
MecaTeam Framework: An Infrastructure for the Development of
Soccer Agents for Simulated Robots

Orivaldo Vieira Santana Júnior,
Christina von Flach Garcia Chavez and Augusto Loureiro da Costa

Abstract— This paper presents the MecaTeam framework, a
solution to reduce the effort on developing new soccer teams
of robots for the 2D simulation category of the RoboCup.
MecaTeam is an object-oriented framework based on featuresof
two robot soccer teams: the MecaTeam 2006 and Uva Trilearn.
The architecture of the proposed framework is presented
and aspects of its use are discussed. Besides facilitating the
development of new teams, the use of the MecaTeam framework
may decrease the impact of changes in chunks of related
code. Finally, the MecaTeam framework can be used by new
researchers interested in simulated robots for soccer games.

I. I NTRODUCTION

In 1995, the Robot Soccer Games World Cup (RoboCup)
was proposed as a new standard problem for Artificial
Intelligence (AI), Robotics and related fields, in which
soccer games are used for developing research in various
branches such as Autonomous Agents, Multi-Agent Systems,
Knowledge Acquisition, Real-Time Reasoning and Sensors
Fusion. The most important goal of theRoboCupinitiative
is to promote technological advances to the society. In 1997,
the firstRoboCupwas held in Nagoya, Japan, and since then,
annual competitions were organized in different places [1],
[2].

The implementation of intelligent agents for simulated
robot soccer is not a trivial task. In order to track the progress
of the oldest teams in the robot world cup, new teams in the
league generally reuse code of previously successful teams.
For instance, the UvA Trilearn Team [3], the winner of
soccer competition (Simulation League) in RoboCup 2003,
is a simulated robots soccer team that provides its source
code on the Internet.

The MecaTeam Framework is an object-oriented (OO)
infrastructure that defines the intra-agent architecture of
autonomous agents for the RoboCup 2D soccer simulation
category. OO frameworks organize collaborating classes with
predefined cooperation among them and indicate extension
points to adapt their behavior. Whereas programs built on
top of reusable classes/libraries reuse only their source code,
systems built on top of a framework exploit source code and
architecture reuse. Thus, the MecaTeam framework promotes
large-grain reuse of intra-agent architecture instead of simple
reuse of code from another soccer team.

The base code for the MecaTeam framework is the source
code from MecaTeam, a robot soccer team that falls into the

The authors are with the Department of Computer Science - Math
Institute, Federal University of Bahia (UFBA). Salvador, 40170-110, BA,
Brasil {orivajr, flach}@dcc.ufba.br e augusto.loureiro@ufba.br

RoboCup simulation 2D category. MecaTeam 2006 uses a
multi-agent system in the implementation of the distributed
control for a multi-robot system, in which each robot is con-
trolled by an autonomous agent [4]. The agent’s automatic
reasoning is supported by a production rule-based system
[5]. The MecaTeam Framework is the first OO framework
developed for this application domain, with intense reuse of
the UvA Trilearn team code. The UvA Trilearn team provides
well-documented code, and therefore it has been reused in
the lower layers of the MecaTeam agent architecture. The
Expert-Coop++ [6] is responsible for supporting intelligence
and reasoning for MecaTeam 2006 agents. Expert-Coop++
is an OO library that supports the development of multi-
agent systems that work under real-time constraints [6]. This
library is implemented in C++ and includes several classes
that comprise the MecaTeam agent architecture as well as
the support for knowledge-based systems.

This paper is organized as follows. Section II presents
some important Software Engineering background. Section
III presents design decisions concerning the construction
of the MecaTeam Framework. Section IV illustrates the
applicability and relevance of framework, by instantiating
it into three different scenarios of increasing complexityand
Section V discusses some results. Finally, some conclusions
are drawn in section VI.

II. BACKGROUND

This section presents some background concepts about OO
frameworks and design patterns, and explains their usage in
the MecaTeam Framework construction.

A. Frameworks

The MecaTeam Framework consists of a collection of sev-
eral components that have a pre-defined cooperation between
them. The points where changes or adaptations can be made
are calledhot-spots, also known as refinement points or pre-
defined extension points [7]. The components that form the
fixed part are calledfrozen-spots[8] and define the invariable
aspects for the soccer teams implementation of the simulated
robots in 2D category. Fig. 1 shows thefrozen-spots(the
dark-gray area) and thehot-spots(the light-gray area) of the
MecaTeam Framework.

The MecaTeam Framework has a generic design for a
whole family of applications aimed at thesoccer server
simulator [9], which solves problems such as synchroniza-
tion between the simulator and the robots soccer team,
environment modeling. Moreover, it supports many ready

Fig. 1. The MecaTeam Framework:frozen-spots(the dark-gray area) andhot-spots(the light-gray area)

skills such as kicking, passing ball, dribble, and mark. This
generic design pre-defines a general architecture, that is,
the composition and interaction of components. New soccer
teams can be generated by providing custom-behavior at the
pre-definedhot-spotsof the MecaTeam Framework.

The MecaTeam Framework instantiation, which is the
process of implementing specific codes inhot-spots[7], can
be achieved through two basic techniques: inheritance and
composition. In instantiation by inheritance, the abstract class
Brain is specialized by new subclasses. For the framework
adaptation by composition, it is only necessary to know the
external interfaces of the components and there is no need
to know their implementation details. These components
consists of classes that implement the behaviors of a soccer
player.

The MecaTeam Framework development has become fea-
sible due to three years of experience in research with
simulated robots soccer of the student that developed this
work. The costs are significantly higher when compared to
developing a specific soccer team, so frameworks represent a
long-term investment, which produce more effect when many
teams are developed with use of this framework [7].

B. Design Patterns

In software engineering, a design pattern is a general
reusable solution to a commonly occurring problem in soft-
ware design [10]. It is a description or template for how to
solve a problem that can be used in many different situations.
Object-oriented design patterns show relationships and in-
teractions between classes or objects, without specifyingthe
final application classes or objects that are involved. An OO
framework typically uses several kinds of design patterns.

Design patterns document several kinds of information
and are organized in several parts or sections. The design
pattern name identifies key aspects useful to create a reusable
OO design. Each design pattern indicates the classes and
participants instances, their roles and collaborations, and
also the distribution of responsibility. Each design pattern
focuses on a specific problem or characteristic of the OO
design [10]. We present two design patterns used in the

MecaTeam Framework –StrategyandSingleton– that make
the MecaTeam Framework more reusable.

The intent of theStrategypattern is to define a family of
algorithms and encapsulate each of them, allowing that one
may be replaced by another [10]. The MecaTeam Framework
Strategyprovides support for the reasoning strategy extension
point. This enables the creation of several agents, each
with its own reasoning strategy, by only extending and
implementing theBrain class.

The intention ofSingletonis to ensure that a particular
class has only one instance and provide a global access
point for this instance [10]. In the MecaTeam Framework,
Singletonis applied, for example, in the class responsible for
storing the world model, because there must be exactly one
instance of this class accessible to various parts of MecaTeam
Framework.

Other concepts related to OO frameworks and design
patterns (a key to understanding this work), are presented in
more detail in the section III: The MecaTeam Framework.
This work deals with the reengineering of MecaTeam 2006,
in order to transform it into an OO framework, thus promot-
ing enhanced comprehension and reuse of the MecaTeam
Agent by other developers. TheStrategypattern is taken as
a basis for the MecaTeam Framework design, facilitating the
change of reasoning strategies.

III. T HE MECATEAM FRAMEWORK

This section presents the MecaTeam Framework, an OO
infrastructure that defines the intra-agent architecture of
soccer autonomous agents for the RoboCup 2D simulation
category. It provides the documentation indicating extension
points and procedures to assist reuse by others. First, it
describes the problems identified in MecaTeam 2006, which
motivated this work. Then, the framework is introduced in
terms of its underlying architecture and extension points.

A. Problems in MecaTeam 2006

The problems identified made it difficult to understand,
modify and reuse the MecaTeam 2006 Agent [4]. The main
difficulties were to incorporate new behaviors, to incorporate

new reasoning strategies, to evaluate the impact of a change
in MecaTeam related code chunks and to facilitate the reuse
of MecaTeam code. These difficulties are explained below.

• Difficulty to incorporate new behaviors.
The UvA code, despite of being well structured and
object-oriented, offers some difficulties in the imple-
mentation of more elaborate behaviors. To implement
a new behavior or a more complex skill on UvA
code, such as mark opponent using potential fields,
it is necessary to modify theBasicPlayerclass. This
class is a example of “large class” [11] which has 42
methods and 2903 lines. In a development as a team,
after the implementation of some methods, is more
difficult to manage the changes, since each member of
the development team needs to know this large class.

• Difficulty to incorporate new strategies of reasoning.
In UvA code, the reasoning strategy definition is codi-
fied in thePlayerclass, into the methoddeMeer5, mixed
with other functionalities. Implement a new strategy
means changing a base system class. To modify the
UvA code, the developer needs to know the entire
code, since changes can affect the agent operation or
even make it stop working. The methoddeMeer5, for
example, deals with the addition of commands in the
queue to be sent to thesoccer server. In this queue,
it can only be added at most a primary command. The
deMeer5implementation has to deal with that restriction
imposed by thesoccer server, in each cycle.

• Difficulty in evaluating the impact of a change in chunks
of related MecaTeam code.
In particular, there is difficulty in understanding how a
change in a class or method can demand a correspond-
ing change in others chunks of MecaTeam code. This
can be noticed in the very strong relationship between
BasicPlayerand Player. The Player class inherits all
the skills of BasicPlayerand combines these skills to
get the desired behavior. However, this combination
is mixed with the implementation of the reasoning
strategy.

• Need to facilitate the reuse of MecaTeam.
The MecaTeam 2006 is not structured as a frame-
work for reuse. Thus, there is no indication of the
places where developers should modify it or define new
functionality, and many classes are arbitrarily exposed,
without guidance on what can be reused asblack-box,
white-box, etc. For new developers in the MecaTeam
research group, it is very important that the code is
well organized and documented, because in addition to
the inherent software complexity, the code is developed
by students with variable permanence in the project.
The OO framework promotes reuse in a larger scale,
because it defines a semi-complete application, which
only needs classes defined by the user, at pre-specified
spots, in order to create a complete application.

B. The Framework Architecture

The architecture of the MecaTeam Framework, illustrated
in Fig. 2, is based on the architecture of the UvA Trilearn
[12]. The modules of the MecaTeam Framework can be
divided into three types: core, incomplete and complete. The
core modules are immutable and will be the same in all
applications created by instantiating the MecaTeam Frame-
work. The incomplete modules, which need to be defined
by the framework user, correspond towhite-boxfeatures in
the MecaTeam Framework. The complete modules, ready
for use, characterize the MecaTeam Frameworkblack-box
features. The following sections describe how these modules
were built.

Fig. 2. The MecaTeam Framework Architecture

1) The Core Modules:The core modules are frozen-
spotsand constitute the invariable part of a soccer agent of
simulated robots. They were extracted from the base of the
UvA Trilearn Team. The functions of these modules are: to
interact with the simulator and generate a representation of
the environment. For this, they need be synchronized with the
simulator, receiving and sending messages at the appropriate
time.

The perception module is responsible for receiving the
perceptions of the environment (coming from simulator in
string messages), analyzing them and sending the results of
this analysis for theenvironment representation module.
The actuators control module is responsible for triggering
the robot actuators, sending commands in string messages to
the simulator. The classes of the environment representation
module contain the most updated information of all objects
in robots soccer field. Their operation is similar to human
memory, which stores information about feelings (heard,
seen, etc.).

The class that relates all these core modules of the
framework is calledAgent. It was created from the code
contained in themain function of the original UvA Trilearn
code. Theexecutemethod has a parameter of theBrain type
class. This allows any reasoning strategy implemented by the
user, from the specialization ofBrain, to be incorporated to
agents.

2) Incomplete Modules:The incomplete modules have the
variation points (hot-spots) of the MecaTeam Framework.

Brain
+ think() : Bahavior

OtherBrain
+ think() : Bahavior

Player
� ptr_brain : Brain
+ mainLoop()

SimpleBrain
+ think() : Bahavior

InferenceBrain
+ think() : Bahavior

+ptr_brain

Fig. 3. Strategy Pattern used in the MecaTeam Framework

The framework has two variation points: one to implement
reasoning strategies and other to implement behaviors.

The reasoning modulehas a semi-ready structure for a
robot soccer agent, with which the user needs only to spend
effort with the implementation of the reasoning strategy. The
separation between reasoning strategy and the application
core was implemented using polymorphism, more specifi-
cally theStrategydesign pattern.

The Strategyimplemented in MecaTeam Framework has
basically three elements:Player, Brain and ConcreteBrain.
The Player defines the agent operation algorithm, the way
he feels, thinks and acts. A variation of this algorithm is in
the way of thinking and acting; who defines how the agent
thinks and acts is theConcreteBrain. Through the reasoning
strategy, theConcreteBrainchooses the most appropriate
behavior for a particular state of the environment. Thus, the
methodthink of ConcreteBrainmust return a behavior. Fig.
3 depicts this modeling, andInferenceBrain, SimpleBrain
and OtherBrainare concrete classes (ConcreteBrain) that
specialize theBrain class.

Fig. 4. UvA Trilearn Player class and a code chunk of mainLoopmethod.

The Player class (Fig. 4) was changed in themainLoop
anddeMeer5methods to improve its structure. The method
which contained the reasoning strategy,deMeer5, was re-
placed by a call to thethink method of theBrain abstract
class, featuring thehot-spotof the reasoning module. The
mainLoopmethod of thePlayer class contains a loop that
runs until the end of the connection with the simulator. It
handles the basic algorithm of the agent (feel, think and act).

The behavior module consists of theBehaviorclass and
all subclasses generated from it. TheBehavior class is an
adaptation ofBasicPlayer, which contains all the skills of

UvA Trilearn. In this class, two virtual methods were added
– one to return the primary command and another to return a
concurrent command. With these virtual methods, thePlayer
class can receive any behavior from theBrain class. Thus,
thePlayer class, at each cycle, performs the virtual methods
of Behavior that return one primary and other concurrent
command.

3) Completes Modules:The complete modules are those
that have been generated from an incomplete module (sec-
tion III-B.2). The frameworkreasoning modulesare: Sim-
pleBrain, GoalieBrainand InferenceBrain. The behavior
modules are: KickToGoal, HoldBall, InterceptBall, GoS-
trategicPosition, MarkOpponent, PassBall, SearchBall and
Teleport. These modules reinforce theblack-boxfeatures of
the MecaTeam Framework.

The SimpleBrainis a brain for a simple player, extracted
from thedeMeer5method of thePlayerclass, which contains
the implementation of the UvA Trilearn reasoning strategy.
In deMeer5, the environment state identification and the
behavior implementation are coded in the same scope. In
this way, it is hard to distinguish what is a behavior from
what is the environment state identification.

With SimpleBraincreation, the implementation of behav-
iors has been separated into different classes. Thus, thethink
method ofSimpleBraincontains only the environment state
identification and the association of this state to a behavior.
In each state identified bySimpleBrain, currentBehavior
is associated to a behavior and sent to thePlayer class.
These behaviors (Fig. 5) are:KickToGoal, InterceptBall,
GoStrategicPosition, SearchBall and Teleport. They were
generated from the restructuring of thedeMeer5method.

With the use ofBehaviorclass, the skills of UvA Trilearn
will always be encapsulated within behaviors. This facilitates
the understanding, maintenance and evolution of the code,
and the implementation of various behaviors with different
techniques of artificial intelligence.

IV. U SING THE FRAMEWORK

To illustrate the applicability and relevance of the frame-
work, we present three different scenarios in which it can be
instantiated, with increasing levels of complexity.

The simplest way to reuse the framework is using the
existing components. Thus, about five lines of code will
be needed to implement an agent. Also, there are various
behaviors already implemented that can be reused by the
user reasoning module so that users can implement their own
reasoning module, or use the available one.

An interesting framework feature is the independence
of how each extra module can be implemented. The user
can implement a new behavior module using a particular
Artificial Intelligence technique and implement the module
using another completely different reasoning technique. For
example, the user can implement a behavior using Neural
Networks and the reasoning strategy using Knowledge Based
Systems.

A. First scenario:Black-box Reuse

The simplest way to use the framework is the reuse of
a complete module (black-box reuse), generated from the
Brain class:SimpleBrain, GoalieBrainor InferenceBrain. To
create a goalkeeper, for example, the user must implement
a file with the functionmain and include the filesAgent.h
andGoalieBrain.h. Then, he should create objects from the
Agent class and theGoalieBrain class (responsible for the
goalkeeper reasoning strategy). Theexecutemethod of the
Agentclass receives as a parameter theGoalieBraininstance.

B. Second scenario: Implementing a New Brain

Suppose that the user wants to implement an agent con-
trolled by fuzzy logic. To that end, the user needs to follow
two steps to use the strategy reasoninghot-spotdefined by
the framework.

The first step is to prepare the file header containing
the specifications of theFuzzyBrain class, following the
instructions below:

• Include theBrain header file;
• Declare theFuzzyBrainconcrete class that specializes

Brain;
• Declare the attributes to the fuzzy reasoning;
• Declare thethink method;
• Declare the constructor.
The second step is to generate a file with the implementa-

tion of the desired class, in this caseFuzzyBrain, according
to the following rules:

• The FuzzyBrain constructor should initialize its at-
tributes and call the super class constructor, because
this class contains the world model and behavior ini-
tializations;

• The implementation of the reasoning strategy withfuzzy
logic in the think method should return a behavior;

• The world model must be referenced through theWM
pointer, an attribute that is inherited from theBrain
class.

C. Third scenario: Implementing a New Behavior

Suppose that the user wants to implement a opponent
marking behavior using potential fields. For this, the user
must follow two steps to use the behaviorhot-spot.

The first step is to prepare the header file containing the
class specifications, calledPotentialFieldsMark. At this step,
the user must follow the instructions below:

• Include the fileBehavior.h;
• Declare thePotentialFieldsMarkconcrete class asBe-

havior specialization;

• Declare theprimaryActionandconcurrenteActionmeth-
ods.

The implementation file for thePotentialFieldsMarkclass
must contain at least two methods:primaryActionandcon-
currentAction. TheprimaryActionmethod uses the necessary
skills for marking behavior that returns a primary command,
whereas theconcurrentActionmethod uses the necessary
skills for marking behavior that returns a concurrent com-
mand. These two methods together form the behavior of
marking on potential fields.

V. RESULTS

In order to provide a preliminary evaluation of the results
from instantiating the MecaTeam Framework, ten matches
were processed with the three best teams of the Brazilian
Robotics Competition in 2007 against MecaTeam. The new
MecaTeam version, implemented with the MecaTeam Frame-
work, played against his older version, developed without
the framework support (called MecaTeam 2007); these two
MecaTeam versions (the new and the older) also played
against other teams. Thus, 40 matches were measured for
each of the two versions. The MecaTeam Framework got
24 wins, 9 draws and 7 defeats and MecaTeam 2007 got 2
wins, 33 defeats and 5 draws. This shows that it is feasible
implement new teams with the framework and obtain good
results.

Comparing MecaTeam 2007 with applications developed
with the MecaTeam Framework, we have the following
results in favor of the MecaTeam Framework instantiations:8
wins, 1 draw, 1 defeat, 62 goals made and 16 suffered. These
good results come not only to the use of the framework,
but also to an improvement in the MecaTeam Framework
reasoning strategy and behaviors. Whereas the MecaTeam
2007 uses a simple reasoning strategy, with only a reasoning
layer, the MecaTeam Framework uses one more reason-
ing layer than the MecaTeam 2007, allowing the use of
plans. Besides a more sophisticated reasoning strategy, the
MecaTeam Framework defines more behaviors and improve
others.

With the framework, the developer will deal with a smaller
amount of code, that is, a smaller number of classes and lines
of code. This becomes more evident when we compare the
size of MecaTeam 2007 and the MecaTeam Framework. The
MecaTeam 2007 has about 57 classes and 19202 exposed
lines of code, and the framework has about 68 classes and
18642 lines of code isolated. One MecaTeam Framework
instantiation has 6 classes and 852 lines of code. Thus,
the developer needs only to know some class interfaces
of the framework without worrying about their internal
implementation.

VI. CONCLUSIONS

This paper presented the MecaTeam Framework, an OO
infrastructure that defines the intra-agent architecture of
autonomous agents of simulated robots for soccer league
in the RoboCup simulation 2D category. The MecaTeam
Framework is concerned with solving some problems of the

GoStrategicPosition
+ primaryAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand

GoalieBehavior
� formations : Formations*
+ primaryAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand
+ setFormations(_fs : Formations*)

InterceptBall
+ primaryAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand

KickToGoal
� posGoal : VecPosition
+ KickToGoal()
+ primaryAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand

SearchBall
+ primaryAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand

Teleport
+ primaryAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand

Behavior
primarySoc : SoccerCommand
cuncurrentSoc : SoccerCommand
WM : WorldModel*
SS : ServerSettings*
PS : PlayerSettings*
+ primaryAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand
+ ...()

Fig. 5. Refining the behaviors of the MecaTeam Framework.

MecaTeam 2006 agent, such as: the need to facilitate the
reuse of MecaTeam; difficulty in incorporating new reason-
ing strategies, difficulty in incorporating new behaviors and
difficulty to assess the impact of a change in the related
chunks of MecaTeam code.

A. Contributions

The modularity offered by the MecaTeam Framework
decreases the impact of changes in related codes chunks. The
framework extension points facilitate the reuse, separating
the framework core from the reasoning strategies and be-
havior implementations. The framework provides a common
base to all robot soccer agents. The framework also provides
a documentation indicating extension points and procedures
to help reuse.

The MecaTeam Framework can be reused by new re-
searchers in the area of soccer simulated robots. The frame-
work improves the quality of agents produced, because its
core is composed of the UvA base team, champion in 2003
and which went through various tests and validations. With
the reuse promoted by the MecaTeam Framework, the new
teams will have their players ready faster and with decreased
costs.

REFERENCES

[1] H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Osawa,
H. Matsubara, I. Noda, and M. Asada, “The robocup synthetic agent
challenge, 97,”International Joint Conference on Artificial Intelligence
(IJCAI97), 1997, nagoya, Japan.

[2] H. Kitano, “Robocup: The robot world cup initiative,”in Proc. of
The First International Conference on Autonomous Agent (Agents-
97)), 1997, marina del Ray, The ACM Press.

[3] R. d. Boer and J. R. Kok, “The incremental development of asynthetic
multi-agent system: The uva trilearn 2001 robotic soccer simulation
team,” Master’s thesis, University of Amsterdam, The Netherlands,
2002.

[4] O. V. de Santana Júnior, J. P. R. P. Sousa, M. S. Linder, and A. L.
Costa, “Mecateam: Um sistema multiagente para o futebol de robôs
simulado baseado no agente autônomo concorrente,”Encontro de
Robótica Inteligente / XXVI Congresso da Sociedade Brasileira de
Computação, pp. 146–152, 2006.

[5] O. V. de Santana Júnior and A. L. Costa, “Mecateam 2006: Um
sistema multiagente reativo para futebol de robôs simulados,” VII
Escola Regional de Computação Bahia-Alagoas-Sergipe, p. midia
digital, 2007.

[6] A. L. Costa, G. Bittencourt, E. M. N. Gonçalves, and L. R.Silva,
“Expert-coop++: Ambiente para desenvolvimento de sistemas multi-
agente,” IV ENIA Encontro Nacional de Inteligência Artificial, pp.
597–606, Brasil, Campinas, 2 a 8 de agosto 2003, xXIII Congresso
da Sociedade Brasileira de Computação.

[7] W. Pree,Framework Patterns. 71 West 23rd Street, New York: SIGS
Books & Multimedia, 1996.

[8] I. M. Filho, “A documentação e a instanciação de frameworks orien-
tados a objetos,” Ph.D. dissertation, Pontifı́cia Universidade Católica
do Rio de Janeiro, Rio de Janeiro, abril 2002.

[9] M. Chen, E. Foroughi, and F. H. at al., “Soccerserver
manual,” RoboCup Federation, Tech. Rep., 2002,
http://sserver.sourceforge.net/docs/manual.ps.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison Wesley, 1998.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 2000.

[12] J. R. Kok, N. Vlassis, and F. Groen, “Team description uva trilearn
2003.” in RoboCup 2003 Symposium, March 2003.

