Extração multilinear de informações discriminantes em imagens de ressonância magnética do cérebro humano

Rafael D. Leão¹, João R. Sato², Carlos E. Thomaz¹

¹ Departamento de Engenharia Elétrica – FEI – São Bernardo do Campo – SP – Brasil
²Centro de Matemática, Computação e Cognição – UFABC – Santo André – SP – Brasil

rafaeldoroleao@gmail.com

Abstract. This paper presents a study about multilinear extraction of discriminant information using a set of magnetic resonance (MR) images of the human brain. The images set investigated is composed of 169 healthy subjects that have been analyzed using 6 distinct two-group characteristics (height, ever smoked, gender, hypertension, age and obesity). Univariate and multivariate statistical methods were used to extract discriminant information. A geometric analysis highlights the main principles and limitations of each statistical method, and the differences between the results are presented and discussed visually and quantitatively.

Resumo. Este artigo apresenta um estudo sobre extração multilinear de informações discriminantes de um conjunto de imagens RM estrutural do cérebro humano. O conjunto analisado é formado por 169 indivíduos saudáveis e são analisados através de 6 características distintas entre grupos de amostras (altura, hábito de fumar, gênero, hipertensão, idade e obesidade). Métodos estatísticos univariado e multivariado foram utilizados para a extração de informações discriminantes. Uma análise geométrica enfatiza as características principais e limitações de cada método estatístico, e são apresentadas e discutidas as diferenças entre os resultados de forma visual e quantitativa.

1. Introdução

O avanço da tecnologia na área de neuroimagem tem possibilitado a geração de imagens de ressonância magnética (RM) com resoluções cada vez maiores, permitindo extrair diferenças estruturais sutis entre características distintas de indivíduos saudáveis. Atualmente, pode-se trabalhar com imagens cujo tamanho de voxel seja igual ou inferior a $1mm^3$, gerando imagens com resolução de milhares de voxels. Contudo, já existem técnicas que permitem alcançar uma resolução com tamanho de voxel inferior a 10 nanometros [Degen et al. 2009]. Esta alta dimensionalidade dos dados torna cada vez mais difícil uma avaliação visual precisa da imagem por especialistas, a medida que a quantidade de informação aumenta para uma mesma região analisada. Assim, fica evidente a necessidade de uma análise computacional que permita destacar as diferenças entre conjuntos de imagens para auxiliar no trabalho do especialista (CAD - Computer Aid Diagnosis).

As primeiras análises computacionais de imagens RM, realizadas em meados da década de 1980, utilizavam regiões de interesse ou *Regions of Interest* (ROI), que não

permitiam identificar diferenças além das ROIs entre grupos de amostras. Assim, no final da década de 1980, as imagens eram inicialmente segmentadas para serem analisadas estatisticamente voxel-a-voxel. Como as ROIs eram delimitadas manualmente, existia na época a necessidade de se superar problemas inerentes a uma análise global, tais como: a remoção precisa de tecidos não-cerebrais das imagens, o alinhamento espacial das mesmas, o agravamento do problema de múltiplas comparações em análises massivamente univariadas, e a necessidade de se propor métodos computacionalmente eficientes de análise multivariada que permitissem investigar todos os voxels da imagem simultanemante. No início da década de 1990, o GLM (General Linear Model) foi introduzido na neuroimagem dando base ao método SPM (Statistical Parametric Mapping) [Friston et al. 1995] que realiza uma análise global, porém ainda massivamente univariada, das imagens. Este método foi intensamente utilizado em muitos trabalhos da década de 1990 e ainda é bastante utilizado nos dias de hoje. Nas pesquisas utilizando imagens globais, métodos de normalização espacial foram sendo automatizados através de transformações lineares e não-lineares, que inicialmente utilizavam imagens de referências com marcações e posteriormente sem a necessidade de marcações. Desde o início da década de 2000, com a aplicação de métodos de seleção de características e reconhecimento de padrões, a análise global das imagens de forma multivariada tem sido processada e avaliada com sucesso em problemas de extração de informação discriminante em imagens RM [Golland et al. 2005, Kawasaki et al. 2007, Thomaz et al. 2007, Sato et al. 2008, Sato et al. 2009].

Neste trabalho, apresenta-se um estudo comparativo entre extrações univariadas e multivariadas de informações discriminantes em imagens RM estruturais do cérebro humano, analisadas com base na intensidade dos voxels. Um conjunto de imagens de indivíduos saudáveis foi avaliado através de 6 características diferentes: altura, hábito de fumar, gênero, hipertensão, idade e obesidade. Como na etapa de aquisição destas imagens, os volumes cerebrais dos indivíduos acabam não ficando exatamente na mesma região espacial das imagens geradas e estes volumes podem apresentar tamanhos ou formas diferentes impossibilitando uma comparação direta entre as imagens, uma etapa de pré-processamento padrão foi utilizada para normalizar espacialmente estas imagens. Em problemas onde o número de variáveis (ou voxels) é muito grande, como neste caso, uma análise como a univariada depara-se com um problema conhecido como problema de múltiplas comparações, enquanto que uma análise como a multivariada se depara com o problema de poucas amostras. Assim, discute-se também neste trabalho uma comparação geométrica entre estes métodos com a finalidade de facilitar o entendimento das características e limitações de cada abordagem estatística. Os resultados destas análises foram comparados tanto visual como quantitativamente, destacando suas diferenças e evidenciando a importância de uma análise que destaque coerentemente as diferenças entre os grupos.

2. Análises estatísticas

Esta seção procura apresentar as diferenças entre uma análise estatística univariada, que não leva em conta o tamanho da imagem, pois faz uma análise voxel-a-voxel, e uma análise estatística multivariada, que considera a imagem como um todo, onde cada imagem representa um ponto no espaço n-dimensional, onde n é o número total de voxels da imagem.

2.1. Estatística univariada

O conceito envolvido por trás do modelo univariado baseia-se em um teste de hipóteses, onde uma probabilidade está associada a uma certa diferença encontrada ser ou não estatisticamente significante. Neste trabalho, foi utilizado o teste t como teste de hipóteses. O t-valor de cada voxel da imagem é dado pela diferença entre as médias de cada grupo, ponderado pelo desvio padrão, conforme a seguinte equação:

$$t_k = \frac{\bar{x}_{1,k} - \bar{x}_{2,k}}{\sigma_k \sqrt{\frac{1}{N_1} + \frac{1}{N_2}}},\tag{1}$$

onde $\bar{x}_{1,k}$ e $\bar{x}_{2,k}$ são respectivamente as médias do voxel k para os grupos 1 e 2, σ_k é o desvio padrão ponderado de todas as amostras para o voxel k, N_1 e N_2 são respectivamente o total de amostras do grupo 1 e do grupo 2, e t_k é o t-valor correspondente à variação de cada voxel. O desvio padrão ponderado do conjunto de amostras é definido como:

$$\sigma_k = \sqrt{\frac{(N_1 - 1)(\sigma_{1,k})^2 + (N_2 - 1)(\sigma_{2,k})^2}{N_1 + N_2 - 2}},$$
(2)

onde $\sigma_{1,k}$ e $\sigma_{2,k}$ são respectivamente os desvios padrões da variável k para os grupos 1 e 2.

Entretanto, como uma taxa de erro é admitida no teste de hipóteses, e estas probabilidades estão associadas a testes independentes, quando estas são analisadas massivamente, um problema conhecido como problema de múltiplas comparações reduz a probabilidade de uma diferença apontada como estatisticamente significante ser verdadeira, devido ao erro admitido ser ampliado por comparações sucessivas.

2.2. Estatística multivariada

O conceito envolvido por trás da análise multivariada está relacionado com a construção de um classificador que separe as amostras de dois grupos distintos no espaço *n*-dimensional.

Um dos problemas enfrentados neste tipo de análise é calcular o espalhamento dos dados quando estamos analisando amostras com milhares de variáveis. Por este motivo, para viabilizar esta análise, a técnica de PCA (*Principal Component Analysis*) [Fukunaga 1990] foi utilizada com a finalidade de reduzir a dimensionalidade das amostras sem perda de informação. A técnica de PCA realiza uma mudança de base vetorial, onde os eixos desta nova base descrevem as direções de maior espalhamento destes dados. Assim, para conjuntos de amostras onde o número de variáveis é muito maior que o número de amostras, estes dados podem ser representados, sem perda de informação, pelo número de amostras (N) menos 1 [Thomaz et al. 2007]. O cálculo da matriz de transformação para projeção das amostras para o espaço do PCA está descrito com maiores detalhes na seção 4 de Experimentos.

Para a construção do hiperplano de separação, descrito pela direção de maior espalhamento das amostras, foi utilizado o método LDA (*Linear Discriminant Analysis*). Neste método, Fisher [Fisher 1936] propõe a maximização da matriz de espalhamento inter-classes e a minimização da matriz de espalhamento intra-classes. A maximização da razão proposta por Fisher é dada por:

Figura 1. A figura ilustra geometricamente a separação dos grupos através de análises univariada e multivariada, para uma distribuição descrita por hiperesferas (imagem à esquerda) e hiperelipses (imagem à direita).

$$P_{lda} = argmax \frac{|P^T S_b P|}{|P^T S_w P|},\tag{3}$$

onde S_w é a matriz de espalhamento intra-classes e S_b a matriz de espalhamento interclasses.. No entanto, existe uma instabilidade na inversão de S_w , quando o número de amostras é inferior ao número de variáveis. Para superar este problema, foi utilizado o método MLDA (*Maximum uncertainty Linear Discriminant Analysis*) que substitui a matriz S_w por uma matriz regularizada, conforme descrito em [Thomaz et al. 2006].

2.3. Comparação geométrica

Com a finalidade de enfatizar as diferenças entre os resultados obtidos pelas análises univariada e multivariada, a Figura 1 ilustra do lado esquerdo grupos de amostras com espalhamentos descritos por hiperesferas e do lado direito descritos por hiperelipses. Por esta análise geométrica, nota-se que os resultados obtidos na extração de informações discriminantes para grupos de amostras diferentes é influenciado fundamentalmente pelo tipo de espalhamento dessas amostras. Nota-se que quando o espalhamento das amostras é descrito por uma hiperesfera as diferenças discriminantes encontradas entre os grupos é igual para as análises univariada e multivariada e não há restrição com relação a utilização de um método em comparação ao outro, com exceção do problema de múltiplas comparações inerente à análise massivamente univariada. No entanto, quando o espalhamento das amostras não descreve uma hiperesfera, somente uma análise como a multivariada consegue extrair linearmente informações que descrevem as diferenças relevantes entre os grupos. Em outras palavras, na análise univariada pode-se detectar diferenças que na verdade não são discriminantes e estão relacionadas fundamentalmente à hipótese (inválida) de ambos espalhamentos poderem ser descritos por hiperesferas.

3. Material utilizado

Foram utilizadas 169 imagens de RM do cérebro humano de indivíduos saudáveis. Estas imagens são do tipo T1 e foram corrigidas espacialmente e adquiridas previamente pelo Departamento de Computação do *Imperial College London*, sendo alinhadas para o padrão MNI (*Montreal Neurological Institute*) ICBM152 (*International Consortium for Brain Mapping*) pelo software SPM5 [Friston et al. 1995]. Estas imagens foram redimensionadas para 182x218x182.

Os indivíduos foram analisados com relação às características de altura, hábito de fumar, gênero, hipertensão, idade e obesidade. Para a análise de cada característica, os indivíduos foram classificados respectivamente como: baixos e altos, não fumantes e fumantes, homens e mulheres, não hipertensos e hipertensos, jovens e idosos, magros e obesos. Foram considerados baixos os indivíduos com tamanho inferior à 1,70m, jovens os indivíduos com menos de 46 anos e magros aqueles com IMC (Índice de Massa Corporal) [ABESO 2008] inferior à 24. Estes valores limitares foram definidos de forma a deixar os grupos com uma quantidade mais homogênea de indivíduos.

4. Experimentos

Inicialmente foi realizada uma etapa de pré-processamento com a finalidade de remover os tecidos não cerebrais das imagens e normalizar espacialmente a região cerebral. Para isso, foi utilizado o software SPM5 [Friston et al. 1995] para fazer uma segmentação das imagens em substância branca, cinza e líquido cefalorraquidiano, e posteriormente realizar uma suavização através de um filtro Gaussiano com largura de 8mm, das imagens segmentadas. Neste pré-processamento as imagens foram redimensionadas para 91x108x91. Como a finalidade deste trabalho é extrair as diferenças estruturais do cérebro, as imagens referentes ao líquido cefalorraquidiano não foram utilizadas na análise.

Na análise estatística univariada, foram calculados os t-valores de cada voxel das imagens, formando um mapa de t-valores para cada característica investigada e para cada substância cerebral. Para a identificação das regiões com maior probabilidade de diferenças estatisticamente significantes, foi calculado o t-valor de corte através do software "R" obtido em http://www.r-project.org/.

Na análise estatística multivariada, com a finalidade de reduzir ainda mais a dimensionalidade dos dados, foram removidos os fundos das imagens através de uma máscara criada para cada substância cerebral. Essa máscara foi gerada definindo um valor de limiar para a imagem da média das amostras, de modo que abrangesse toda região cerebral. Essa remoção do fundo das imagens reduziu em mais de 3 vezes a dimensionalidade das imagens. Estas imagens sem fundo foram, então, projetadas no espaço do PCA e em seguida no espaço do MLDA. Assim, no espaço do MLDA, foram calculadas as médias e desvios padrões de cada grupo investigado e estas informações puderam ser projetadas de volta para o espaço original das imagens, de forma que fosse possível calcular o mapa de t-valores e, assim, visualizar as regiões com diferenças mais significativas em uma análise multivariada. Para cada substância cerebral de cada característica, foram calculados os respectivos mapas de t-valores. A Figura 2 ilustra os processos de treinamento, classificação e reconstrução das imagens pela análise multivariada.

Para estimar a taxa de classificação dos hiperplanos calculados, foi utilizado a técnica de *cross-validation*. Nesta estimativa, o conjunto de amostras foi dividido em 10 partes, mantendo suas respectivas proporções para cada característica, e separando uma das partes para ser testada e as demais para o cálculo do hiperplano classificador.

A comparação visual e quantitativa dos resultados foi obtida determinando uma

Figura 2. Representação gráfica da análise multivariada das imagens.

quantidade fixa de voxels mais significativos para os mapas de t-valores da análise multivariada (Ex.: 1% ou 5% dos maiores t-valores em módulo) e estes resultados foram comparados com os resultados do teste t da análise univariada, utilizando, por exemplo, 1% ou 5% de nível de significância. Assim, as regiões destacadas puderam ser comparadas visualmente e o valor de limiar destas regiões comparados quantitativamente. A análise das regiões exclusivas de cada característica permitiu comparar visualmente o espalhamento das regiões identificadas por cada modelo estatístico.

5. Resultados

A característica de idade conferiu maior confiabilidade para as regiões selecionadas linearmente como mais discriminantes pelos classificadores, apresentando uma taxa de classificação superior a 85%. Observou-se para a característica de obesidade que a taxa de classificação geral superestimou a classificação para o grupo de indivíduos magros. A Figura 3 apresenta as taxas de classificação para cada uma das características analisadas e cada substância cerebral.

A Figura 4 apresenta alguns *slices* da comparação visual entre os resultados das análise univariada e multivariada, representando por cores diferentes e destacando também as regiões coincidentes. Nota-se por esta figura que a diferença conceitual dos dois métodos estatísticos reflete diferenças consideráveis em seus resultados. Por exemplo, para a característica de idade, foram encontradas evidências de diferenças significativas para a substância cinzenta nas regiões do giro parietal superior, giro temporal transversal, tálamo lateral, amígdala e hipocampo, conforme também observado pela análise massivamente univariada realizada em [Good et al. 2001].

Figura 3. Taxa de classificação dos testes de cross-validation, com média e desvio padrão, e taxa de classificação com o conjunto de teste igual ao conjunto de treinamento.

A tabela da Figura 5 apresenta os t-valores de limiar das regiões selecionadas, permitindo realizar uma comparação quantitativa dos resultados. Observa-se que a análise univariada apresenta valores próximos ou acima do t-valor correspondente ao nível de significância. Nota-se também que, para a análise multivariada, os t-valores de limiar foram sempre inferiores aos da análise univariada. Isso indica que uma análise univariada destaca uma quantidade muito maior de diferenças significantes e, conseqüentemente, a possibilidade de se destacarem falsos positivos como diferenças relevantes entre grupos é maior.

Adicionalmente, para as 6 características estudadas, outra comparação realizada se referiu à identificação das regiões exclusivas de cada característica, conforme Figura 6. Nota-se para as regiões exclusivas da análise univariada que houve maior dispersão das regiões. Para a análise multivariada, a única característica que pode ser considerada como apresentando regiões exclusivas mais evidentes é a característica de idade. Essa diferença da quantidade de regiões exclusivas para a característica de idade evidencia o fato desta característica ter apresentado uma taxa de classificação maior.

6. Conclusão

A análise multivariada, em todos os casos, apresentou valores de limiar inferiores aos obtidos pela análise univariada, indicando que para um mesmo t-valor uma quantidade menor de voxels seriam destacados como diferenças estatisticamente significantes. Por isso, deve-se tomar cuidado ao se utilizar o modelo univariado, pois como o teste de hipótese admite uma certa taxa de erro, para um conjunto de variáveis muito grande, como neste caso, a quantidade de variáveis identificadas erroneamente pode-se tornar significativa para a interpretação dos resultados. Os resultados deste trabalho corroboram as afirmações de Davatzikos [Davatzikos 2004].

Observou-se através da análise das regiões exclusivas de cada característica, que os espalhamentos das amostras investigados pela análise multivariada permitiu definir regiões menos dispersas do que para a univariada e destacar as características que apresentam regiões que podem discriminar linearmente imagens RM de grupos distintos, como no caso da idade. Portanto, acredita-se que a análise multivariada é mais adequada que

a univariada para extração de informações discriminantes em imagens RM do cérebro humano, pois analisa o cérebro como um todo e está baseada na construção de um classificador que permite julgar se os grupos de amostras a serem avaliados podem ser separados linearmente com altas taxas de acerto. Como continuação deste trabalho, pretende-se realizar uma análise baseada em modelos deformáveis, para permitir avaliar o tipo de deformação (compressão, expansão) de cada região.

Agradecimentos

Os autores deste trabalho gostariam de agradecer aos colaboradores do Departamento de Computação do *Imperial College London*, especialmente ao Professor Dr. Daniel Rueckert, pelas imagens disponibilizadas para a realização deste trabalho.

Figura 4. Regiões destacadas em cada tipo de análise, com 1% dos voxels com maiores coeficientes Studentizados em módulo selecionados.

X	Substância Cinza				Substância Branca			
Maiores voxels ativos	5% (45132 voxels)		1% (9027 voxels)		5% (45132 voxels)		1% (9027 v oxels)	
Valor-t correspondente	t ≥ 1.9743		t ≥ 2.6056		t ≥ 1.9743		t ≥ 2.6056	
	Univariada	Multiv ariada	Univariada	Multivariada	Univ ari ada	Multivariada	Univ ariada	Multivariada
Altura	1,7606	0,4477	2,8425	0,9940	1,6257	0,5465	2,5089	1,1535
Fumo	1,5116	0,3459	2,2345	0,7007	1,6254	0,4921	2,4756	1,0450
Gênero	1,9082	0,4798	3,0578	1,0558	1,7386	0,5938	2,7856	1,2430
Hipertensão	3,2304	0,4081	4,0652	0,8248	1,7881	0,5748	2,8306	1,1974
Idade	6,8520	0,7520	8,9637	1,5173	2,5169	0,7694	4,8495	1,5280
Obesidade	2,7249	0,3701	3,4782	0,7597	1,6850	0,5323	2,4472	1,1055

Figura 5. Análise quantitativa com t-valores de limiar.

Figura 6. Regiões exclusivas de cada característica investigada.

Referências

ABESO (2008). Abeso - associação brasileira para o estudo da obesidade e da síndrome metabólica. http://www.abeso.org.br/index.htm. acessado em 15/07/2008.

- Davatzikos, C. (2004). Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. *NeuroImage*, 23.
- Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T., and Rugar, D. (2009). Nanoscale magnetic resonance imaging. *Proceedings of the National Academy of Sciences of the* USA, pages 1–5.
- Fisher, R. A. (1936). The use of multiple measures in taxonomic problems. *Annals of Eugenics*, 7:179–188.
- Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C., and Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. *Human Brain Mapping*, 2:189–210.
- Fukunaga, K. (1990). *Introduction to Statistical Pattern Recognition*. Academic Press, 2 edition.
- Golland, P., Grimson, W. E. L., Shenton, M. E., and Kikinis, R. (2005). Detection and analysis of statistical differences in anatomical shape. *Medical Image Analysis*, 9(1):69–86.
- Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., and Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. *NeuroImage*, (14):21–36.
- Kawasaki, Y., Suzuki, M., Kherif, F., Takahashi, T., Zhou, S., Nakamura, K., Matsui, M., Sumiyoshi, T., Seto, H., and Kurachi, M. (2007). Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. *NeuroImage*, 34(1):235–242.
- Sato, J. R., Fujita, A., Thomaz, C. E., Morais-Martin, M. G., Mourao-Miranda, J., Brammer, M. J., and Junior, E. A. (2009). Evaluating svm and mlda in the extraction of discriminant regions for mental state prediction. *NeuroImage*, 46(1):105–114.
- Sato, J. R., Thomaz, C. E., Cardoso, E. F., Fujita, A., Morais-Martin, M. G., and Junior, E. A. (2008). Hyperplane navigation: a method to set individual scores in fmri group datasets. *NeuroImage*, 42(4):1473–1480.
- Thomaz, C. E., Boardman, J., Counsell, S., Hill, D. L. G., Hajnal, J. V., Edwards, D., Rutherford, M. A., Gillies, D. F., and Rueckert, D. (2007). A multivariate statistical analysis of the developing human brain in preterm infants. *Image and Vision Computing*, 25(6):981–994.
- Thomaz, C. E., Kitani, E. C., and Gillies, D. F. (2006). A maximum uncertainty ldabased approach for limited sample size problems - with application to face recognition. *Journal of the Brazilian Computer Society*, 12(2):7–18.