 20 for each image and a
classification boundary separating the different groups of
images is calculated at step 30.

[0012] Givenasetofimages to be analysed, the first step 10
of registration comprises mapping images to a common coor-
dinate system so that the voxel-based features extracted from
the images correspond to the same anatomical locations in all
images (in the case of brain images, for example). The spatial
normalisation step is normally achieved by maximising the
similarity between each image and a reference image by
applying an affine transformation and/or a warping transfor-
mation, such as a free-form deformation. Techniques for reg-
istering images to a reference image have been disclosed in
“Nonrigid Registration Using Free-Form Deformations:
Application to Breast MR Images”, D. Rueckert et al, IEEE
Transactions on Medical Imaging, Vol. 18, No. 8, August
1999 (registration to one of the images as a reference image)
and “Consistent Groupwise Non-Rigid Registration for Atlas
Construction”, K. K. Bhatia, Joseph V. Hajnal, B. K. Puri, A.
D. Edwards, Daniel Rueckert, Proceedings of the 2004 IEEE
International Symposium on Biomedical Imaging: From
Nano to Macro, Arlington, Va., USA, 15-18 Apr. 2004. IEEE
2004, 908-911 (registering to the average image by applying
a suitable constraint to the optimisation of similarity), both of
which are incorporated herein by reference.

[0013] Once the images have been registered, that is
aligned into a common coordinate system, features can be
extracted for the purpose of classification. The feature can be
defined as vectors containing the intensity values of pixels/
voxels of each respective image and/or the corresponding
coefficients of the warping transformation. For example, con-
sidering a two-dimensional image to illustrate the procedure
of'converting images into feature vectors, an input image with
n 2-D pixels (or 3-D voxels) can be viewed geometrically as
a point in an n-dimensional image space. The coordinates at
this point represent the values of each intensity value of the
images and form a vector xT=[x1, x2, X3 . . . xn] obtained by
concatenating the rows (or columns) of the image matrix and
where xT is the transpose of the column vectors x. For
example, concatenating the rows of a 128x128 pixel image
results in a feature vector in a 16,384-dimensional space. The
feature vector may be augmented by concatenating with the
parameters of the warping transformation or, alternatively,
the feature vector may be defined with reference to the param-
eters for the warping transformation and not with reference to
the intensity values.
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[0014] Once feature vectors have been defined for the
images, a classification measure is computed at step 20, using
Linear Discriminant Analysis (LDA) as described in more
detail below.

[0015] The primary purpose of Linear Discriminant Analy-
sis is to separate samples of distinct groups by maximising
their between-class separability while minimising their
within-class variability. Although LDA does not assume that
the populations of the distinct groups are normally distrib-
uted, it assumes implicitly that the true covariance matrices of
each class are equal because the same within-class scatter
matrix is used for all the classes considered.

[0016] Letthe between-class scatter matrix S, be defined as

s M
Sp= N -0 - %)

i=1
and the within-class scatter matrix S,, be defined as

2 M (2)
Se= ) Ni=DSi=>" > (- T - %)

i i=1 j=1

Y

where x, ;is the n-dimensional pattern j from class t;, N, is the
number of training patterns from class 7, and g is the total
number of classes or groups. The vector X, and matrix S, are
respectively the unbiased sample mean and sample covari-
ance matrix of class 7,. The grand mean vector X is given by

©)

=|

1 & 1 &M
N T
=1 =1

i=1

where N is the total number of samples, that is, N=N; +N,+ .
.. +N_. It is important to note that the within-class scatter
matrix S, defined in equation (2) is essentially the standard
pooled covariance matrix multiplied by the scalar (N-g), that
is

£ @
Sw= ), Ni= DS = (N =g)S,.

[0017] The main objective of LDA is to find a projection
matrix P, that maximizes the ratio of the determinant of the
between-class scatter matrix to the determinant of the within-
class scatter matrix (Fisher’s criterion), that is

P |PTS, Pl ©)
e = M PSPl

[0018] It has been shown that P,,, is in fact the solution of
the following eigensystem problem:

S,P-S,,PA=0. (6
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[0019] Multiplying both sides by S,,~*, equation (6) can be
rewritten as

S, 1S, P-S, LS, PA=0
S, 1S, P-PA=0
(S, S,)P=PA ™

where P and A are respectively the matrices of eigenvectors
and eigenvalues of S, 'S, In other words, equation (7) states
that if S, is a non-singular matrix then the Fisher’s criterion
described in equation (5) is maximised when the projection
matrix P,,, is composed of the eigenvectors of S, 'S, with at
most (g-1) nonzero corresponding eigenvalues. This is the
standard LDA procedure.

[0020] The performance of the standard L.DA can be seri-
ously degraded if there are only a limited number of total
training observations N compared to the dimension of the
feature space n. Since the within-class scatter matrix S, is a
function of (N-g) or less linearly independent vectors, its
rank is (N-g) or less. Therefore, S, is a singular matrix if N is
less than (n+g), or, analogously, may be unstable if N is not at
least five to ten times (n+g).

[0021] Inorderto avoid both the singularity and instability
critical issues of the within-class scatter matrix S,, when LDA
isused in limited sample and high dimensional problems such
as medical imaging, an approach based on a non-iterative
covariance selection method for the S, matrix has been sug-
gested previously for a face-recognition application: Imperial
College, Department of Computing technical report 2004/1,
“A Maximum Uncertainty LDA-Based Approach for Limited
Sample Size Problems with Application to Face Recogni-
tion”, Carlos E. Thomaz, Duncan F. Gillies, http://www.doc.
ic.ae.uk/research/technicalreports/2004/.

[0022] The idea is to replace the pooled covariance matrix
S, of the scatter matrix S,, (equation (4)) with a ridge-like
covariance estimate of the form

S, (k)=S,+kI, (8)

where I is the n by n identity matrix and k=0.

[0023] The proposed method considers the issue of stabi-
lising the S, estimate with a multiple of the identity matrix by
selecting the largest dispersions regarding the S, average
eigenvalue.

[0024] Following equation (8), the eigen-decomposition of
a combination of the covariance matrix S, and the n by n
identity matrix I can be written as

5,00 =S, + ki )

=2 00" +h) 60"
=1 J=1

= kg7 + D k)T
=1

J=r+l

where r is the rank of S,(r=n), A, is the jth non-zero eigen-
value of S, ¢, is the corresponding eigenvector, and k is an
identity matrix multiplier. In equation (9), the following alter-
native representation of the identity matrix in terms of any set
of orthonormal eigenvectors is used
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[0025] As can be seen from equation (9), a combination of
S, and a multiple of the identity matrix I as described in
equation (8) expands all the S, eigenvalues, independently
whether these eigenvalues are either null, small, or even large.
[0026] Since the estimation errors of the non-dominant or
small eigenvalues are much greater than those of the domi-
nant or large eigenvalues the following selection algorithm
expanding only the smaller and consequently less reliable
eigenvalues of S, and keeping most of its larger eigenvalues
unchanged is an efficient implementation of conditioning S, :
[0027] 1) Find the ® eigenvectors and A eigenvalues of S,
where S,=S, /[N-g];

[0028] ii) Calculate the S, average eigenvalue A, using

n

-1
A=- Aj
n

r(S,)
j= T

n
J=1

where the notation “tr”” denotes the trace of a matrix.
[0029] iii) Form a new matrix of eigenvalues based on the
following largest dispersion values

A*=diag[max(h;, k), max(h,h), . . ., max(h,,A)]; (11a)
iv) Form the modified within-class scatter matrix
S, *=8,*(N-g)=(@A*®T)(N-g). (11b)

[0030] Of course, S*. can also be calculated directly by
calculating A* for the eigenvalues of S;. and using
SE=P'A™ P where @' and A' are the eigenvector and eigen-
value matrices of Sy

[0031] The conditioned LDA is then constructed by replac-
ing S,, with S, * in the Fisher’s criterion formula described in
equation (5). It is a method that overcomes both the singular-
ity and instability of the within-class scatter matrix S,, when
LDA is applied directly in limited sample and high dimen-
sional problems.

[0032] The main idea of the proposed LDA-based method
can be summarised as follows. Inlimited sample size and high
dimensional problems where the within-class scatter matrix
is singular or poorly estimated, it is reasonable to expect that
the Fisher’s linear basis found by minimizing a more difficult
“inflated” within-class S*;;, estimate would also minimize a
less reliable “shrivelled” within-class S* ;- estimate.

[0033] Since the features vectors used in image classifica-
tion in fields such as medical brain imaging may be of
extremely high dimensionality (more than 1 million voxel
intensity values and/or more than 5 millions parameters of the
warping transformation) it may be necessary to reduce the
dimensionality of the feature vector, for example by project-
ing into a subspace using Principle Component Analysis
(PCA). However, it should be noted that, where memory
limitations are not an issue, reducing the dimensionality of
the problem would not be paramount because the condition-
ing of S* ;. deals with the singularity of the within-class scat-
ter matrix. This is in contrast to other classification methods,
such as the Fischer faces method, which relies on PCA to
ensure the numerical stability of LDA.
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[0034] The total number of principal components to retain
for best LDA performance should be equal to the rank of the
total scatter matrix S;=S, +S,. When the total number of
training examples N is less than the dimension of the original
feature space n, the rank of S, can be calculated as

rank(Sy) < rank(S,,) + rank(S,) (12)

sN-g+g-1

=N-1.

[0035] Inorderto avoid the high memory rank computation
for large scatter matrices and because the conditioned S*
deals with the singularity of the within-class scatter matrix,
equation (12) allows the assumption that the rank of S; is
N-1. Since this is an upper bound on the rank of S, retaining
N-1 principal components is conservative in terms of infor-
mation retained, as well as safe, given that the conditioning of
S;-takes care of numerical stability.

[0036] The process step 20 N n-dimensional of computing
a classification measure is now described in detail with ref-
erence to FIG. 2A, Nxn data matrix 21 is formed by concat-
enation of the N n-dimensional feature vectors and the mean
feature vector 22 is subtracted to form the zero-mean data
matrix 23. If required, the zero-mean data matrix 23 is pro-
jected onto a PCA subspace defined by the m largest eigen-
vectors 24 using PCA. This results in a reduced dimension-
ality data matrix 25 of N m-dimensional feature vectors,
which are referred to as the most expressive feature vectors.
[0037] Inthe example shown in FIG. 2, there are only two
classes of images and, accordingly, LDA results in a linear
discriminant subspace of only one dimension corresponding
to the single eigenvector 26 using LDA. The most discrimi-
nant feature of each image is found by projecting the reduced
dimensionality data matrix 25 on to the eigenvector 26 to give
a classification measure 27 consisting of one value for each
image.

[0038] Inadditionto calculating the classification measure,
an image classifier requires the definition of a classification
boundary (step 30). Images lying to one side of the image
classification boundary in the linear discriminant subspace
defined by eigenvector (or eigenvectors) 26 are assigned to
one class and images lying on the other side are assigned to
the other class. Methods for defining the classification bound-
ary on the linear discriminant subspace are well-known in the
art, and the skilled person will be able to pick an appropriate
one for the task at hand. For example, an Euclidean distance
measure defined in the linear discriminant subspace as the
Euclidean distance between the means of the different classes
can be used to define a decision boundary. In the example of
only two classes, the linear subspace will be one-dimensional
and the decision boundary becomes a threshold value halfway
between the means of the linear discriminant features for each
class. Images having a linear discriminant feature above the
threshold will be assigned to the class having the higher mean
and images having a liner discriminant feature below the
threshold will be assigned the class having the lower mean.
[0039] Once the classification method has been set up as
described above it can be used to classify a new image for
which a class label is not known. This is now described with
reference to step 40 in FIG. 2. A feature vector 41 correspond-
ing to a new, unlabeled image, is analysed by subtracting a
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mean feature vector 22 to form a mean-subtracted feature
vector 42 which in turn is then projected into the PCA sub-
space to form the dimensionality reduced feature vector 43,
which is projected onto the linear discriminant subspace to
result in the linear discriminant feature 44 of the correspond-
ing image. In the example, discussed above, of only two
possible classes, this would be a single value and a new image
can be classified by comparing this value to the classification
boundary (or threshold) of method step 30.

[0040] In addition to computational efficiency, the use of a
linear classifier has the added advantage that visualising (step
50) the linear discriminant feature space is conceptually and
computationally very easy. Starting with a linear discriminant
feature 51 in the linear discriminant subspace, the feature is
multiplied by the transpose of eigenvector(s) 26 to project
onto the corresponding most expressive feature vector 52,
which is then multiplied by the transpose of the eigenvector
(s) 24 to project back into the original space to form a corre-
sponding feature vector 53. After addition ofthe mean feature
vector 22 to form the feature vector 54 representing the image
corresponding to the linear discriminant feature 51, the cor-
responding image can then be displayed by rearranging the
feature vector into an image. Thus, by visually studying the
image of a reconstituted feature vector 54 corresponding to a
linear discriminant feature 51, the visual features that dis-
criminate between the classes can be studied.

[0041] For example, the value of the linear discriminant
feature 51 can be varied continuously and the changes in the
resulting image can be observed or images at several points in
the linear discriminant feature space can be displayed simul-
taneously and compared by eye. Images at the population
mean of linear discriminant feature 51 and corresponding
multiples of the standard deviation may preferably be dis-
played simultaneously to give an idea of distribution of visual
features from one class to the other.

[0042] Although the embodiment described above refer
mostly to the analysis of brain images, the invention is appli-
cable to image classification in general, for example, in face
recognition or digit classification. In particular, the method is
applicable to any kind of medical image, such as (projective)
x-ray images, CAT scans, ultrasound imaging, magnetic reso-
nance imaging and functional magnetic resonance imaging. It
will be appreciated that the approach can be applied to clas-
sification of images in two dimensions or three dimensions or
in addition incorporating a time dimension, as appropriate.
[0043] The approach can be implemented in any appropri-
ate manner, for example in hardware, or software, as appro-
priate. In view of the potential computational burden of the
approach, the method can be distributed across multiple inter-
communicating processes which may be remote from one
another.

[0044] Having described a particular embodiment of the
present invention, it is to be appreciated that the embodiment
in question is exemplary only and that alterations and modi-
fications, such as will occur to those of appropriate knowl-
edge and skills, may be made without departure from the
scope and spirit of the invention as set forth in the appended
claims.

1. A method of computing an image classification measure
comprising:

a) automatically registering a set of images, each belonging

to one or more of a plurality of classes, to a reference

image using affine or free-form transformations, or both;
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b) calculating a within-class scatter matrix from the set of
images;

conditioning the within-class scatter matrix such that its
smallest eigenvalue is larger than or equal to the average
of its eigenvalues; and

¢) performing linear discriminant analysis using the con-
ditioned within-class scatter matrix to generate an image
classification measure.

2. A method as claimed in claim 1, wherein the within-class
scatter matrix is conditioned using a modified eigenvalue
decomposition replacing eigenvalues smaller than the aver-
age eigenvalue with the average eigenvalue.

3. A method as claimed in any one of the preceding claims,
the images being medical images.

4. A method as claimed in claim 3, the images being com-
puter-aided tomography images, magnetic resonance images,
functional magnetic resonance images, ultrasound images or
X-ray images.

5. A method as claimed in any one of the preceding claims,
the images being images of brains.

6. A method as claimed in any one of the preceding claims,
wherein calculating the within-class scatter matrix comprises
defining an image vector representative of each image in an
image vector space; and in which performing the linear dis-
criminant analysis comprises projecting the image vector into
a linear discriminant subspace.

7. A method as claimed in claim 6, the image vector being
representative of intensity values or parameters of the free-
form transformation used for registration, or both.

8. A method as claimed in claim 6 or 7, wherein the vector
is projected into a PCA subspace using PCA prior to a pro-
jection into the linear discriminate subspace.

9. A method as claimed in claim 8, wherein the dimension-
ality of the PCA subspace is smaller than or equal to the rank
of the total scatter matrix of the image vectors.

10. A method as claimed in claim 9, wherein the dimen-
sionality of the PCA subspace is equal to the rank of the total
scatter matrix.

11. A method of classifying an image comprising comput-
ing a classification measure as claimed in any of the preceding
claims and classifying the image in dependence upon the
classification measure.

12. A method of visualising between-class differences for
two or more classes of images using a method of computing
a classification measure as claimed in any of claims 6 to 10,
the method of visualising comprising selecting a point in the
linear discriminant subspace, projecting that point into the
image vector space and displaying the corresponding image.

13. A method of visualising as claimed in claim 12, the
method comprising selecting a plurality of points in the linear
discriminant subspace and simultaneously displaying the cor-
responding images.

14. A computer system arranged to implement a method of
computing a classification measure as claimed in any one of
claims 1 to 10, or a method of classifying an image as claimed
inclaim 11, or a method of visualising as claimed in claims 12
or13.

15. A computer-readable medium carrying a computer pro-
gram comprising computer code instructions for implement-
ing a method of computing a classification measure as
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claimed in any one of claims 1 to 10, or a method of classi- claimed in any one of claims 1 to 10, or a method of classi-

fying an image as claimed in claim 11, or a method of visu-

alising as claimed in claims 12 or 13. o - ) )
16. An electromagnetic signal representative of a computer alising as claimed in claims 12 or 13.

program comprising computer code instructions for imple-

menting a method of computing a classification measure as Ok

fying an image as claimed in claim 11, or a method of visu-

sk sk sk



