
The Global Architecture for the RoboCup Mixed Reality

Sub-League proposed by the UFRN-POTI Team - version 2008

Adelardo A.D. Medeiros, Pablo J. Alsina & João Paulo F. Guimarães
Departement of Computing Engineering and Automation - DCA

Federal University of Rio Grande do Norte - UFRN
59078-900 – Natal RN – Brazil

Abstract—In this paper we present the concept of
a global system to dispute the Mixed Reality Sub-
League of RoboCup. The concept includes the specifi-
cation of a proposed general system architecture, com-
posed of software modules and their communication
interfaces. We also write about some of these software
modules and present the state of their development.

I. Global architecture

In the Mixed Reality sub-league, the field (a hor-
izontally mounted monitor) is overseen by a camera
connected to a global vision system. Both the robots and
entities projected on the screen (e.g. the soccer field) are
seen and tracked by the vision system. Depending on the
application, some elements may be virtual or physical
in nature (e.g. a soccer ball, obstacles). The central
server provides an interface relaying these perceptions to
client programs developed by the teams, which in turn
send commands to the central server. The central server
forwards the commands to the robots themselves using
infrared communication.

Robots
& field

(real world)

Server

ClientClientClient Client

m
em

or
y

S
ha

re
d

Viewer

Viewer

brator
Cali−

Commands Commands

... ...
Team Team

Global state

statestate

...

Local
state state

Local

Global Global

Commands Positions

Socket
Memory

Data flow

Only once, when

Communication

manager manager
CameraIR

sender desires
Only when the
receiver requests

Always when the

receiver desires
Always when the

the receiver starts

File

Fig. 1. Global architecture

We propose a global architecture for the Mixed Reality
system represented in Figure 1. The software system is
composed of 7 modules; each one can be executed at a
different machine or at the same one. Communication
between modules is described later (Section I-B). The
modules are:

• Client: each instance of the Client module inde-
pendently controls one robot of a team. Clients

receive information from the Server module about
the positions of the objects on the field. According
to the rules of the specif application, information
can be complete (global state) or partial (local state
- for instance, when a player only sees objects into
a certain field of view). Clients send the reference
velocities of the robots (logical commands) to the
Server module.

• Viewer: graphically represents the current state of
the game. Several Viewers can be simultaneously
running. Normally, at least one instance must be
running and displayed on the screen on which the
robots are playing. Viewers receive the global state
of the game from the Server module.

• IR Manager: receives logical commands (reference
velocities) from the Server module and sends them
to the robots (physical commands).

• Camera Manager: processes images captured by
the camera to extract positions of objects. These
positions are converted to appropriate units (see
Section I-A) and sent to the Server module.

• Server: this central software routes data from one
module to another one and simulates the behaviour
of the virtual elements of the game.

• Calibrator: before the game starts, it calculates the
calibration parameters of the system and informs
them to the Camera Manager module. These pa-
rameters model the characteristics of the camera
(resolution, distortion, position) and of the field
(size, position, luminosity, etc.).

• Simulator: this module, not shown in Figure 1,
replaces the real world when we cannot or prefer
not to play with the actual robots. In this situation,
the Simulator module communicates with the Server
module to replace both the IR Manager and the
Camera Manager modules.

A. Position units

Some of the difficulties to use and to adapt the current
version of the Mixed Reality server are caused by the
choice of using a “physical” unit (pixels) to represent the
position of the objects at the field. When the screen size
or the camera resolution changes, all modules have to be
adapted.

We propose to adopt a “virtual”unit (VU) to represent



the positions. The field size is fixed in VUs in the
competition rules (for instance, 32000 × 18000 VU).
The Camera Manager is the only module that knows
about physical units and converts them to VUs, using
information provided by the Calibrator module.

The actual size and velocities of the robots are not
constant in VUs. The Calibrator module, besides cal-
culating the equivalence between physical and virtual
units, also converts the physical size of robots to VUs
and informs the Server module of the virtual size. This
piece of information is propagated to Clients, so they can
adopt a control strategy based on the actual velocity
capabilities of the robots, and to Viewers, to represent
robots with correct dimensions.

B. Inter-module Communication

We propose adopting sockets as the communication
medium between all modules, with two exceptions de-
scribed later. Adopting sockets has some advantages:

• the modules can be executed in the same or in
different machines;

• the modules are independent, in such a way they can
be developed with different programming languages
and executed in different operating systems.

We suggest not adopting sockets in two cases:

• To transfer information from the Calibrator to the
Camera Manager modules. Communication between
them only occurs when the Camera Manager module
starts; in this case, it seems to be more appropriate
to use a specific file, written by the Calibrator
module and subsequently read by the Camera Man-
ager module. Using the file, it is not necessary to
recalibrate the system every time, if the conditions
have not changed.

• In some situations, the refresh rate of the Viewer
module can be high and data flow through the socket
linking it to the Server module can considerable,
possibly introducing a bottleneck. To prevent this
situation, we advocate the existence of two commu-
nication ways between these two modules, so that
both of them can or cannot be simultaneously used:

– the usual communication by socket;
– a shared memory, written by the Server module

when it has new data and read by the Viewer
module when it needs.

II. Software development

A. Calibrator

We implemented a Calibrator program for Linux that
uses the Qt [1] library. Figure 2 showns two screens of
the program.

To begin the calibration process, the user captures an
image of the monitor with the robots and an instance of
the Viewer being displayed on it. Then, several lines must
be positioned with the mouse to delimit the borders of
the game field. Using the virtual size of the field (32000×

Fig. 2. The Calibrator program: calibrating field borders (up) and
robot labels (down)

18000 VU) and the lines’ intersection points, the program
calculates the camera parameters (extrinsic and intrinsic
parameters and radial distortion) [2] and the conversion
from pixels to VUs [3].

A second step concerns calibrating the recognition of
labels, the marks on top of the robots. Without details,
the idea is to use a color space suited to this purpose
[4] where hue, saturation and luminance are calculated
for each pixel. Intervals of these color parameters are
adjusted by the user to correctly segment the image,
separating the pixels belonging to robots from the other
ones.

B. Camera Manager

The Camera Manager module processes images to
obtain positions of objects in the field (robots). The
program starts by reading information generated by the
Calibrator module. After that, it continuously waits for
the last image captured by the camera and process it
to localize robots. These positions are sent to the Server
module as soon as they are available.

To process an image, the program only searchs the
field region, delimited by the Calibrator program. The
search looks for pixels belonging to robots, using the
previously calibrated intervals of color parameters. When
such a pixel is found, a filling algorith is used to find all
neighbour pixels belonging to the same robot. Knowing
the form and color of the labels, this set of pixels allows
calculating the position and orientation of the robot.



C. Viewer

We have developed a OpenGL-based [5] Viewer pro-
gram for Linux. At the present time, only the shared-
memory communication mechanism (see Section I-B) is
available; sockets will be included soon.

Figure 3 shows a snapshot of the program. The drawn
field maintains its width/height proportion always equal
to the width/height proportion of the virtual field (see
Section I-A).

Fig. 3. The Viewer program

D. IR Manager

Our IR Manager uses the USB port to send data to the
infrared transmitter [7]. It is composed of a single thread
that continously waits for data in the socket, converts the
received logical command into a physical one and sends
data via USB to the appropriate robot.

E. Server

The Server module was implemented using several
threads:

• Two threads manage communication with Client
modules (one for each team). When data arrives,
there are two possibilities:

– The Client has sent a command. In this case, the
local robot ID used by the Client is converted to
the corresponding global (physical) one and the
command is sent to the IR Manager module.

– The Client has requested the game state. To
fulfil the request, the last calculated global state
is eventually manipulated to eliminate or to
transform information that should not be in-
cluded in the local state and the result is sent
to the corresponding Client module.

• One thread carries out requests from Viewer mod-
ules when they arrive by socket, sending them the
current global state of the game.

• One thread continuously waits for data from the
Camera Manager module to export it to a shared

memory, where the available most recent position of
robots can be read by other threads.

• One thread periodically simulates and updates the
position of all virtual objects in the field.

The program takes into account all collisions between
virtual objects and other (virtual and real) entities to
simulate the virtual objects. One funcionality not yet
implemented but planned is to filter and to generate
commands to simulate effects of virtual entities on the
robots’ behaviour: for instance, not allowing the real
robots to go out of the field.

F. Simulator

We had already developed a dynamic simulator for an-
other type of mini-robots [6]. This program was adapted
to simulate the Eco-Be! robots and to replace the mod-
ules IR Manager and Camera Manager when the actual
robots, infra-red transmitter and camera are not used.

References

[1] Trolltech. Qt documentation. http://doc.trolltech.com/.
Accessed 01/2008.

[2] Forsyth, David A.; Ponce, Jean. Computer Vision: A Modern
Approach. Prentice Hall, 2002.

[3] Aires, Kelson R.T.; Alsina, Pablo J.; Medeiros, Adelardo A.D.
A Global Vision System for Mobile Mini-Robots. SBAI 2001 -
Simpósio Brasileiro de Automação Inteligente. Gramado, RS,
Brazil, 11/2001.

[4] Medeiros, Adelardo A.D.; Mendes, Ellon P. The HGP (Hue-
Grayness-Purity) Color Space to Segment Colored Structured
Environments. To be published.

[5] OpenGL Working Group.OpenGL documentation. http://
www.opengl.org/. Accessed 01/2008.

[6] Yamamoto, Marcelo M.; Pedrosa, Diogo P.F.; Medeiros, Ade-
lardo A.D.; Alsina, Pablo J. Um Simulador Dinâmico para
Mini-Robôs Móveis com Modelagem de Colisões (A Dynamic
Simulator for Mobile Mini-Robots with Modelling of Colli-
sions). SBAI 2003 - Simpósio Brasileiro de Automação In-
teligente, pp. 852-857. Bauru, SP, Brazil, 09/2003.

[7] IRTrans. IRTrans USB documentation. http://www.irtrans.
de/en/. Accessed 01/2008. ’


