

 Abstract. In our study, we tried to develop our teams in such a
way that machine learning techniques have the main role in
improving skills and increasing team performance. We consider
soccer simulation platform as an uncertain and dynamic
environment, so we develop learning algorithms according to
this important feature and agent’s partial observability.

I. INTRODUCTION

Nemesis team has commenced its activity since 2004. This
team makes of the codes of Mersad team as the base code
which are completed by making use of other codes of some
other teams.
Our team’s implementation has been under continuous
development. According to the fact that soccer simulation is
a challenging platform for multi-agent research, involving
topics such as formation control, coverage control, plan
recognition, obstacle avoidance and machine learning we try
to apply AI and machine learning techniques wherever
possible, some of our goals have been implemented and the
others are under development.
We know that the soccer simulation presents an uncertain
and dynamic environment for cooperating agents. Thus
employment of Reinforcement Learning (RL) methods
according to partially observable markov decision process
(POMDP) is our main focus which will be described in the
following sections. Afterward we apply a formation control
based on collecting theory due to partial observability.
Another approach we used to develop the performance of
the team is applying recurrent fuzzy neural network (RFNN)
for the shoot skill for agent to learning to score. At last we
will employ coverage control as our future work to enhance
our team’s capabilities.
The setup of this paper is as follows. In section 2, we will
describe POMDP and its application in soccer 2d simulation
particularly in kick skill. In section 3 we propose our team
formation strategy according to partially observable soccer
2D environment. And in section 4, we will propose RFNN
for developing shoot skill. Section 5 presents Nemesis
future works. And we will end with a conclusion in section
6.

II. POMDP FRAMEWORK
 One important facet of the POMDP approach is that there
is no distinction between actions taken to change the state of
the world and actions taken to gain information.
For MDPs we can compute the optima policy π and use it
to act by simply executing)(sπ for current state s.

According to the uncertain and dynamic soccer simulation
environment what happens if the agent is no longer able to

determine the state it is currently in with complete
reliability? A naive approach would be for the agent to map
the most recent observation directly into an action without
remembering anything from the past. Somewhat better
results can be obtained by adding randomness to the agent’s
behavior: a policy can be mapping from observations to
probability distributions over actions [1]. Randomness
effectively allows the agent to sometimes choose different
actions in different locations with the same appearance,
increasing the probability that it might choose a good action.

We decompose the problem of controlling a POMDP into
two parts [2], as shown in Figure 1. The agent makes
observations and generates actions. It keeps an internal
belief state, b that summarizes its previous experience. The
component labeled SE is the state estimator: it is
responsible for updating the belief state based on the last
action, the current observation, and the previous belief state.
The component labeled π is the policy: as in MDP, it is
responsible for generating actions, but this time as a
function of the agent’s belief state rather than the state of the
world.

Fig1. A POMDP agent can be decomposed
into a state estimator (SE) and a policy (π)

2.1 KICK SKILL
Finding a good kick routine is a very important job. Within
our RL framework, this job is done by the agent in a partial
observable environment. According to the fact that the
agents cannot often directly access actual states of the
environment, but can get only observations, which may be
partial, from them, serious computational difficulties arise in
estimating unobservable states. It is provided with 500
parameterized instances of the kick command (direction
discrete in 100 steps, power discrete in 5 steps) together
with 36 instances of the turn command. This makes an
overall of 536 actions, from which the agent can choose one
per cycle according to its observations. The learning agent is
controlled based on one-step-ahead prediction using
opponent agents’ models. It is difficult, however, to apply
this method without any approximation because soccer 2D

Nemesis 2D Team Description 2008
Mehrab Norouzitallab, S. M. A Salehizadeh.,Ahmad Pourshoghi

is a large-scale multi-player environment, and then the
utility prediction should involve intractable integrations. To
overcome this intractability, sampling is performed over a
subspace under the assumption that each opponent player
will perform the action which is detrimental to the learning
agent [3]. The utility function is given by the following
expectation with respect to the predictive distribution:

)2()(),|()(

)1()(),(),(

11
111

1

∑≡

+=

+∈+
+++

+

tSts
ttttt

ttttt

sfHasPsf

sVuaRHaU

),(tt uaR denotes an immediate reward, which is

nuaR tt −= 5.0),(when the agent gets n penalty points
(n may be 0) after the t-th cycle. The constant bias 0.5 is
attached to make the sum of all agents’ rewards zero. In our
study, a normalized Gaussian network (NGnet) is used for
approximating the value function V we first define a
consistent state as follows: for a given action sequence, a
state which may realize the action sequence is said to be a
consistent-state. State can be represented with five elements:
the ball’s relative position, velocity, the length of the desired
ball speed, the player’s velocity, the player’s body facing.
In our approach, therefore, we first sample pessimistic
action sequences { }Kkkut ,...,1|)(ˆ = and then sample

consistent-states { }Nnnkst ,...,1|),(ˆ = for each

pessimistic action sequence)(ˆ kut .
Using the pessimistic action sequences, equation (2) is
approximated as:

() ())3(),(ˆˆ),,(ˆ|)(ˆ1

)ˆ()|ˆ(),ˆ|ˆ()(

1
1 1

3

1

1
ˆ)ˆ(ˆ

1

nksfnkokaP
N

sfHsPasuPsf

t
K

k

N

n i

ii
t

i
t

tttttt
tUu tutSts

t

+
= = =

+
−∈ −∈

+

∑ ∑ ∏=

∑ ∑≈

φ

)(ˆ kai
t denotes an action of the opponent agent i, where

{ })(ˆ),(ˆ),(ˆ)(ˆ 321 kakakaku tttt = .
Here, we assume that every opponent agent, including the
rule-based agents selects its action based on the action

selection probability),|)((ii
t

i
t okaP φ which depends on

an observation i
to and the history.),(ˆ nkoi

t and

),(ˆ 1 nkst + denote an observation for agent i, which is
determined from the state),(ˆ nkst without any ambiguity,

and the next state reached from state),(ˆ nkst given

)(ˆ kut and ta , respectively.
We then use a sampling-based approximation under the
observations of the game theory, and calculate the one-step-
ahead utility value using the acquired model. The learning

agent selects greedy actions based on the utility; such a
strategy is preferable in the sense of Min-Max theory.
Computer simulations showed that our model-based RL
method is effective for acquiring good strategy for soccer
2D kick skill.

III. TEAM FORMATION IN PARTIALLY OBSERVABLE
ENVIRONMENT

Team formation is important part in soccer simulation
system, since it allows team members to focus on a team-
goal, which is simpler than a global-goal over an entire
system. In addition team formation allows sharing of
information [3].
In this system each agent attempts to maximize a utility
provided by the team using a learning algorithm such as
reinforcement learning. For such a system to work properly,
team utilities have to have the following properties:
• Team utilities should be easy for the agents to optimize;
• Agents optimizing their team utilities should result in
agents optimizing the global utility; and
• Teams must compute utilities when they cannot fully
observe each other.

In this paper we address the first property by using the
theory of collectives [4] to create learnable team utilities.
We address the second and third property by modifying the
theory of collectives for partially observable environments
to create team utilities that are “aligned” with the global
utility.
There has been extensive research on rule-based agent team
formations. But such systems: (i) have to be laboriously
modeled; (ii) provide “brittle” global performance; (iii) are
not “adaptive” to changing environments; and (iv) generally
do not scale well.
To sidestep these problems, yet address the design
requirements listed above (i.e., “alignedness” and
“learnability”) one can use the framework of collectives [4].
Given this framework, the crucial design problem becomes:
Assuming the individual agents are able to maximize the
team utility function through reinforcement learning, what
set of team utilities, when pursued by those agents, result in
high global utility?
There are two quantifiable properties that help answer this
question. First, the utility functions for the team need to be
“aligned” with the global utility, in that an action taken by
an agent that improves its team utility also improves the
global utility. Second, the utility functions need to be
“learnable” in that an agent has to be able to discern the
effect of its actions on its team utility and select actions that
optimize that utility. The theory of collectives provides
utilities for agents that maximize the second property while
satisfying the first one.
We have been found that teams can be effective in
environments with partial observability, if the proper team
utilities are used.
We suppose a system of multi-agent teams (defense, offense

teams) that aim to maximize a global utility function)(zG
, which is a function of the joint move of all agents in the

system, z. In our work each agent in team τ will try to
maximize a team utility function)(zgτ .Team utilities
have the advantage over agent utilities in partially
observable environments in that a team utility may be able
to incorporate observations from all the team members. This
increase in observational capability will allow team utilities
that are more “aligned” with the global utility (Figure 2). In
addition team utilities allow for domains where agents are
not even capable of computing their own utility, but can still
blindly maximize a broadcast team utility.

Fig 2.Team vs Agent Utilities. Left figure shows agents
following agent utilities that are not fully aligned with the global
utility due to partial observability. Right figure shows teams
collecting observations from multiple agents allowing them to
make team utilities that are more aligned.

We will use the notation τz to refer to the parts of z that

are dependent on the actions of teamτ . The vector τz is
the same size as z and is equal to z except that all the
components that do not depend on team τ are set to zero.
By subtracting τz from z we produce the vector

ττ zzz −=− , a vector that is determined by the
actions of all the agents other thanτ .
There are two properties that are crucial to producing
systems in which agents acting to optimize their team
utilities will also optimize the provided global utility. The
first of these concerns “aligning” the team utilities with the
global utility.
Formally, a system is factored when for each teamτ [5]:

ττ

ττ

zzzztszz

zGzGzgzg

′−′=−′∀

′≥⇔′≥

..,

)()()()(

Intuitively, for all pairs of states z and z′ that differ only
for teamτ , a change inτ ’s state that increases its team
utility cannot decrease the global utility.
The second property, called learnability, measures the
dependence of a utility on the actions of agents in a

particular team as opposed to all the actions of all the other
agents. Intuitively, higher learnability means it is easier for
a team τ to achieve a large values of its team utility.
Consider difference utility functions, which are of the
form:

)()(τττ czGzGDU +−≡ − (1)

Where τ−z contains all the variable not affected by agents
in team τ . All the components of z that are affected by
agents in team τ are replaced with the fixed constant τc .
Such difference utilities are factored no matter what the
choice of τc , because the second term does not depend on
the actions of agents in team τ [4]. Furthermore, they
usually have far better learnability than does the global
utility, because of the second term of DU, which removes a
lot of the effect of other agents (i.e., noise) fromτ ’s
evaluation function. In many situations
it is possible to use a τc that is equivalent to taking team
τ out of the system. Intuitively this causes the second
term of the difference utility to evaluate the global utility
of the system without team τ and therefore DU evaluates
the teams’ contribution to the global utility.
For some specific classes of utility such as the DU, this
observational demand may be relaxed, since many of the
elements of the worldline cancel out and may be ignored.
In these cases we must approximate the utility under the
constraints of partial observability. We denote the
component of z that is observable by _ using the vector

τOz and the part of z that is not observable by τ using

the vector τhz . The vector τOz is the same as z except
that all the elements that are not observable by τ are set to

zero. We call τOz the observable components of the
worldline. The vector z is the sum of these two vectors:

ττ hO zzz += . It is assumed that team τ can
always observe all components of τz . If the DU depends

on any component of hz then we cannot compute it
directly. Instead there are several approximations to the
DU that vary in their balance between learnability and
factoredness. In this paper we discuss

four approximations1 :

)()()(ττ
τ zzGzGzBTU O −−=

(2)

)()()(ττ
ττ zzGzGzTTU OO −−=

(3)

)]|[()()(ττ
τττ zzzEzGzGzBEU OhO −+−=

(4)

)]|[(])|[()(τ
ττττττ

τ zzzEzGzzEzGzTEU OhOOhO −+−−=
(5)
Where [.]E is the expectation operator. Note that BTU,
as well as BEU, assume that the true global utility can be
broadcast despite having only partial observability.
We assume that the observational capability of a team goes
up with the size of the team. This property of team size can
happen for a number of different reasons including, larger
teams having more resources and greater coverage of
different areas.

IV. LEARNING TO SCORE USING RFNN
Recurrent neural network systems learn and memorize
information implicitly with weights embedded in them. In
[6] a recurrent fuzzy neural network (RFNN) was proposed
based on supervised learning, which is a dynamic mapping
network and it is more suitable for describing dynamic
systems than the FNN. Of particular interest is that it can
deal with time-varying input or output through its own
natural temporal operation [3]. Ability of temporarily
storing information simplifies the network structure and
fewer nodes are required for system identification. Because
of complexity in back propagation (BP) learning approach,
just diagonal fuzzy rules have been implemented. This
limiting feature forces restrictions on users for employing
more complete fuzzy rule base. In this paper a novel
approach is proposed as a solution to this problem. We
combined original BP used in with a particle swarm
optimization (PSO) to train the network more easily and
without the complexity of taking derivation.

4.1 NETWORK STRUCTURE
The key aspects of the RFNN are dynamic mapping
capability, temporal information storage, universal
approximation, and the fuzzy inference system. The RFNN
possess the same advantages as recurrent neural networks
and extend the application domain of the FNN to temporal
problems [6]. A schematic diagram of the proposed RFNN
structure is shown in Figure 3. Signal propagation and the
operation functions of the nodes in each layer are described

below. In what follows, k
iu denotes i-th input of a node in

the k-th layer; k
io denotes the i-th node output in the k-th

layer.

Output Layer: Each node in this layer is called an output
linguistic node. This layer performs the defuzzification
operation. The node output is a linear combination of the
consequences obtained from each rule. That is

∑==
=

m

j
jpjpp wuoy

1

444 (5)

Fig3. Structure of RFNN

where 34
jj ou = and 4

jiw (the link weight) is the output
action strength of the i-th output associated with the j-th
rule. 4

jiw are the tuning factors of this layer. Finally, the
overall representation of input x and the p-th output is

()











 −×−+
−∏∑

==

== 2

22

11

4

4

)(

))1()((
exp

6)(

ij

ijijijin

i

m

j
jp

pp

mkokx
w

oky

σ

θ

where ijm , ijσ , ijθ and jpw are the tuning parameters and











 −×−+−
−=−

2

22
2

)(

))2()1((
exp)1(

ij

ijijiji
ij

mkokx
ko

σ

θ

Obviously, using the RFNN, the same inputs at different
times yield different outputs. The proposed RFNN can be
shown to be a universal uniform approximator for
continuous functions over compact sets if it satisfies a
certain condition. Further details about RFNN and its
training approach have been described in an accepted paper
by Nemesis members.

 G

Σ Σ

Π Π Π

G G G G G G

Here for training RFNN in order to learn how to score we
have used following 8 parameters as inputs to RFNN: Ball
Position(x,y), Opponent Goalie Position(x,y) and body
direction, relative distance and direction between ball and
target points on goal line, kick power (for decreasing
noise). For this purpose we discrete goal line into 30 points
and shoot region into 1800 points, and for each episode1 we
keep successful kicks and finally we choose the best kick
among them according to two factors, first maximum
relative distance between selected goal point and goalie
position, and selected point between outline, second, power
of the selected kick in regard to noise.
In order to use the trained network in our team we had to
consider some situations which RFNN does not cover them.
So, we used our previous computational kick when such
cases occur. For example some situations in which some
none goalie opponents block the way to reach the RFNN
selected goal point.

V. FUTURE WORK
We plan to develop our team performance by considering
coverage control in both defense and offense areas.
The coverage control problem refers to the use of a
collection of players to provide visual and tactical coverage
for a given area of the field. Given a set of N players, we
wish to allocate each player to a region in which it is
responsible for providing visual and tactical information.
One decentralized approach is to partition a region Q into a
set of polytopes: NWWW ,...,1= that cover Q. Each
polytope is assigned to a specific player to each region and

we let ++ → RRfi : represent the sensing performance
of a player based on its distance from a given point, with f
small representing good performance. We then form the
coverage control problem as choosing the locations of each
player such that we minimize:

∑ ∫ 




 −=

=

n

i w

i
i dqqyqfL

1
)(φ

(7)
 Where φ is a distribution density function that
represents the importance of a given area.(For example
around the ball has more density than beside the lines)
 A key element of this approach is that the only
communication required is with the nearest neighbors of the
player (See Figure 4).

Fig. 4. Agents reform themselves such that they cover
around the blue point.

VI. CONCLUSION
This paper presents our simulated soccer team strategies to
improve Nemesis performance. In all of our implementation
we consider soccer 2D environment as an uncertain and
dynamic one, hence we try to apply machine learning and
AI techniques according to partial observability of agents.
Our research focuses on partial observable markov decision
process and makes use of reinforcement learning algorithms
for kick skill and in team formation. Afterward we
concentrate on improving the important part of simulation,
means “learning to score". In order to achieve this purpose
we used a recurrent fuzzy neural network to learn shoot
skill. Simulation results have been verified our approaches
and show the structure improvement as well. At last we will
employ coverage control as our future work to enhance our
team’s capabilities.

REFERENCES
[1] S. P. Singh, T. Jaakkola, and M. I. Jordan., Model-free
 reinforcement learning for non-Markovian decision
 process problems. In Proceeding of the Eleventh
 International Conference on Machine Learning, pages
 284-292. San Francisco, California, 1994.
[2] L. P. Kaelbling, M.L. Littman, A. R. Cassandra.
 Planning and acting in partially observalble stochastic
 domains. Jaunuary, 13, 1997.
[3] A. Stroupe, M. C. Martin, and T. Balch., Distributed
 sensor fusion for object position estimation by multi-
 robot systems. In IEEE International Conference on
 Robotics and Automation., IEEE, May 2001.
[4] D. H. Wolpert and K. Tumer. Optimal payoff functions
 for members of collectives. Advances in Complex
 Systems, 4(2/3):265–279, 2001.
[5] A. K. Agogino, K. Turner.Team formation in partially
 observable multi-agent systems.
[6] C.H.Lee, C.C Teng, “Identification and Control of
 Dynamic Systems Using Recurrent Fuzzy Neural
 Networks,” IEEE Transactions on fuzzy systems, vol. 8,
 No. 4, 2000.
[7] S. M. A. Salehizadeh, P. Yadmellat, A. Pourshoghi, M.
 J. Aein. A Hybrid Algorithm for Training Recurrent
 Fuzzy Neural Network., In Proceeding of the
 International Conference of Artificial Intelligence and
 Pattern Recognition, 2008.

