| ntegrating pur posive vision with deliberative and reactive planning: engineering
support for robotic applications

AnnaH. Redli C.Rillo* LeianeN. Barros® ReinaldoA. C. Bianchi?
! Department of Computer Engineering (PCS)
2 Laboratory of Integrated Systems (LS)
University of Sdo Paulo (USP)
Av. Prof. Luciano Guaberto, trav. 3, 158
05508-900 S&o Paulo SP Brazil
arillo@pcs.usp.br, Ieliane@ls.usp.br, rbianchi @l s.usp.br

Abstract

We propose a multi-agent vision-based architecture to solve complex sensor-based planning tasks. A test bed implementation, with
skills such as vison and collison avoidance, was used to run experiments in the proposed architecture. We demonstrate
experimentally how the system can execute successfully complex assembly plans while dealing with unpredictable events and
imprecise information, with no significant cost in run-time efficiency. Such experiments provided important insights about vison and

planning and on how to build real world robotic systems.

Keywor ds: purposive vision, multi-agent architecture, planning and execution, deliberative planning and reactive planning.

1. Introduction

To solve complex problems in a rea dynamic world, an
intelligent system mugt be able to interact with its
environment through sensing, processing and transforming
information about the surrounding world into different levels
of representation. Such processed information is then used by
the system to interact back with the environment through
robot actions. The idea of congtructing such an intelligent
system has been the ultimate goa of the Artificia Intelligence
(Al) areaand has led this community to investigate a number
of other robot capabilities, such as: to generate and execute
complex plans, to perform online resource alocation; to degl
with problems as they arise in red-time (reaction); and to
reason with incomplete information and unpredictable events.

In view of the inherent difficulty of the problem and the
limited results obtained from Al in wel-behaved artificia
domains, running experiments is a good way to accomplish
the god of understanding the systems built. Experiments can
provide: (i) preiminary confirmation of parts of a reasoning
theory; (ii) suggestions of possible modifications to the
theory, to the test bed environment, and to the robotic system
embedded in the environment. Moreover, they can suggest a
large number of additiond experiments that in order to
expand and strengthen the original theory [1].

In this work we propose a multi-agent architecture that
integrates visual perception, planning, reaction and execution
to solve red world problems. We run a number of

experiments using this architecture gpplied to an assembly
test bed domain. The experience of building the robotic
system provided important insights about vision and planning
and on how to build real world robotic systems.

2. Evolution of visual perception and
planning

Traditiondly in Al, an intelligent system is viewed as a set
of independent cognitive modules. As illugtrated in Figure 1,
those basic modules are: perception, planning, learning, and
execution. Within this view, complex problems are solved by
the execution of individual modules that can exchange
information through well defined interfaces. The assumption
of independent processes brought up enormous difficulties
because of the unexpected interactions of those parts, as we
show bellow for the two modules: vision and planning.

S e

Perception
Learning

Figure 1: Modular view of anintelligent system.
2.1 Vidon

According to the modularized view of intelligence, visud
perception has to provide a complete interna description of
the world scene to dl the other modules. Such approach

originated the so called recongtructive or recovery paradigm

[2, 3]. The god of recovery vision is to derive, from one or

more images of a scene, an accurate three-dimensiona

description of the objects in the world and quantitatively
recover its properties from image cues such as shading,
contours, motion, gereo, color, etc. Thus recovery
emphasizes the study of task-independent visud abilities

carried out by a passive observer [3].

The recovery paradigm has led to computational theories
and agorithms dealing with interna world representations, all
of which try to establish generd purpose methodologies and
representations preserving as much information as possible.
However, implementing these idess has often led to
unsatisfactory results. In fact, thanks to the recovery approach
we now understand that “vison is an underconstrained
problem, i.e., an image does not contain enough information
for a complete and unambiguous recongtruction of a 3-D
scene’ [2]. Traditional approaches have to be improved upon:
() by increasing run-time efficiency in generating a useful
world modd, and (ii) by imposing enough congraints to the
vison problem. This has led to an dternative approach,
called purposive approach [4], which embodies the following
features:

- Visud systems are active, they have to control the image
acquisition process, introducing congraints that facilitate
the recovery of information about the 3D scene[4];

- Perceptua systems have arelationship with the surrounding
world. An active observer, which wants to reconstruct an
accurate and complete representation of the world, needs a
large amount of computational power. The best way to
implement its relationship with the world is by determining,
through the vision system, what information derived from
the image should be used and what corresponding
representation is needed [4]. This depends on the tasks the
system hasto carry out, i.e., on its purpose.

According to the purposive approach vision should not be
consdered as a sdf-contained module, but as an entity
containing other intdligent capabilities, i.e, planning,
reasoning and learning, al of which cooperate to solve
specific tasks. Intelligence should not be divided into isolated
cognitive modules, but decomposed in terms of behaviors
[4]. In Figure 2 each ring corresponds to a specific
decomposed behavior. For example, a robot that navigates
while avoiding collisons shows a behavior that can involve
planning, perception, execution and learning.

Execulion

Figure 2: Decompodition of asystem into behaviors.

2.2 Al planning

From the early days of Al planning, the idea of dividing
the origina problem into smaller ones has shown to be an
efficient way to obtain some important results. The strategy of
dividing a problem into smaler subproblems has been
explored in the classicdl, ddliberative, planning literature; first
with the use of drategies such as divide-and-conquer and
means-ends-andysis from the very early planning systems,
next by solving a god a a time and subgoaling from the
partiad-order planners, and finally with goa decomposition
from the HTN planners[5]. Although those strategies brought
on extra problems like non-linearity, goa interaction and
congraints inconsstency, they contributed to gradualy
reduce the complexity of the classica planning problem for
different classes of domain applications[6].

The same happened in reactive planning, where the idea of
reducing a problem came first with a collection of smple,
interacting and dedicated behaviors. The clam of such
sysems was that the scalability of the system to higher
cognitive functions can arise from the organization of severa
dedicated behaviors [7]. However, scdability is questionable,
since mogt work done with grictly behaviora robots is not
based on complex sensors and does not go beyond navigation
tasks[8].

We may condder the deliberative and reactive planning
approaches as two independent problem solving methods that
can be combined to solve more complex problems. Recent
contributions[8, 9, 10] have proposed a hybrid architecture to
combine the deliberative approach (containing a symbolic
world model, developing plans and making decisions), and
the reactive one (capable of reacting to events that occur in
the environment without engaging in complex reasoning). A
complex system can be built out of ahierarchy of subsystems,
50 that the higher levels process more abstract information
than the lower levels. To ensure fast responses to important
environmental events, the reactive agents often are assigned
to the lower levels of the hierarchy, meaning that they have
precedence over the ddliberative agents.

Exigting research has not yet produced an ultimate
paradigm for the distribution and coordination of the skills
required for intelligent robotic systems acting in the red
world. Some of the desirable festures that a distributed
planning approach should have are:

1. the robot actions should be of two types: reactive actions
and actions selected as aresult of aplan generation;

2. the robot should be able to combine at run time sensing
and action activities in order to creste a complex god
oriented behavior.

We propose a multi-agent architecture that combines both
deliberative and resctive planning, capable of taking
advantage of environmental and task congtraints, and yet
flexible enough to respond to dangerous Situations and failed

expectations. One advantage of this architecture is that the
expected behaviors of the system are modularized, alowing
the design of different tasksto work in different contexts.

3. Thetest bed application domain

In most real assembly lines a robot first locates each part
through avision system that recognizes and givesinformation
about the positions of the parts. With the given sensoria
information the robot can start to execute a plan to satisfy its
origind assembly goal. This task should be executed
continuoudy in the sense that new assembly parts can be
placed on the table by a human or another robot. However,
the human could also place a“trash” object, not related to the
assembly task, which can disturb execution of the task. If the
vision system detects parts that do not belong in the assembly
task, the robot is supposed to clean the work area.

An essentia capability of the robot should be to detect and
avoid possible collisions between the robot arm and a human
(or another robot), while it is executing the cleaning or
assembly task. In order to avoid collisions, both the cleaning
and assembly tasks can have their execution interrupted until
thework areaisfree of collison contingencies.

An application example was implemented in the LS
Fexible Assembly Cdl [11]. In Figure 3 we show the
configuration of the cdl that served as a test bed for our
application domain.

Han Worlcstation

Haih Workstadioe S Wik =radian

e
e
-.I|

u—'{”ﬁhunwl Bletwoek

Tl it Lt o

—_'
Wideo Camern BRI B L

Figure 3: Configuration of the LSl cdll used for the assembly
domain.

Given a number of parts on a table, mortises and tenons,
the god is to find the matching pairs in order to join them.
The assembly pairs can have different sizes, consequently the
matching has to be done between pairs of the same size
While the main task is being executed, unexpected human
interactions can happen. A human can change the
configuration on the table by adding new parts to be
assembled or some “trash” objects which cause the robot to
perform the cleaning task.

The key feature of the assembly robot is not so much its
ability to reason about assembly, but rather its ability to
choose timely and effective actions to cope with an uncertain
and changing environment. Assembly on this test bed can be
characterized as complex and reactive planning task since a
number of subtasks are carried out:

To generate and execute complex plans

The assembly domain is atypica case of a planning task.
Assume tha this domain is represented by a hierarchy of
tasks, which describes how to decompose higher level tasks
into lower level ones. The lower leve tasks correspond to
sensng and action. From the point of view of reducing the
complexity of the problem, we assume further thet to esch
domain of the solution corresponds a desired behavior which
is independent of any other behavior whatsoever. To each
desired behavior a hierarchy of tasks is defined. Therefore,
we can partition the solution into three domains with a task
hierarchy assigned to each, namely the assembly task, the
cleaning task and finally the collision avoidance task.

Figure 4 illustrates some of the decomposition tasks from
the assembly domain. The assembly task can be decomposed
in the subtasks. Scan for free parts, Sdect pair, Pick-up
object, Move object and Join pair. The subtask Scan for free
parts can be decomposed into: Capture image, Detect objects
and Calculate size and position. Findly, the Detect objects
subtask can be decomposed into: Recognize mortises and
Recogni ze tenons.

ASSEMBLY
Y

Scan for Select Pick-up Move Join
free parts pair object object pair

Scan for Detect

free parts objects

Capture Detect Calculate size| |Recognize Recognize

image objects and position mortises tenons

Figure4: Examples of task decomposition.

The difficulty in the execution of the assembly task rests
on possessing adequate image processing and understanding
capabilities, appropriately dealing with collison avoidance
interruptions and human interactions with the configuration of
the work table..

To perform online resour ce allocation

A resource is defined as a part of the system that can be
time-shared by different problem solving processes. The
resources to be shared in the assembly application are the
camera and the manipulator. both the camera and the
manipulator are shared by the three concurrent task
hierarchies. assembly, cleaning and collison avoidance. No

conflicts arises due to a request for the camera resource by
any of the three hierarchies. On the other hand, the
manipulator is highly disputed and hence the tasks have to
obey a specific policy for conflict resolution, since only one
task should control the manipulator in a given moment. The
collison avoidance task should have the highest priority in
order to prevent accidents, with the cleaning task second with
ahigher priority than the assembly task.
To sensetheworld
The robot posses the vision cgpability to sense the world,
i.e., to recognize and locate the assembly parts, trash and to
detect movement in the scene.
Todeal with problemsasthey arisein real-time
The collision avoidance task has to be performed in redl-
time to protect the human operator and preserve the devices.
To reason with incomplete information and
unpredictable events
Human interactions can happen a any time interfering
with the Assembly task in different and unpredictable ways:
the operator can add trash or new assembly parts and the
robot hasto be able to properly ded with that.

4. ThevVIBRA architecture

The VIBRA - VIsion Based Reactive Architecture can be
viewed as a society of Autonomous Agents (AAS), each of
them depicting a problem-solving behavior due to its specific
competence, and collaborating with each other in order to
orchestrate the process of achieving its goals[12].

The term agent assumes a variety of meaningsin Al. We
will rely on the definition of agents as “computational
systems that inhabit some complex dynamic environment,
sense and act autonomoudy, and by doing so perform a set of
goals or tasks for which they are designed” [13].

Multi-Agent Sysems (MAS) define the agent's
organization in a society, where relaionships of authority,
communication, control, and information flow are described.

The explicit use of socid rulesin the definition of an agent
enables it to achieve its dynamically-acquired goals without
interfering with others. As conditions change, new agents can
be implemented and activated in the society during the system
execution. On the other hand, those agents that are not
performing well can be disabled.

Severa advantages of using MAS to build complex
systems are listed in [8, 14], wich includes modularity,
pardldism, robustness, scaability, smpler programming,
flexibility and reusability.

The vIBRA architecture is a multi-agent system, which
processes incoming asynchronous goa requests dictated by
sensory data, prioritizes them, temporaly suspends lower
priority actions, and interleaves compatible behaviors.

VIBRA is proposed as a flexible architecture for the
development of different visualy guided robotic tasks, as it

contains specialized vison knowledge that has been
accumulated on previous research work [15].

To ded with interactions among the agents, the society is
controlled by a policy involving conducting rules and an
authority structure. This policy enables the agents to decide
which agent should have the control of a resource a each
moment. The authority structure defines the agent’s priority
level in the use of a specific resource. The authority structure
is domain dependent: the priority levels vary for each agent
and each resource. In genera, reactive tasks should have a
precedence over ddiberative tasks, and in this way the
authority structure is a rank ranging from the most reactive
agent to the most deliberative one.

The conducting rules define how the authority structure
can be used to control the communication and share resources
among agents. In the VIBRA architecture we adopt the
following three smplerules:

Rule# 1: Only one agent can control aresourcein a given moment.

Rule# 2: At any moment any agent can request control of aresource
from an agent with lower authority than itsalf.

Rule # 3: An agent can only request control of a resource from a
higher authority agent if that agent is releasing control.

4.1 Structureof an Autonomous Agent

An AA iscompaosed of eight components (Figure 5):

1. Communicator module: responsible for interactions
between AAs and the planner/executor module. It knows
about protocols, languages and society policy.

2. Planner/Executor: responsible for generating and
executing a plan to solve the task that will exhibit the
behavior expected from the AA. The complexity of this
modul e depends on the competence of the agent.

3. Primitive Agents (PAs): executes smple tasks, including
sensing and acting. The AA can only receive sensorid
information by activating the respective PA.

4. Protocols and languages of interaction: define the
communication capability of the agent.

5. Authority structure: consists of the relation resource/agent
priority level.

6. Conducting rules of the society: define priority levels for
each pair resource/agent.

7. St of AAsinthe society: liststhe AAs of the society.

8. Symbolic representation of the world: represents the
knowledge about the environment needed by each agent.
This modd is used to define al AAs in the society, no

matter what their behavior is. A specid agent in the society

can create, change or destroy the society, by adding or
deeting agents, and controlling the resources a the
initialization or termination phase of the society.

In the next section we detail the communication language,
an essentia feature in amulti-agent environment.

Figure5: Agent modd.
4.2 AA’sCommunication Languages

The Communication Language among AAs in the society

isdefined by the following message prototype:

<interaction> ::= <nature><type><content>

The nature of the message can be decision or control. The
control messages are used in the initiaization, modification
and terminaion of the society and consst of: addAgent,
deleteAgent, acknomedge, inform, requestAll, freeAll. The
decision messages are used to define which agent will take
the control of a resource at a time, and they are: request,
transfer and free (see Table 1).

A different set of messages is used for the internd
interaction between the planner/executor (EX) module and
the communicator (C) module. The nature of this
communication language is information, and they ae
request, free, received, logt, halt, information (Table 2).

<npature> <type> <content> Description

addAgent <name of the new agent> <new authority structure > Add anew agent in the society
deleteAgent <name of the agent> Delete an agent

control inform <resource> <free|in use> < name of the agent> Inform about the allocation of the resourcesin the society
requestAll Request al resourcesto al agentsin the society
frecAll Freed| resources
acknowledge Acknowledge theinsertion or deletion of an agent
request <name of the requesting agent> <resource> Request aresource

decison free <name of the agent> <resource> Inform when aresource dlocated by the agent isnot in use
transfer <name of the requesting agent> Inform &l agents about the new resource controller

<resource> <date of the resource>

Table 1: Types of messages defined in the communication language for interactions among agentsin the society.

<nature>: information

From® To <type> <content> Description

EX® C request <resource> Inform that aresource is needed

EX® C free <resource> Inform that the resource is not in use anymore
C® EX received <resource> <date of the resource> Inform that the resource was acquired and its sate
C® EX lost <resource> Inform that another AA istaking the resource

C® EX halt Halt execution

EX« C information <resource> <dtae of the resource> Update the state of the resource

Table 2: Types of messages changed between the AA communicator module and its planner/executor module.

5. Theassambly application in theviBRA
architecture

In this application, AAs were dlocated on severa
workstations, executed as independent and pardle distributed
processes, communicating through the Ethernet/ ATM
network. The cameraisfixed abovethe work area.

For the assembly application, we have defined three
different behaviors, each one corresponding to an AA:

Assembler agent: to accomplish the assembly task,
picking up pieces (tenons) on the work table with the
manipulator and putting them in adesired location (mortises);

Cleaner agent: to clean up the work ares, teking away
trash objects added by humans or another manipulator;

CollisonAvoider agent: to avoid collisons of the
mani pulator with objects moving in thework area.

51 Experimental results

The experiment focus on the interaction between the
Cleaner and CollisonAvoider. A human can place a trash
object (a circular piece) on the work table, a any moment,
activating the Cleaner; each time amoving object is detected,
the cleaning task is interrupted and the CollisonAvoider is
activated; when the moving object disappears from the scene,
the Cleaner resumes itswork, finishing the trash removal.

Different aspects of the experiment results are shown in
Figure 6 and Figure 7. Figure 6 shows the image sequence
and Figure 7 the exchanged messages between the AAs.

[12: 50: 00] [12:50:03] | [12:50:08] [12:50:09]

13 14 15 16

[12: 50: 10] [12:50: 11] [12: 50: 12] [12: 50: 14] [12: 50: 15] [12: 50: 15] [12: 50: 16]

17 18 19 21 22 23 24

[12: 50: 50]

[12: 50: 20] [12: 50: 21] [12:50:56] | [12:50:57]

[12: 50: 22]

29

31 32

25 26 27

[12:51:08] | [12:51:08]

[12: 50: 58] [12: 50: 59]

[12:51:00] | [12:51:01] [12: 51: 07]

Figure6: Sequence of images showing 2 unknown objects being placed and removed from thework area.

Agent Communi cation Log Archive

Started at host nausika at Fri Dec 12 12:49:27 1997

[AGENT NAME][TIME] and Message

[assenbl er 1[12: 50: 01] Message received From collisionAvoi der. Message: (request (collisionAvoider)
(mani pul ator)).

[assenbl er 1[12:50: 01] (transfer (collisionAvoider) (manipulator) (initial resource working state))
[assenbl er - execution][12:50: 01] LOG MESSAGE: Resource Mani pul ator Lost

[col Iisi onAvoi der - exe] [12: 50: 01] LOG MESSACGE: Resource Mani pul at or Recei ved

[col l'i si onAvoi der 12:50:12] (free (nmanipul ator))

11

[col I i si onAvoi der 1[12:50: 14] Message Received From: cleaner. Message: (request (cleaner) (manipulator)).
[col l'i si onAvoi der]1[12:50: 14] (transfer (cleaner) (manipulator) (initial resource working state))
[cl eaner-execution][12:50:14] LOG MESSAGE: Resource Manipul at or Recei ved
[cl eaner]1[12:50: 25] (free (manipul ator))
[col i si onAvoi der-exe] [12: 50: 47] LOG MESSACGE: Resource Mani pul ator Needed
[cl eaner 1[12:50: 47] Message Received From collisionAvoi der-execution. Message: (request
(mani pul ator)).

cl eaner 12:50: 47] (transfer (collisionAvoider) (nmanipulator) (free working state))

col | i si onAvoi der - exe] [12: 50: 47] LOG MESSAGE: Resour ce Mani pul at or Recei ved

col i si onAvoi der 12:50:52] (free (manipul ator))

cl eaner - execut i on 12:50: 54] LOG MESSAGE: Resource Mani pul ator Needed

col I'i si onAvoi der 12:50:54] (transfer (cleaner) (manipulator) (free))

cl eaner - execut i on 12:50: 54] LOG MESSAGE: Resour ce Mani pul ator Recei ved

col I'i si onAvoi der-exe] [12: 50: 57] LOG MESSAGE: Resour ce Mani pul at or Needed

cl eaner 12:50: 57] Message Received From: collisionAvoi der. Message: (request
(col l'i si onAvoi der) (manipulator)).

cl eaner 12:50: 57] (transfer (collisionAvoider) (manipulator) (object trash held))

col l'i si onAvoi der-exe] [12: 50: 57] LOG MESSAGE: Resour ce Mani pul at or Recei ved

cl eaner - execut i on 12:50: 59] LOG MESSAGE: Resource Mani pul ator Needed

col l'i si onAvoi der 12:51: 06] (free (manipul ator))

col | i si onAvoi der 12:51: 06] Message Received From: cleaner, Message: (request (cleaner) (manipulator)).

col i si onAvoi der 12:51: 06] (transfer (cleaner) (manipulator) (object trash held))

cl eaner - execut i on 12:51: 07] LOG MESSAGE: Resour ce Mani pul ator Recei ved

cl eaner 12:51:12] (free (manipul ator))

Figure7: Message exchange among agents.

The system is Started at 12:49:27, and the actions (scan- images 1 and 2). At 12:50:00 an unknown object enters the
for-dtatic-object trash) and (detect-moving-object object) are work area and keeps moving for 10 seconds. During this
gsarted by the Cleaner and CollisionAvoider (Figure 6, time, the actions (freeze manipulator) and (keep-on-moving

object) are executed smultaneoudy by the CollisionAvoider,

in parald with (scan-for-static-object trash) by the Cleaner.

The CollisonAvoider (images 3-12) detects movementsin
the work area and requestes control of the manipulator to
freeze it. The CollisonAvoider reguests the manipulator at
12:50:00 (image 3) and receives it at 12:50:01 (image 4). In
pardld the Cleaner agent (images 1-11) keeps on scanning
for static objects. The human interaction ended at 12:50:12
(image 11) and the CollisonAvoider frees control of the
manipulator alowing Cleaner, who detects a trash piece on
the table, to request the manipulator (image 12). The action
(detect-moving-object object) restarts.

Cleaner’s actions (pickup-object trash trash-position)
(images 12-17), (move-object trash trash-can-position)
(images 17-19) and (drop-held-object) (image 19) ae
executed, removing the trash piece from the work table. Then
the action (scan-for-tatic-object trash) restarts.

At 12:50:47 another unknown object enters the work area,
and is placed on the work table at 12:50:50 (images 20-21)
and the CollisonAvoider operates. When the object is placed
on the table, the Cleaner begins to remove it, sarting to
execute the action (pickup-object trash trash-position)
(images 22-23). During the execution of this cleaning action,
another unknown object enters the work area (at 12:50:57,
image 24), and CollisonAvoider operates (images 24-28). At
12:51:05, the object leaves the work area and the Cleaner
finishes its action (pickup-object trash trash-position)
(image 29) and executes (move-object trash trash-can-
position) and (drop-held-object) (images 30-32). By
andyzing the data generated some response times can be
determined:

1. Table 3 presents the maximum and minimum speed an
object can have so that the CollisonAvoider can detect it,
when it is done in the society. Using low resolution image,
maximum speed is higher because the agent acquires more
images per seconds, and at medium resolution, minimum
speed islower since we can have higher precision images,

Img Resol. (pixels) | Max. Speed (m/s) | Min. Speed (cm/s)
Low (64 x 48) 6.05 39
Medium (120 x 80) 11 36
Table 3: Maximum and minimum speed for moving
object.

2. Table 4 shows the reaction time the CollisionAvoider takes
when amoving object entersin the work area. The reaction
time is dependent on the image resolution and on the
network throughput, asimages need large bandwidth;

3. Table 5 presents average times for the Cleaner to complete
its actions, when not interrupted by another agent. Network
delay is high because Cleaner and the Image Acquisition
agents are not hosted on the same machine and Cleaner
works with (320 x 240) images. As expected, the robot

working timeisthe most criticd.

Configuration Proc. | Com. | Net. Tota
delay

CA (64 x 48) 005 | 005 | O 0.1

CA (120 x 80) 035 | 005 | O 0.4

CA+ CL(120x80) | 0.35 | 0.05 [Otol1l5 <19

Table4: Reaction Timein seconds for CollisonAvoider (CA) done
and with the Cleaner (CL) in different configurations.

Processng | Communication | Net.dday | Workingtime

lessthan1 | 0.05 2t04 10to 15

Table5: Average processing time (in seconds) for the Cleaner
agent.

6. Discusson and Concluson

This paper describes the design of an implemented multi-
agent architecture, VIBRA, which is a vison-based
architecture that can offer a proper framework for building
reective, vison-based planning applications. From a
computer vision point of view, VIBRA is a sufficiently flexible
tool to creste pecialized and efficient visual routinesto solve
specific tasks efficiently. In this way, it can be used as a
framework for knowledge acquidtion, development and
design of new robotic applications.

By applying VIBRA to the design of the assembly
application we have learned some important experiences on
building ared world robotic system. Some of these important
experiences are shared by other researchers, who aso used
the multi-agents approach in real world applications [9, 14,
16], others resulted from our work. Such knowledge can be
used to provide support on the development of new red
world planning systems[17] and they consist of:

To dlow agents coordination, it is important to decide

about division of labor and organization: defining tasks,

selecting which agent does each task, and defining when it
executes the task;

- The languages and concepts used for task description and
formulation will affect how tasks can be decomposed, and
what dependencies explicitly exist among tasks. The same
task described from different perspectives may require
different partitioning and different skills.

- A digribution of tasks among agents requires the tasks to
be formulated and described in a way to provide a better
possibility of decomposition, dlowing a natura
digtribution among agents. Tasks requiring more resources
or knowledge than an agent can possess must be
decomposed. We based our decomposition on the
definition of independent cognitive behaviors.
Dependencies among subproblems affect agent design in
terms of predicting possible data flow, decison processes

and actions.
Conflicts over interacting actions and shared resources
may place ordering condraints on agent activities,
restricting decomposition choices and cregting the need to
reconsider decomposition in different dimensions, such as
temporal, spatid, or levels of abdtraction. Those are the
parameters that a designer has to adjust in the society
behavior in order to solve the globd task god.

- The society rules depend on the type of the available
resources and on what are the needs of the agents over the
different resources.

- The authority structure of a society is deeply related to the
dependence and precedence among tasks conduced by the
AAs. To ensure fast responses to important environmental
events, precedence is given to the reactive tasks over the
deliberative ones.

Andyzing exigting theories on how a robotic system
should solve their problems, we have reached some important
insghts about the vison and planning aress. As we have
described in Section 2, by combining planning and perception
the knowledge of the stuation will be directed, rather than
predicted (or previoudy specified). By doing so most of the
uncertainty and some of the incompleteness problems can be
solved. In vIBRA thisis done by combining resctive behaviors
(e.g., the collision avoidance) with the tasks in the application
domain (e.g., join pair). The combination of deliberative and
reactive planning requires both to be run as independent
processes while solving complex tasks. VIBRA is a multi-
agent architecture proven to be efficient alowing this
combination, fulfilling the Al challenge of building intelligent
goal-driven reactive systems.

Acknowledgements

We thank Felipe M. Pait and the anonymous reviewers for
their helpful comments, and CNPq for the financia support.

References

[1] S. Hanks; M.E. Pallack; P.R. Cohen. Benchmarks,
Test Beds, Controlled Experimentation, and the Design of
Agent Architectures. Al Magazine, Winter :17-42,1993.

[2] D. Marr. Vison. New York, Freeman, 1982.

[3] T. Dean; J Allen; Y. Aloimonos. Artificia
Intelligence: Theory and Prectice. Benjamin/Cummings
Publishing Co., Redwood City, CA, 1995.

[4] Y. Aloimonos. What | have learned. CVGIP: Image
Understanding, 60(1):74-85, July 1994.

[5]. K. Erol, J. Hendler, D.S. Nau. UMCP: a sound and
complete procedure for hierarchical task-network planning.
In: Conf. on Artificid Intelligence Planning Systems. 1994,

[6] A. Barret, D. Weld. Partial-order planning: evauating

possible efficiency gains. Artificial. Intelligence, 67, 1994.

[71 R.A. Brooks. Inteligence without representation.
Artificial Intelligence, 47: 139-59,1991.

[8] A. D. Medeiros, R. Chatila. Priorities and data
abdraction in hierarchica control architectures for
autonomous robots. In: WIR, Brasilia, BR., 207-220, 1997.

[9] M. GaciaAlegre, F. Recio. Basc Agents for
Visua/Motor Coordination of a Mohile Robot. In Proc. of
AGENTS 97, Marinadel Rey, CA, USA. ACM, 1997.

[10] M. Wooldridge, N. Jennings. Intelligent Agents:
Theory and Practice. Knowledge Engineering Review, 1995.

[11] M. Rillo, A.H. Rillo, LAR. Cosa LS Assembly
Cdl. In IFAC Symposium on Information Control Problems
in Manufacturing Technology, Toronto, 361-5, 1992.

[12] RA.C. Bianchi, A.H.R.C. Rillo. A distributed control
architecture for a purposive computer vison system. In: 2nd.
Symp. on Inteligence in Automation and Robotics, 1EEE,
Rockville, MA, USA, p. 288-294, 1996.

[13] P. Maes. Artificid Life meets entertainment: life like
autonomous agents. Communications of the ACM, 38(11):
108-114, 1995.

[14] A.-H. Bond, L. Gasser. Readings in Distributed Al.
Morgan Kaufmann, San Mateo, CA, 1988.

[15] A.H.R.C. Rillo. 3D object recognition using a
decision hierarchy. In: Proc. SPIE 1771, A.G. Tescher (ed.),
Lockheed Palo Alto Research Lab., CA, p.225-33, 1993.

[23] O. Boisser, Y. Demazeau. ASIC: An architecture for
social and individua control and its application to Computer
Vision. In European Workshop on Modding Autonomous
Agents. p.107-118, 1994.

[16] M.C. Neves, E.A. Olivera. Control Architecture for
an Autonomous Mobile Robot. In Proceedingsof the
AGENTS 97 Conference, Marinadd Rey, CA, ACM, 1997.

[17] L.N. Barros, J. Hendler, V.R. Benjamins,. Par-KAP:
a Knowledge Acquisition Tool for Building Practica
Planning Systems. In: 1JCAL, Japan, 1997.

	Introduction
	Evolution of visual perception and planning
	The test bed application domain
	The VIBRA architecture
	The assembly application in the VIBRA architecture
	Discussion and Conclusion
	Acknowledgments
	References

