MecaTeam Framework: An Infrastructure for the Development of
Soccer Agents for Simulated Robots

Orivaldo Vieira Santana Junior,
Christina von Flach Garcia Chavez and Augusto Loureiro dst&o

Abstract— This paper presents the MecaTeam framework, a RoboCup simulation 2D category. MecaTeam 2006 uses a
solution to reduce the effort on developing new soccer teams multi-agent system in the implementation of the distridute
of robots for the 2D simulation category of the RoboCup. 4nirol for a multi-robot system, in which each robot is con-

MecaTeam is an object-oriented framework based on featuresf trolled b t t 141, Th t t ti
two robot soccer teams: the MecaTeam 2006 and Uva Trilearn. 0!/€0 Dy an autonomous agen [4]. The agent's automatic

The architecture of the proposed framework is presented reasoning is supported by a production rule-based system
and aspects of its use are discussed. Besides facilitatinget [5]. The MecaTeam Framework is the first OO framework

development of new teams, the use of the MecaTeam framework developed for this application domain, with intense reuse o

may decrease the impact of changes in chunks of related o yyA Trilearn team code. The UvA Trilearn team provides
code. Finally, the MecaTeam framework can be used by new . .
researchers interested in simulated robots for soccer garse well-documented code, and therefore it has be_en reused in
the lower layers of the MecaTeam agent architecture. The

|. INTRODUCTION Expert-Coop++ [6] is responsible for supporting intellige

and reasoning for MecaTeam 2006 agents. Expert-Coop++

In 1995, the Robot Soccer Games World CRPOCUD) s an 0O library that supports the development of multi-

was proposed as a new standard problem for Artificialyent systems that work under real-time constraints [6F Th
Intelligence (Al), Robotics and related fields, in whichjyrary is implemented in C++ and includes several classes

soccer games are used for developing research in variogs comprise the MecaTeam agent architecture as well as
branches such as Autonomous Agents, Multi-Agent Systemg,o support for knowledge-based systems.

Kno_vvledge Acquis!tion, Real-Time Reasoning and Sensors This paper is organized as follows. Section Il presents
Fusion. The most important goal of tioboCupinitiative g5 me important Software Engineering background. Section
is to promote technologlcgl advances to the society. In 199y, presents design decisions concerning the construction
the firstRoboCupwas held in Nagoya, Japan, and since thény e pecaTeam Framework. Section IV illustrates the

annual competitions were organized in different places [1},jicapility and relevance of framework, by instantigtin
[2]- it into three different scenarios of increasing complexityd

The implementation of intelligent agents for simulatedsgction v discusses some results. Finally, some conclssion
robot soccer is not a trivial task. In order to track the pesgr 5re drawn in section VI.

of the oldest teams in the robot world cup, new teams in the
league generally reuse code of previously successful teams Il. BACKGROUND

For instance, the UvA Trilearn Team [3], the winner of Tps section presents some background concepts about OO

soccer competition (Simulation League) in RoboCup 20033meworks and design patterns, and explains their usage in
is a simulated robots soccer team that provides its SOUrg&, MecaTeam Framework construction.

code on the Internet.
The MecaTeam Framework is an object-oriented (OO). Frameworks

infrastructure that defines the intra-agent architectufe 0 The MecaTeam Framework consists of a collection of sev-
autonomous agents for the RoboCup 2D soccer simulatifya| components that have a pre-defined cooperation between
category. OO frameworks organize collaborating classés Withem. The points where changes or adaptations can be made
predefined cooperation among them and indicate extensigf, callechot-spots also known as refinement points or pre-
points to adapt their behavior. Whereas programs built ffefined extension points [7]. The components that form the
top of reusable classes/libraries reuse only their soude,c fixed part are calleffozen-spot$8] and define the invariable
systems built on top of a framework exploit source code angspects for the soccer teams implementation of the sintllate
architecture reuse. Thus, the MecaTeam framework promotgshots in 2D category. Fig. 1 shows thi@zen-spots(the

large-grain reuse of intra-agent architecture insteadhople gark-gray area) and tHeot-spots(the light-gray area) of the
reuse of code from another soccer team. MecaTeam Framework.

The base code for the MecaTeam framework is the sourceThe MecaTeam Framework has a generic design for a

code from MecaTeam, a robot soccer team that falls into thgnole family of applications aimed at thsoccer server

, _ simulator [9], which solves problems such as synchroniza-
The authors are with the Department of Computer Science -hMat,. b h . | d th b
Institute, Federal University of Bahia (UFBA). Salvadof140-110, BA, tion between the simulator and the robots soccer team,

Brasil {orivajr, flach; @dcc.ufba.br e augusto.loureiro@ufba.br ~ environment modeling. Moreover, it supports many ready

SenseHandler Il \L, Connection I}, ll ActHandler
Framework Classes [S

1 1 Dribble
1 1 + primaryAction() : Command
SimpleBrain WorldModel Player + cuncurrentAction() : Command
+ think() : Bahavior B

1

+ mainLoop()
\I/l
1

i

1
Bahavior KickToGoal
InferenceBrain Brain N 3 N N
——D 5 + primaryAction() : Command Q— + primaryAction() : Command
+ think() : Bahavior + think() : Bahavior . X
+ cuncurrentAction() : Command + cuncurrentAction() : Command
T
I \,\
N OtherBahavior PassBall
OtherBrain
N + primaryAction() : Command + primaryAction() : Command
+ think() : Bahavior
+ cuncurrentAction() : Command + cuncurrentAction() : Command
Reasoning Hot-spot Behaviors Hot-spot

Fig. 1. The MecaTeam Frameworkozen-spotgthe dark-gray area) anabt-spots(the light-gray area)

skills such as kicking, passing ball, dribble, and mark.sThiMecaTeam Framework Strategyand Singleton- that make
generic design pre-defines a general architecture, that the MecaTeam Framework more reusable.
the composition and interaction of components. New soccer The intent of theStrategypattern is to define a family of
teams can be generated by providing custom-behavior at takgorithms and encapsulate each of them, allowing that one
pre-definechot-spotsof the MecaTeam Framework. may be replaced by another [10]. The MecaTeam Framework
The MecaTeam Framework instantiation, which is thé&trategyprovides support for the reasoning strategy extension
process of implementing specific codeshiot-spotg7], can point. This enables the creation of several agents, each
be achieved through two basic techniques: inheritance amdth its own reasoning strategy, by only extending and
composition. In instantiation by inheritance, the abgtcéass implementing theBrain class.
Brain is specialized by new subclasses. For the framework The intention ofSingletonis to ensure that a particular
adaptation by composition, it is only necessary to know thelass has only one instance and provide a global access
external interfaces of the components and there is no nepdint for this instance [10]. In the MecaTeam Framework,
to know their implementation details. These componentSingletonis applied, for example, in the class responsible for
consists of classes that implement the behaviors of a soc&toring the world model, because there must be exactly one
player. instance of this class accessible to various parts of MeraTe
The MecaTeam Framework development has become fdaramework.
sible due to three years of experience in research with Other concepts related to OO frameworks and design
simulated robots soccer of the student that developed thatterns (a key to understanding this work), are presented i
work. The costs are significantly higher when compared tmore detail in the section Ill: The MecaTeam Framework.
developing a specific soccer team, so frameworks representhis work deals with the reengineering of MecaTeam 2006,
long-term investment, which produce more effect when marnin order to transform it into an OO framework, thus promot-
teams are developed with use of this framework [7]. ing enhanced comprehension and reuse of the MecaTeam
. Agent by other developers. Ti&trategypattern is taken as
B. Design Patterns a basis for the MecaTeam Framework design, facilitating the

In software engineering, a design pattern is a generghange of reasoning strategies.
reusable solution to a commonly occurring problem in soft-

ware design [10]. It is a description or template for how to lll. THE MECATEAM FRAMEWORK
solve a problem that can be used in many different situations This section presents the MecaTeam Framework, an OO
Object-oriented design patterns show relationships and ithfrastructure that defines the intra-agent architectuie o
teractions between classes or objects, without specifyiag soccer autonomous agents for the RoboCup 2D simulation
final application classes or objects that are involved. An O@ategory. It provides the documentation indicating extens
framework typically uses several kinds of design patterns.points and procedures to assist reuse by others. First, it
Design patterns document several kinds of informatiotiescribes the problems identified in MecaTeam 2006, which
and are organized in several parts or sections. The desigitivated this work. Then, the framework is introduced in
pattern name identifies key aspects useful to create a feusaerms of its underlying architecture and extension points.
OO design. Each design pattern indicates the classes and)
participants instances, their roles and collaboratioms] aA- Problems in MecaTeam 2006
also the distribution of responsibility. Each design patte The problems identified made it difficult to understand,
focuses on a specific problem or characteristic of the O@odify and reuse the MecaTeam 2006 Agent [4]. The main
design [10]. We present two design patterns used in thdfficulties were to incorporate new behaviors, to incoger

new reasoning strategies, to evaluate the impact of a change The Framework Architecture
in MecaTeam related code chunks and to facilitate the reuse

of MecaTeam code. These difficulties are explained belovvl. The architecture of the MecaTeam Framework, illustrated

n Fig. 2, is based on the architecture of the UvA Trilearn
[12]. The modules of the MecaTeam Framework can be
divided into three types: core, incomplete and complete Th

. Difficulty to incorporate new behaviors. core modules are immutable and will be the same in all

The UVA code, despite of being well structured andPplications created by instantiating the MecaTeam Frame-

object-oriented, offers some difficulties in the impIe-Work- The incomplete modules, which need to be defined

mentation of more elaborate behaviors. To implemerfy the framework user, correspondudnite-boxfeatures in
a new behavior or a more complex skill on uvAthe MecaTeam Framework. The complete modules, ready

code, such as mark opponent using potential fieldé‘?r use, characterize the MecaTeam Framewoldck-box

it is necessary to modify th@asicPlayerclass. This features. The following sections describe how these madule

class is a example of “large class” [11] which has 4Vere built.

methods and 2903 lines. In a development as a team,

after the implementation of some methods, is more

difficult to manage the changes, since each member o?

the development team needs to know this large class. B
« Difficulty to incorporate new strategies of reasoning.

In UVA code, the reasoning strategy definition is codi- skills Layer

fied in thePlayerclass, into the methodeMeer5 mixed

with other functionalities. Implement a new strategy s, -

means changing a base system class. To modify the
UVA code, t%e gdeveloper)rlleeds to know the efr{tirgteramon taver Perception ontral
code, since changes can affect the agent operation or
even make it stop working. The metha@Meer5 for sensors actuators
example, deals with the addition of commands in the
queue to be sent to theoccer serverin this queue,
it can only be added at most a primary command. The
deMeerSmplementation has to deal with that restriction 1) The Core Modules:The core modules are frozen-

ontrol Layer Reasoning

Envir&ment
Represéntation
|

Fig. 2. The MecaTeam Framework Architecture

imposed by thesoccer serverin each cycle. spotsand constitute the invariable part of a soccer agent of
« Difficulty in evaluating the impact of a change in chunkssimulated robots. They were extracted from the base of the
of related MecaTeam code. UvA Trilearn Team The functions of these modules are: to

In particular, there is difficulty in understanding how ainteract with the simulator and generate a representation o
change in a class or method can demand a corresporide environment. For this, they need be synchronized with th
ing change in others chunks of MecaTeam code. Thigmulator, receiving and sending messages at the appt®pria
can be noticed in the very strong relationship betweetime.
BasicPlayerand Player. The Player class inherits all The perception module is responsible for receiving the
the skills of BasicPlayerand combines these skills to perceptions of the environment (coming from simulator in
get the desired behavior. However, this combinatiostring messages), analyzing them and sending the results of
is mixed with the implementation of the reasoningthis analysis for theenvironment representation module
strategy. The actuators control module is responsible for triggering

« Need to facilitate the reuse of MecaTeam. the robot actuators, sending commands in string messages to
The MecaTeam 2006 is not structured as a framehe simulator. The classes of the environment representati
work for reuse. Thus, there is no indication of themodule contain the most updated information of all objects
places where developers should modify it or define nein robots soccer field. Their operation is similar to human
functionality, and many classes are arbitrarily exposeanemory, which stores information about feelings (heard,
without guidance on what can be reusedbdeck-box seen, etc.).
white-box etc. For new developers in the MecaTeam The class that relates all these core modules of the
research group, it is very important that the code ifamework is calledAgent It was created from the code
well organized and documented, because in addition tntained in themain function of the original UvA Trilearn
the inherent software complexity, the code is developecbde. Theexecutemethod has a parameter of tBeain type
by students with variable permanence in the projectlass. This allows any reasoning strategy implemented dy th
The OO framework promotes reuse in a larger scal@ser, from the specialization &rain, to be incorporated to
because it defines a semi-complete application, whichgents.
only needs classes defined by the user, at pre-specified) |ncomplete ModulesThe incomplete modules have the
spots, in order to create a complete application. variation points Kot-spoty of the MecaTeam Framework.

l.’layer. Brain
- ptr_brain : Brain - ¥ think() : Bahavior
+ mainLoop() +ptr_brain
OtherBrain InferenceBrain SimpleBrain
+ think() : Bahavior + think() : Bahavior + think() : Bahavior

Fig. 3. Strategy Pattern used in the MecaTeam Framework

The framework has two variation points: one to implementJvA Trilearn. In this class, two virtual methods were added
reasoning strategies and other to implement behaviors. — one to return the primary command and another to return a
The reasoning modulehas a semi-ready structure for aconcurrent command. With these virtual methods,Rleyer
robot soccer agent, with which the user needs only to speltiss can receive any behavior from tBein class. Thus,
effort with the implementation of the reasoning strategye T the Player class, at each cycle, performs the virtual methods
separation between reasoning strategy and the applicatiohBehavior that return one primary and other concurrent
core was implemented using polymorphism, more specifsommand.
cally the Strategydesign pattern. 3) Completes ModulesThe complete modules are those
The Strategyimplemented in MecaTeam Framework haghat have been generated from an incomplete module (sec-
basically three element®layer, Brain and ConcreteBrain tion I1I-B.2). The frameworkreasoning modulesare: Sim-
The Player defines the agent operation algorithm, the wayleBrain, GoalieBrainand InferenceBrain The behavior
he feels, thinks and acts. A variation of this algorithm is irmodules are: KickToGoal, HoldBall, InterceptBall, GoS-
the way of thinking and acting; who defines how the ageritategicPosition, MarkOpponent, PassBall, SearchBaltl an
thinks and acts is th€oncreteBrain Through the reasoning Teleport These modules reinforce thigack-boxfeatures of
strategy, theConcreteBrainchooses the most appropriatethe MecaTeam Framework.
behavior for a particular state of the environment. Thus, th The SimpleBrainis a brain for a simple player, extracted
methodthink of ConcreteBrainmust return a behavior. Fig. from thedeMeer5Smethod of thePlayerclass, which contains
3 depicts this modeling, anthferenceBrain, SimpleBrain the implementation of the UvA Trilearn reasoning strategy.
and OtherBrainare concrete classe€dgncreteBraip that In deMeer5 the environment state identification and the
specialize theBrain class. behavior implementation are coded in the same scope. In
this way, it is hard to distinguish what is a behavior from

mainLoopl) Y what is the environment state identification.

v With SimpleBraincreation, the implementation of behav-
S meyer sty 5 ong 2 server e iors has been separated into different classes. Thushithie
AT : ActHandiert . method ofSimpleBraincontains only the environment state
T renBeneder ~enmankomaten: | jdentification and the association of this state to a behmavio
e © s oo In each state identified byimpleBrain currentBehavior
- bConttoop : bool psoc = aumentsenavior>primanvacion; | 1S @SSOCiated to a behavior and sent to BMayer class.
ey Al Fomatins, char,doule, i) ACTpuCommandnQuese(psec These behaviors (Fig. 5) ar&ickToGoal, InterceptBall,
e T T T T - s~ curentaeavior scnrnicion GoStrategicPosition, SearchBall and Telepofthey were
FovstsCommenstou - oaveom) ’ generated from the restructuring of tdeMeer5method.

) With the use oBehaviorclass, the skills of UvA Trilearn
- will always be encapsulated within behaviors. This faaiés

the understanding, maintenance and evolution of the code,
Fig. 4. UVA Trilearn Player class and a code chunk of mainLomghod. and the implementation of various behaviors with different
techniques of artificial intelligence.

The Player class (Fig. 4) was changed in tieainLoop
and deMeerbmethods to improve its structure. The method
which contained the reasoning strateggMeer5 was re- To illustrate the applicability and relevance of the frame-
placed by a call to thehink method of theBrain abstract work, we present three different scenarios in which it can be
class, featuring théot-spotof the reasoning module. The instantiated, with increasing levels of complexity.
mainLoopmethod of thePlayer class contains a loop that The simplest way to reuse the framework is using the
runs until the end of the connection with the simulator. lexisting components. Thus, about five lines of code will
handles the basic algorithm of the agent (feel, think anjl acbe needed to implement an agent. Also, there are various

The behavior module consists of thBehaviorclass and behaviors already implemented that can be reused by the
all subclasses generated from it. TBehaviorclass is an user reasoning module so that users can implement their own
adaptation ofBasicPlayer which contains all the skills of reasoning module, or use the available one.

IV. USING THE FRAMEWORK

An interesting framework feature is the independence « Declare thgrimaryActionandconcurrenteActiometh-
of how each extra module can be implemented. The user ods.

can implement a new behavior module using a particular The implementation file for thotentialFieldsMarkclass
Artificial Intelligence technique and implement the modulenust contain at least two methogsimaryActionand con-
using another completely different reasoning technique. FcurrentAction TheprimaryActionmethod uses the necessary
example, the user can implement a behavior using Neurgkills for marking behavior that returns a primary command,
Networks and the reasoning strategy using Knowledge Bas@ghereas theconcurrentActionmethod uses the necessary
Systems. skills for marking behavior that returns a concurrent com-

A. First scenario:Black-box Reuse mand. These two methods together form the behavior of
marking on potential fields.

The simplest way to use the framework is the reuse of
a complete moduleb{ack-boxreuse), generated from the V. RESULTS
Brain class:SimpleBrain GoalieBrainor InferenceBra_inTo In order to provide a preliminary evaluation of the results
create a goalkeeper, for example, the user must implemgpyy, instantiating the MecaTeam Framework, ten matches
a file with the functionmain and include the files\gent.h \yere processed with the three best teams of the Brazilian
and GoalieBrain.h Then, he should create objects from thexghotics Competition in 2007 against MecaTeam. The new
Agentclass and th_eGoalleBraln class (responsible for the \jecaTeam version, implemented with the MecaTeam Frame-
goalkeeper reasoning strategy). Téescutemethod of the \york, played against his older version, developed without
Agentclass receives as a parameter@walieBraininstance. ihe framework support (called MecaTeam 2007); these two
B. Second scenario: Implementing a New Brain MecaTeam versions (the new and the older) also played
%gamst other teams. Thus, 40 matches were measured for

Suppose that the_ user wants to implement an agent ©9hch of the two versions. The MecaTeam Framework got
trolled by fuzzy logic. To that end, the user needs to follo

WO Steps to use the strateqv reasonmt-spotdefined b 4 wins, 9 draws and 7 defeats and MecaTeam 2007 got 2
the franl?ework 9y niag-sp y wins, 33 defeats and 5 draws. This shows that it is feasible

The first step is to prepare the file header containin:éerflletmem new teams with the framework and obtain good

the specifications of thd-uzzyBrain class, following the Comparing MecaTeam 2007 with applications developed

Instructions below..) with the MecaTeam Framework, we have the following
« Include theBrain header file; ~ results in favor of the MecaTeam Framework instantiati@ns:
« Declare theFuzzyBrainconcrete class that spemahzeswin& 1 draw, 1 defeat, 62 goals made and 16 suffered. These
Brain; _ _ good results come not only to the use of the framework,
« Declare the attributes to the fuzzy reasoning; but also to an improvement in the MecaTeam Framework
« Declare thethink method; reasoning strategy and behaviors. Whereas the MecaTeam
« Declare the constructor. 2007 uses a simple reasoning strategy, with only a reasoning
The second Step is to generate a file with the implementmyer, the MecaTeam Framework uses one more reason-
tion of the desired class, in this caBezzyBrain according ing layer than the MecaTeam 2007, allowing the use of
to the following rules: plans. Besides a more sophisticated reasoning strategy, th
» The FuzzyBrain constructor should initialize its at- MecaTeam Framework defines more behaviors and improve
tributes and call the super class constructor, becauséhers.
this class contains the world model and behavior ini- With the framework, the developer will deal with a smaller
tializations; amount of code, that is, a smaller number of classes and lines
« The implementation of the reasoning strategy viittzy of code. This becomes more evident when we compare the
logic in thethink method should return a behavior; size of MecaTeam 2007 and the MecaTeam Framework. The
» The world model must be referenced through W& MecaTeam 2007 has about 57 classes and 19202 exposed
pointer, an attribute that is inherited from tirain lines of code, and the framework has about 68 classes and
class. 18642 lines of code isolated. One MecaTeam Framework
instantiation has 6 classes and 852 lines of code. Thus,

the developer needs only to know some class interfaces

Suppose that the user wants to implement a OppONegk the framework without worrying about their internal
marking behavior using potential fields. For this, the usefplementation.

must follow two steps to use the behavhuwt-spot

C. Third scenario: Implementing a New Behavior

The first step is to prepare the header file containing the VI. CONCLUSIONS
class specifications, calld®btentialFieldsMark At this step, This paper presented the MecaTeam Framework, an OO
the user must follow the instructions below: infrastructure that defines the intra-agent architectuie o
« Include the fileBehavior.h autonomous agents of simulated robots for soccer league

« Declare thePotentialFieldsMarkconcrete class aBe- in the RoboCup simulation 2D category. The MecaTeam
havior specialization; Framework is concerned with solving some problems of the

Behavior
primarySoc : SoccerCommand

GoStrategicPosition InterceptBall

+ primaryAction() : SoccerCommand —[> # cuncurrentSoc : SoccerCommand <]— + primaryAction() : SoccerCommand

. # WM : WorldM P .
+ cuncurrentAction() : SoccerCommand orld odg + cuncurrentAction() : SoccerCommand
SS : ServerSettings*

PS : PlayerSettings*

+ primaryAction() : SoccerCommand

+ cuncurrentAction() : SoccerCommand
+..0

SearchBall Teleport
+ primaryAction() : SoccerCommand + primaryAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand + cuncurrentAction() : SoccerCommand
KickToGoal GoalieBehavior
- posGoal : VecPosition - formations : Formations*
+ KickToGoal() + primaryAction() : SoccerCommand
+ primaryAction() : SoccerCommand + cuncurrentAction() : SoccerCommand
+ cuncurrentAction() : SoccerCommand + setFormations(_fs : Formations*)

Fig. 5. Refining the behaviors of the MecaTeam Framework.

MecaTeam 2006 agent, such as: the need to facilitate thjg] A. L. Costa, G. Bittencourt, E. M. N. Gongalves, and L. Silva,
reuse of MecaTeam; difficulty in incorporating new reason- ~ "Expert-coop++: Ambiente para desenvolvimento de sistemali-

. . eer . . . agente,” IV ENIA Encontro Nacional de Inteligéncia Artificiapp.
ing strategies, difficulty in incorporating new behaviorsla 597-606, Brasil, Campinas, 2 a 8 de agosto 2003, xXIIl Ccssgre
difficulty to assess the impact of a change in the related da Sociedade Brasileira de Computagao.

chunks of MecaTeam code. [7] W. Pree,Framework Patterns 71 West 23rd Street, New York: SIGS
Books & Multimedia, 1996.
A. Contributions [8] I. M. Filho, “A documentacg@o e a instancia¢ao de feamorks orien-

tados a objetos,” Ph.D. dissertation, Pontificia Uniiade Catolica

The modularity offered by the MecaTeam Framework do Rio de Janeiro, Rio de Janeiro, abril 2002.

: : M. Chen, E. Foroughi, and F. H. at al, “Soccerserver
decreases the impact of changes in related codes chunks. The manual? RoboCup Federation, Tech. Rep., 2002,

framework extension points facilitate the reuse, sepagati http://sserver.sourceforge.net/docs/manual.ps.
the framework core from the reasoning strategies and bBO] E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns:

PR ; ; Elements of Reusable Object-Oriented SoftwareReading, MA:
havior implementations. The framework provides a common Addison Wesley, 1998,

base to all robot soccer agents. The framework also providgs] m. Fowler, K. Beck, J. Brant, W. Opdyke, and D. RobeRsfactoring:

a documentation indicating extension points and procedure Improving the Design of Existing CodeAddison-Wesley, 2000.
to help reuse [12] J. R. Kok, N. Vlassis, and F. Groen, “Team descriptiora trilearn

2003.” in RoboCup 2003 Symposiumdarch 2003.
The MecaTeam Framework can be reused by new re-
searchers in the area of soccer simulated robots. The frame-
work improves the quality of agents produced, because its
core is composed of the UvA base team, champion in 2003
and which went through various tests and validations. With
the reuse promoted by the MecaTeam Framework, the new
teams will have their players ready faster and with decitase
costs.

REFERENCES

[1] H. Kitano, M. Tambe, P. Stone, M. Veloso, S. CoradeschiDBawa,
H. Matsubara, I. Noda, and M. Asada, “The robocup synthejena
challenge, 97,International Joint Conference on Atrtificial Intelligence
(IJCAI97), 1997, nagoya, Japan.

[2] H. Kitano, “Robocup: The robot world cup initiativejn Proc. of
The First International Conference on Autonomous Agente(¥ss
97)), 1997, marina del Ray, The ACM Press.

[3] R.d.BoerandJ.R. Kok, “The incremental development syathetic
multi-agent system: The uva trilearn 2001 robotic soccerufation
team,” Master’s thesis, University of Amsterdam, The Ndtrals,
2002.

[4] O. V. de Santana Janior, J. P. R. P. Sousa, M. S. Lindet, AnL.
Costa, “Mecateam: Um sistema multiagente para o futebolobésr
simulado baseado no agente auténomo concorree¢ontro de
Robotica Inteligente / XXVI Congresso da Sociedade Baizailde
Computaca@ppp. 146-152, 2006.

[5] O. V. de Santana Janior and A. L. Costa, “Mecateam 20061 U
sistema multiagente reativo para futebol de robds sinosladvIl
Escola Regional de Computacdo Bahia-Alagoas-Sergjpe midia
digital, 2007.

