
  

  

  Abstract. In our study, we tried to develop our teams in such a 
way that machine learning techniques have the main role in 
improving skills and increasing team performance. We consider 
soccer simulation platform as an uncertain and dynamic 
environment, so we develop learning algorithms according to 
this important feature and agent’s partial observability.   

I. INTRODUCTION 

Nemesis team has commenced its activity since 2004. This 
team makes of the codes of Mersad team as the base code 
which are completed by making use of other codes of some 
other teams. 
Our team’s implementation has been under continuous 
development. According to the fact that soccer simulation is 
a challenging platform for multi-agent research, involving 
topics such as formation control, coverage control, plan 
recognition, obstacle avoidance and machine learning we try 
to apply AI and machine learning techniques wherever 
possible, some of our goals have been implemented and the 
others are under development.  
We know that the soccer simulation presents an uncertain 
and dynamic environment for cooperating agents. Thus 
employment of Reinforcement Learning (RL) methods 
according to partially observable markov decision process 
(POMDP) is our main focus which will be described in the 
following sections. Afterward we apply a formation control 
based on collecting theory due to partial observability. 
Another approach we used to develop the performance of 
the team is applying recurrent fuzzy neural network (RFNN) 
for the shoot skill for agent to learning to score. At last we 
will employ coverage control as our future work to enhance 
our team’s capabilities. 
The setup of this paper is as follows. In section 2, we will 
describe POMDP and its application in soccer 2d simulation 
particularly in kick skill. In section 3 we propose our team 
formation strategy according to partially observable soccer 
2D environment. And in section 4, we will propose RFNN 
for developing shoot skill. Section 5 presents Nemesis 
future works. And we will end with a conclusion in section 
6. 

II. POMDP FRAMEWORK 
   One important facet of the POMDP approach is that there 
is no distinction between actions taken to change the state of 
the world and actions taken to gain information.  
For MDPs we can compute the optima policy π and use it 
to act by simply executing )(sπ for current state s.   
 
According to the uncertain and dynamic soccer simulation 
environment what happens if the agent is no longer able to  
 
 

 
determine the state it is currently in with complete 
reliability? A naive approach would be for the agent to map 
the most recent observation directly into an action without 
remembering anything from the past. Somewhat better 
results can be obtained by adding randomness to the agent’s 
behavior: a policy can be mapping from observations to 
probability distributions over actions [1]. Randomness 
effectively allows the agent to sometimes choose different 
actions in different locations with the same appearance, 
increasing the probability that it might choose a good action. 
 
We decompose the problem of controlling a POMDP into 
two parts [2], as shown in Figure 1. The agent makes 
observations and generates actions. It keeps an internal 
belief state, b that summarizes its previous experience. The 
component labeled SE is the state estimator: it is 
responsible for updating the belief state based on the last 
action, the current observation, and the previous belief state. 
The component labeled π  is the policy: as in MDP, it is 
responsible for generating actions, but this time as a 
function of the agent’s belief state rather than the state of the 
world.      

 
Fig1. A POMDP agent can be decomposed 
into a state estimator (SE) and a policy (π ) 

2.1 KICK SKILL 
Finding a good kick routine is a very important job. Within 
our RL framework, this job is done by the agent in a partial 
observable environment. According to the fact that the 
agents cannot often directly access actual states of the 
environment, but can get only observations, which may be 
partial, from them, serious computational difficulties arise in 
estimating unobservable states. It is provided with 500 
parameterized instances of the kick command (direction 
discrete in 100 steps, power discrete in 5 steps) together 
with 36 instances of the turn command. This makes an 
overall of 536 actions, from which the agent can choose one 
per cycle according to its observations. The learning agent is 
controlled based on one-step-ahead prediction using 
opponent agents’ models. It is difficult, however, to apply 
this method without any approximation because soccer 2D 
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is a large-scale multi-player environment, and then the 
utility prediction should involve intractable integrations. To 
overcome this intractability, sampling is performed over a 
subspace under the assumption that each opponent player 
will perform the action which is detrimental to the learning 
agent [3]. The utility function is given by the following 
expectation with respect to the predictive distribution: 
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      ),( tt uaR  denotes an immediate reward, which is 

nuaR tt −= 5.0),(  when the agent gets n penalty points 
(n may be 0) after the t-th cycle. The constant bias 0.5 is 
attached to make the sum of all agents’ rewards zero. In our 
study, a normalized Gaussian network (NGnet) is used for 
approximating the value function V we first define a 
consistent state as follows: for a given action sequence, a 
state which may realize the action sequence is said to be a 
consistent-state. State can be represented with five elements: 
the ball’s relative position, velocity, the length of the desired 
ball speed, the player’s velocity, the player’s body facing. 
In our approach, therefore, we first sample pessimistic 
action sequences { }Kkkut ,...,1|)(ˆ = and then sample 

consistent-states { }Nnnkst ,...,1|),(ˆ =  for each 

pessimistic action sequence )(ˆ kut .  
Using the pessimistic action sequences, equation (2) is 
approximated as: 
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 )(ˆ kai
t denotes an action of the opponent agent i, where 

{ })(ˆ),(ˆ),(ˆ)(ˆ 321 kakakaku tttt =  . 
Here, we assume that every opponent agent, including the 
rule-based agents selects its action based on the action 

selection probability ),|)(( ii
t

i
t okaP φ which depends on 

an observation i
to  and the history. ),(ˆ nkoi

t  and 

),(ˆ 1 nkst +  denote an observation for agent i, which is 
determined from the state ),(ˆ nkst without any ambiguity, 

and the next state reached from state ),(ˆ nkst given 

)(ˆ kut and ta , respectively.  
We then use a sampling-based approximation under the 
observations of the game theory, and calculate the one-step-
ahead utility value using the acquired model. The learning 

agent selects greedy actions based on the utility; such a 
strategy is preferable in the sense of Min-Max theory. 
Computer simulations showed that our model-based RL 
method is effective for acquiring good strategy for soccer 
2D kick skill. 

III. TEAM FORMATION IN PARTIALLY OBSERVABLE 
ENVIRONMENT 

Team formation is important part in soccer simulation 
system, since it allows team members to focus on a team-
goal, which is simpler than a global-goal over an entire 
system. In addition team formation allows sharing of 
information [3]. 
In this system each agent attempts to maximize a utility 
provided by the team using a learning algorithm such as 
reinforcement learning. For such a system to work properly, 
team utilities have to have the following properties: 
• Team utilities should be easy for the agents to optimize; 
• Agents optimizing their team utilities should result in 
agents optimizing the global utility; and  
• Teams must compute utilities when they cannot fully 
observe each other. 
 
In this paper we address the first property by using the 
theory of collectives [4] to create learnable team utilities. 
We address the second and third property by modifying the 
theory of collectives for partially observable environments 
to create team utilities that are “aligned” with the global 
utility. 
There has been extensive research on rule-based agent team 
formations. But such systems: (i) have to be laboriously 
modeled; (ii) provide “brittle” global performance; (iii) are 
not “adaptive” to changing environments; and (iv) generally 
do not scale well.  
To sidestep these problems, yet address the design 
requirements listed above (i.e., “alignedness” and 
“learnability”) one can use the framework of collectives [4]. 
Given this framework, the crucial design problem becomes: 
Assuming the individual agents are able to maximize the 
team utility function through reinforcement learning, what 
set of team utilities, when pursued by those agents, result in 
high global utility? 
There are two quantifiable properties that help answer this 
question. First, the utility functions for the team need to be 
“aligned” with the global utility, in that an action taken by 
an agent that improves its team utility also improves the 
global utility. Second, the utility functions need to be 
“learnable” in that an agent has to be able to discern the 
effect of its actions on its team utility and select actions that 
optimize that utility. The theory of collectives provides 
utilities for agents that maximize the second property while 
satisfying the first one. 
We have been found that teams can be effective in 
environments with partial observability, if the proper team 
utilities are used.  
We suppose a system of multi-agent teams (defense, offense 

teams) that aim to maximize a global utility function )(zG
, which is a function of the joint move of all agents in the 



  

system, z. In our work each agent in team τ  will try to 
maximize a team utility function )(zgτ .Team utilities 
have the advantage over agent utilities in partially 
observable environments in that a team utility may be able 
to incorporate observations from all the team members. This 
increase in observational capability will allow team utilities 
that are more “aligned” with the global utility (Figure 2). In 
addition team utilities allow for domains where agents are 
not even capable of computing their own utility, but can still 
blindly maximize a broadcast team utility. 
 

 
 

Fig 2.Team vs Agent Utilities. Left figure shows agents 
following agent utilities that are not fully aligned with the global 
utility due to partial observability. Right figure shows teams 
collecting observations from multiple agents allowing them to 
make team utilities that are more aligned. 

 
We will use the notation τz  to refer to the parts of z that 

are dependent on the actions of teamτ . The vector τz  is 
the same size as z and is equal to z except that all the 
components that do not depend on team τ  are set to zero. 
By subtracting τz from z we produce the vector

ττ zzz −=− , a vector that is determined by the 
actions of all the agents other thanτ . 
There are two properties that are crucial to producing 
systems in which agents acting to optimize their team 
utilities will also optimize the provided global utility. The 
first of these concerns “aligning” the team utilities with the 
global utility. 
Formally, a system is factored when for each teamτ  [5]: 
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Intuitively, for all pairs of states z and z′ that differ only 
for teamτ , a change inτ ’s state that increases its team 
utility cannot decrease the global utility. 
The second property, called learnability, measures the 
dependence of a utility on the actions of agents in a 

particular team as opposed to all the actions of all the other 
agents. Intuitively, higher learnability means it is easier for 
a team τ  to achieve a large values of its team utility. 
Consider difference utility functions, which are of the 
form: 
                                              

)()( τττ czGzGDU +−≡ −                    (1) 
 
Where τ−z contains all the variable not affected by agents 
in team τ  . All the components of z that are affected by 
agents in team τ  are replaced with the fixed constant τc . 
Such difference utilities are factored no matter what the 
choice of τc , because the second term does not depend on 
the actions of agents in team τ  [4]. Furthermore, they 
usually have far better learnability than does the global 
utility, because of the second term of DU, which removes a 
lot of the effect of other agents (i.e., noise) fromτ ’s 
evaluation function. In many situations 
it is possible to use a τc that is equivalent to taking team 
τ  out of the system. Intuitively this causes the second 
term of the difference utility to evaluate the global utility 
of the system without team τ  and therefore DU evaluates 
the teams’ contribution to the global utility. 
For some specific classes of utility such as the DU, this 
observational demand may be relaxed, since many of the 
elements of the worldline cancel out and may be ignored. 
In these cases we must approximate the utility under the 
constraints of partial observability. We denote the 
component of z that is observable by _ using the vector 

τOz  and the part of z that is not observable by τ  using 

the vector τhz  . The vector τOz  is the same as z except 
that all the elements that are not observable by τ  are set to 

zero. We call τOz  the observable components of the 
worldline. The vector z is the sum of these two vectors: 

ττ hO zzz += . It is assumed that team τ  can 
always observe all components of τz . If the DU depends 

on any component of hz  then we cannot compute it 
directly. Instead there are several approximations to the 
DU that vary in their balance between learnability and 
factoredness. In this paper we discuss 
 
four approximations1 : 
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(5) 
Where [.]E  is the expectation operator. Note that BTU, 
as well as BEU, assume that the true global utility can be 
broadcast despite having only partial observability. 
We assume that the observational capability of a team goes 
up with the size of the team. This property of team size can 
happen for a number of different reasons including, larger 
teams having more resources and greater coverage of 
different areas. 

IV. LEARNING TO SCORE USING RFNN 
Recurrent neural network systems learn and memorize 
information implicitly with weights embedded in them. In 
[6] a recurrent fuzzy neural network (RFNN) was proposed 
based on supervised learning, which is a dynamic mapping 
network and it is more suitable for describing dynamic 
systems than the FNN. Of particular interest is that it can 
deal with time-varying input or output through its own 
natural temporal operation [3]. Ability of temporarily 
storing information simplifies the network structure and 
fewer nodes are required for system identification. Because 
of complexity in back propagation (BP) learning approach, 
just diagonal fuzzy rules have been implemented. This 
limiting feature forces restrictions on users for employing 
more complete fuzzy rule base. In this paper a novel 
approach is proposed as a solution to this problem. We 
combined original BP used in with a particle swarm 
optimization (PSO) to train the network more easily and 
without the complexity of taking derivation.  

4.1 NETWORK STRUCTURE 
The key aspects of the RFNN are dynamic mapping 
capability, temporal information storage, universal 
approximation, and the fuzzy inference system. The RFNN 
possess the same advantages as recurrent neural networks 
and extend the application domain of the FNN to temporal 
problems [6]. A schematic diagram of the proposed RFNN 
structure is shown in Figure 3. Signal propagation and the 
operation functions of the nodes in each layer are described 

below. In what follows, k
iu denotes i-th input of a node in 

the k-th layer; k
io denotes the i-th node output in the k-th 

layer. 
 

Output Layer: Each node in this layer is called an output 
linguistic node. This layer performs the defuzzification 
operation. The node output is a linear combination of the 
consequences obtained from each rule. That is 
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Fig3. Structure of RFNN 

where 34
jj ou =  and 4

jiw  (the link weight) is the output 
action strength of the i-th output associated with the j-th 
rule. 4

jiw  are the tuning factors of this layer. Finally, the 
overall representation of input x and the p-th output is 
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where ijm , ijσ  , ijθ  and jpw are the tuning parameters and 
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Obviously, using the RFNN, the same inputs at different 
times yield different outputs. The proposed RFNN can be 
shown to be a universal uniform approximator for 
continuous functions over compact sets if it satisfies a 
certain condition. Further details about RFNN and its 
training approach have been described in an accepted paper 
by Nemesis members. 
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Here for training RFNN in order to learn how to score we 
have used following 8 parameters as inputs to RFNN: Ball 
Position(x,y), Opponent Goalie Position(x,y) and body 
direction, relative distance and direction between ball and 
target points on goal line, kick power (for decreasing 
noise). For this purpose we discrete goal line into 30 points 
and shoot region into 1800 points, and for each episode1 we 
keep successful kicks and finally we choose the best kick 
among them according to two factors, first maximum 
relative distance between selected goal point and goalie 
position, and selected point between outline, second, power 
of the selected kick in regard to noise.     
In order to use the trained network in our team we had to 
consider some situations which RFNN does not cover them. 
So, we used our previous computational kick when such 
cases occur. For example some situations in which some 
none goalie opponents block the way to reach the RFNN 
selected goal point.     
 

V. FUTURE WORK 
We plan to develop our team performance by considering 
coverage control in both defense and offense areas. 
The coverage control problem refers to the use of a 
collection of players to provide visual and tactical coverage 
for a given area of the field. Given a set of N players, we 
wish to allocate each player to a region in which it is 
responsible for providing visual and tactical information. 
One decentralized approach is to partition a region Q into a 
set of polytopes: NWWW ,...,1=  that cover Q. Each 
polytope is assigned to a specific player to each region and 

we let ++ → RRfi :  represent the sensing performance 
of a player based on its distance from a given point, with f 
small representing good performance. We then form the 
coverage control problem as choosing the locations of each 
player such that we minimize: 
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     Where φ  is a distribution density function that 
represents the importance of a given area.(For example 
around the ball has more density than beside the lines) 
     A key element of this approach is that the only 
communication required is with the nearest neighbors of the 
player (See Figure 4). 
 

 
Fig. 4. Agents reform themselves such that they cover 
around the blue point. 

VI. CONCLUSION 
This paper presents our simulated soccer team strategies to 
improve Nemesis performance. In all of our implementation 
we consider soccer 2D environment as an uncertain and 
dynamic one, hence we try to apply machine learning and 
AI techniques according to partial observability of agents. 
Our research focuses on partial observable markov decision 
process and makes use of reinforcement learning algorithms 
for kick skill and in team formation. Afterward we 
concentrate on improving the important part of simulation, 
means “learning to score". In order to achieve this purpose 
we used a recurrent fuzzy neural network to learn shoot 
skill. Simulation results have been verified our approaches 
and show the structure improvement as well. At last we will 
employ coverage control as our future work to enhance our 
team’s capabilities. 
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