
A Purposive Computer Vision System: a Multi-Agent Approach

Reinaldo A. C. Bianchi1 Anna H. R. C. Rillo2

1Division of Automation and Artificial Intelligence - Laboratory of Integrated Systems
2Department of Computer Engineering and Digital Systems

Politechnical School - University of São Paulo - Brazil.
Av. Prof. Luciano Gualberto, travessa 3, 158.

05508-900 São Paulo, SP, Brazil.
E-mail: rbianchi@lsi.usp.br, arillo@pcs.usp.br

ABSTRACT

This paper describes a purposive computer vision
system for visually guided tasks and a Multi-Agent
architecture used to model it. In this architecture, the
vision system’s purpose is decomposed into a set of
behaviors, which are translated into specific tasks.
Purpose, behaviors and tasks, as well as the relationship
among them, are modeled using a Multi-Agent approach:
purpose is modeled by a society of autonomous agents,
which communicate through a common language, each
one responsible for a specific visually guided behavior;
tasks are represented by basic agents, organized in a
hierarchical structure. A description of a system that is
being implemented as a testbed for the architecture is
given, with some details on the implementation of the
agents and its communication methods. Finally, a brief
discussion about the use of the basic agents is done and
research directions are proposed.

1. Introduction

The purposive paradigm for computer vision [1], [2]
is a field of computer vision that believes that vision must
be considered within the set of tasks an agent must
accomplish. It tries to find in the purpose of the agent the
constrains to solve the ill posed problem of vision. The
purposive paradigm researchers believe that general
purpose vision will arise from the organization of several
different dedicated solutions to different visual tasks. So,
the major goal of purposive vision research is how to
organize solutions and define primitive tasks, focusing on
architectures for integration of visual systems.

Seeking an answer to this problem, we look at
Distributed AI and Multi-Agent Systems theory as a field

where a formalism to describe behaviors and their
relationship can be found. Distributed Artificial
Intelligence (DAI) is defined by Bond and Grasser [3] as
“the field of AI concerned with concurrency in AI
computations, at many levels.” Multi-Agent Systems
(MAS), one sub-area in DAI, are concerned with the
coordination of the behaviors of several autonomous
intelligent agents to solve one or more goals.

In this context, this paper presents a purposive
computer vision system for visually guided tasks based on
Distributed AI theory. This system is being implemented
using a distributed architecture where the vision system’s
purpose is decomposed into a set of behaviors, which are
translated into specific tasks. Purpose, behaviors and tasks,
as well as the relationship among them, are modeled using
a Multi-Agent approach: purpose is modeled by a society
of autonomous agents, which communicate using a
common language, each one responsible for a specific
visually guided behavior; tasks are represented by basic
agents, organized in a hierarchical structure with
autonomous agents on the top.

This Architecture has several distinguishing features,
among them the possibility of cooperation between low
and high processes, giving flexibility, modularity, and
autonomy to the system, allowing the addition and deletion
of agents responsible for behaviors, and facilitating the
integration between system and environment.

Finally, this paper also presents some details on the
implementation of the basic agents and the communication
methods used by all agents.

2. Related works

Various works inspire the proposed architecture,
among which we mention: Brooks’ [4] Subsumption
Architecture, where a system is composed of layers with

specific tasks, and where each layer interacts directly with
the world through perception and action; Elfes [5]
Distributed Control Architecture, where a system is
divided into processing levels and where independent
processes communicate through a blackboard; and Boissier
and Demazeau works on the ASIC Multi-Agents Control
Architecture [6] and the MAVI system [7], which integrate
different visual modules using MAS theory.

Rivlin et al. [8] and Aloimonos [1] also inspired this
work. Aloimonos [1] works raise a criticism to Brooks
architecture, observing the lack of cooperation between
low and high level processes. This criticism stimulated a
large portion of the efforts aimed at the solution of these
problems, resulting in the architecture presented below.

3. The multi-agent architecture

In this section a brief description of the architecture
used in our system is made. In this architecture, a system is
modeled with Autonomous Agents (AAs), each one
responsible for a specific behavior, organized in a society
with rules, where they have to communicate in order to
achieve their goals. A single agent model is defined for all
autonomous agents. Each AA communicates with other
AAs in the society and also with Basic Agents (BAs),
which are responsible for specific tasks. This system
decomposition in agents with their behaviors is similar to
the task decomposition proposed by Brooks [4].

In this society, each autonomous agent is connected to
all others, through a decentralized communication
network. A scheme of the this connection between the
autonomous agents is presented in figure 1.

Figure 1 - Architecture Scheme.

The autonomous agents can be classified as the focus-
agents described in Boissier and Demaseau [6], which are
defined as the ones created in a vertical splitting of the
system in its tasks, because each agent has a defined
behavior. They are also related to the layers of the Brooks
Subsumption Architecture, because they perceive and act
directly in the world, as shown in figure 1.

The agents in the architecture are organized in a
society with rules of behaviors and with an authority
structure. This structure enables the agents to decide how
the resources of the system are allocated, for example, in
order to decide which agent should have the control of one
resource at a certain moment. The manner this decision is
made is dependent of the rules defined for the society in a
specific implementation, and can be, for example, the
result of a competition between agents.

A resource is defined as a part of the system that is
shared by the agents, and that can be controlled by only
one agent at a time. For example, a robotic manipulator in
an assembly cell is a resource, and the drive system of a
mobile robot is another. On the other hand, a fixed camera
(and its data acquisition hardware and software) is not a
resource, as all agents can have the images it captures at
the same time. Yet, this camera could be a resource if
acting in an active vision system, where each agent could
compete to control the process of data acquisition.

The authority structure of a system is deeply related to
the dependence and precedence of the autonomous agents
behaviors in the society, and its definition is based on the
study of the linearization of an activity plan, having the
behavior of the autonomous agents as operators, the
resources an autonomous agent needs as the pre-conditions
of the operator, and the accomplishment of the system
intentions as it goals.

The definition of how the autonomous agents can
allocate system resources are left to the implementation of
the system itself.

It is worth noticing that is the authority structure that
makes this architecture related to the Subsumption
architecture, allowing agents to suppress each other by
taking away resources. Finally, the authority structure has a
logic nature, while the communication network has a
physical nature.

An empirical division of the system is proposed, based
on Brooks’ Task Decomposition [4] and Rivlin [8] to map
intentions into behaviors, and based on Boissier and
Demazeau [6], [7] to split behaviors in tasks.

The definition of an autonomous agent is one of the
main features of the proposed architecture and is viewed
below.

3.1. Autonomous Agents (AAs)

In this architecture the autonomous agents (AA) are
modeled based on DAI-MAS theory, and its definition is
strongly influenced by the work of Boissier and Demazeau
[7].

An AA is defined as:
<Agent> ::= <rules> <other agents> <state of the

world> <communication language>
<basic agents> <decision capabilities>

Agent

Perception

AgentAgent

Communication

Action

Where:
<rules> are the behavior rules and the authority relation

between the AAs in the society;
<other agents> are the other AAs in the society, and the

topological information of the society;
<state of the world> is the minimal symbolic

representation of the world that an agent need;
<communication language> is the communication

language used by the AAs;
<basic agents> are the basic agents each AA has

connection to;
<decision capabilities> are the capabilities an AA has to

be able to decide which agent has the control of a
resource in a certain moment.
This definition is used to model all AAs in the system,

not mattering their behavior. Another essential feature
related to agents in a DAI-MAS environment is their
capability to communicate. That makes the definition of
this communication language a very important topic, which
is detailed in the next item.

3.2. AA’s Communication Language

A Communication Language for the AAs is defined,
based on the one described in Boissier and Demazeau [7],
as:

<interaction> ::= <nature><type><content>
Where:

<nature> is the nature of the communication, which
can be decision or control;

<type> is the type of communication;
<content> is the content of the message.
Messages having a decision nature are used to decide

which agent will have the control of one system resource in
a defined moment. It can be of four types:
request - used by an AA to request the control of a

resource to another AA. The message indicates which
agent is asking the control and the resource it wants;

agreed - used by an AA to agree with a requisition. This
message is used to acknowledge the request, and does
not transfer the control of the resource;

free - used to inform that an AA is willing to release a
resource that is not needed anymore;

inform - used to transfer the control of a resource from an
to another one. The message indicates which agent is
transferring the control, if it is taking or giving the
control, to which agent it is giving the control (if this is
the case), about which resource is the transaction and
the state of the resource.
When an AA sends a free message, meaning that it

does not need the control of the resource any longer,
several other AAs can request this control, which is then
transferred to the one that has higher authority.

Control nature messages are used to add and delete
AAs in the society. It has three types:
addNewAgent - used to add an agent to the society. Its

contents are the name of the new agent and two lists,
one with the name of the agents with higher authority
and one with the name of the agents with less authority;

deleteAgent - used to delete an agent from the society;
acknowledge - used by the other agents in the society to

acknowledge the insertion or deletion of an agent.
Table 3 summarizes the communication language

defined for the autonomous agents.

<type> <content>
addNewAgent <name of the new agent> <above which

agents> <below which agents>
deleteAgent <name of the agent>
acknowledge <name of the agent>
request <name of the agent> <resource>
agreed <name of the agent> <resource>
free <name of the agent> <resource>
inform <name of the agent> <give|take> <from|to

which agent> <resource> [state]

Table 3 - Elements of the communication language
of the autonomous agents.

3.3. Basic Agents (BAs)

In the proposed architecture, AAs communicate with a
set of basic agents (BAs), which are responsible for
specific tasks. These BAs are connected through a
communication network and organized in a hierarchical
structure with AAs on the top.

Part of the knowledge the AAs need to accomplish
their behaviors, as visual and manipulation tasks, is located
at these BAs.

In this manner, each AA interacts with several BAs,
and the set of BAs one AA has contact can be completely
different from one AA to another. Moreover, BAs
connected to an AA can also interact among themselves
and with other BAs in sets connected to other AAs.

Connections among Autonomous Agents and Basic
Agents result in a communication network. This network is
determined by a programmer, based on the study of an
activity plan which has the basic agents as its operators,
and its goal is to achieve the autonomous agents desired
behavior.

The information (data and task requisitions) exchange
among BAs and AAs is done through a message exchange.

4. Description of the multi-agent system

As a testbed for the architecture described here, a
purposive computer vision system performing simple
visually guided assembly tasks is being implemented on a

Flexible Assembly Cell [9] at the Escola Politécnica da
Universidade de São Paulo. It is composed of several
workstations, two robotic manipulators with 5 degrees of
freedom, acquisition boards and cameras, with all the
computers linked by a local Ethernet network. Figure 2
presents a schematic description of the Flexible Assembly
Cell and figure 3 presents one photo of the cell.

Figure 2: Schematic description of the Flexible
Assembly Cell (by João Kogler)

Figure 3: The Flexible Assembly Cell with one
manipulator and one of the cameras at the top.

Whereas the chosen domain is the one of an assembly
cell, the architecture can be applied to other domains, like
to autonomous mobile robots.

The system, which uses one of the manipulators of the
cell, is being implemented on several workstations (not
related to the cell but in the Ethernet network), where the
agents are executed as independent and parallel distributed
processes, communicating through the cell network.
Three different behaviors were defined for this application,
each one corresponding to an autonomous agent:
Assembler agent: to accomplish an assembly, picking up

pieces on the workspace with the manipulator and
putting them in a desired location. The goal of the
assembly and the type of pieces involved in it can
change, for example, from the assembly of a known
object to the selection of pieces by shape or color. To
be able to do this, this agent must be apt to plan the
activities involved in the assembly. In the present state
of this implementation, the agent does not have
planning capacity, and the plan is previously defined.

Cleaner agent: to clean the workspace, which is a
previously defined area, where the assembly is made.
In this manner, unwanted objects put on this area must
be taken away by this agent.

Collision Avoider agent: to avoid collisions of the
manipulator with objects that move in the workspace
(other manipulators, a hand), aiming the preservation
of the system’s physical integrity.
Three rules were defined for the Agents society,

organizing the competition among them, in order to control
the only resource shared in this application: the
manipulator. The rules defined for the system are:

Rule # 1: Only one agent can control the manipulator
in a given moment.

Rule # 2: Any agent can request the control of the
manipulator to an agent with less authority than itself, at
any moment.

Rule # 3: An agent can only request the control of the
manipulator to an agent with more authority than itself if
that agent is releasing the control.

The following authority structure as defined for the
autonomous agents: the Collision-Avoider is the one with
higher authority, the Cleaning agent is the second in the
rank and the Assembler is the one with less authority. One
can see that this structure has as main goal preserving the
physical integrity of the system.

Concerning about the system implementation, a
schematic representation of the autonomous and basic
agents and their communication links is presented in figure
4.

Figure 4: Scheme of the agents and its links for the
system.

The basic agent Capture is responsible for the image
acquisition, managing a SunVideo system designed for
image acquisition and video compression in real time. The
SunVideo consists of a Sun SBus board for
SPARCstations with on-board video compression engine
and the XIL Imaging Library, and is used for multimedia
applications and video conferences. An image taken with
the camera at the top of the cell is presented in figure 5.

Red Green Blue

Figure 5: Sample image from the camera.

The Static Image Recognizer receives an image and
creates a list containing a description of the scene, with an
“id” for each object, its type (one among a few known
types), size in pixels and the position of the object in the
scene. This agent is based on the blob coloring algorithm
described in [10] to label regions of the image, adapting
the algorithm to deal with color images. It works in 3
steps: first it makes a region labeling; then regions are
grouped into objects; the centers of mass of the objects are
calculated and finally unknown objects (like shadows in
the corners of the image) are removed. The result is shown
in figure 6.

Grouped Regions Objects in the
scene

Remaining
Objects

Figure 6: Resulting objects in the image.

The basic agent Locate Movement discovers if there is
any movement on the workspace. To simplify its
implementation, only movements of red objects are
detected. This agent examine consecutive 64x48 images
received from the Capture agent. When it detects any
movement on this small image, it uses the list generated by
the Recognizer to accurately locate the movement.

The basic agent Manipulator is a simple program that
receives instructions, as move to a position, close grip,
open grip, and executes them. It is needed because the
communication with the manipulator is made through a
parallel port, and must run in a specific machine.

The Autonomous Agents are simple implementations
of the behaviors already described, using the basic agents
to perform their basic tasks. For example, the assembler
agent request for the basic agent recognizer a list with the
localization of all objects on the workspace. Then, the
recognizer request an image for the basic agent capture,
and creates a list for the assembler agent. After using the
received list to plan an assembly sequence, the assembler
agent sends instructions to the basic agent manipulator,
executing the assembly plan.

The communication between the agents is
implemented using the Parallel Virtual Machine (PVM)
library. The PVM is a system for distributed processing
implementations that offers tools for communication
between tasks, like point to point messages and broadcasts,
and tools to control the spawning of tasks. It was chosen
due to the simplicity it allows in the implementation of
message exchanges between the agents, and because it
allows the definition of which workstation a process must
run. Besides that, it is widely used in the academic
community, which means better support for developers,
having available an Internet newsgroup where assistance
can be found.

Finally, we present an example that shows, in a LISP
like manner, the messages that are exchanged when an
object moves in the workspace during an assembly. First,
the Collision-Avoider agent requests the control of the
manipulator to avoid the possible collisions; the Assembler
agent agrees with the requisition and transfers the control
to the Collision-Avoider; when the danger of a possible
collision ceases, Collision-Avoider releases the control of
the resource, which is requested by Assembler; the request

Request
Image

640x480x3

Request
Image

64x48x3

Basic Agent
Capture

Capture an image
using a SunVideo
Aquisition Board.

Basic Agent
Recognizer

Static Image
Recognizer that
classifies all the

objects in one scene

Autonomous Agent
Assembler

Accomplish an
assembly task

Receives
information
about the
objects

Request
localization of
objects on the

workspace

Basic Agent
Manipulator

Receives
instructions for the
manipulator and
executes them.

Autonomous Agent
Cleaner

Clean the workspace
removing any

unwanted object

Autonomous Agent
Collision Avoider

Avoids any collision
between the

manipulator and
moving objects in the

workspace

Basic Agent
Locate Movement

Finds if there was
any movement on

the workspace.

Receives
Image

64x48x3

Receives
instructions

for the
manipulator.

Communication
for the decision

about the system
resource (the
manipulator).

Receives
information
about the
objects

Request
localization of
objects on the

workspace

Receives
Image

640x480x3

is accepted by Collision-Avoider and Assembler gets the
control and returns to its job.

comment: the control is with the Assembler.
((decision)(request)(collisionAvoider)(manipulator))
((decision)(agreed)(assembler) (manipulator))
((decision)(inform)((assembler)(give)(collisionAvoider)(manipulator)(piece in grip)))
((decision)(inform)((collisionAvoider)(take)(piece in grip)))
comment: the collision is avoided.
((decision)(free)(collisionAvoider) (manipulator))
((decision)(request)(assembler) (manipulator))
((decision)(agreed)(collisionAvoider) (assembler))
((decision)(inform)((collisionAvoider)(give)(assembler)(manipulator) (piece in grip)))
((decision)(inform)((assembler)(take) (manipulator)(piece in grip)))

Example 1 - Message exchange during an assembly
interruption.

5. Discussions and conclusion

Multi-Agent approach proved to be a promising
method to model architectures for purposive computer
vision systems. There are several reasons for this
conclusion:
1. it simplifies the mapping of system purpose in its
behaviors, and of behaviors in tasks;
2. it makes explicit the interaction between behaviors;
3. all behaviors of a system can communicate with each
other, resulting in a completely connected network;
4. the autonomous agents provide modularity: one does
not need to have a precise knowledge of the internal
structure of other agents in order to add a new behavior to
the system.

However, the use of basic agents to avoid the
repetition of processing efforts was not as good as
expected. As can be seen in figure 4, the construction of
the behavior of the autonomous agents based on basic ones
is too complex. This makes harder implementation and
maintenance of the system, as one must know which basic
agents the system has in order to be able to implement a
new autonomous agent. We think that the best solution
would be to provide each autonomous agent with total
independence from the others. It is known that this will
add computational load to the system but this can be dealt
with the addition of more processing machines to each new
agent. In this way, the processing time will be the same
even though the total load has been increased. In addition
to that, fewer links between agents will decrease message
exchange, unloading the network. This allows faster
replies to requisitions between autonomous agents,
decreasing the response time of the system.

6. References

[1] ALOIMONOS, Y. What I have learned. CVGIP: Image
Understanding, v.60, n.1, p.74-85, July 1994.

[2] RILLO, A. H. R. C.; BIANCHI, R. A. C.; MOREIRA Jr, B.;

FERRAZ, F. Integrando Visão e Comportamento: Uma
aplicação de reconstrução propositiva. In: CONGRESSO
BRASILEIRO DE AUTOMÁTICA, 11., São Paulo, 1996.
Anais. São Paulo, Sociedade Brasileira de Automática,
1996. P. 573-578.

[3] BOND, A. H; GASSER, L Readings in Distributed
Artificial Intelligence. Morgan Kaufmann, San Mateo, CA,
1988.

[4] BROOKS, R. A. Intelligence without representation.
Artificial Intelligence, v.47, p.139-59, 1991.

[5] ELFES, A. A distributed control architecture for an
autonomous mobile robot. Artificial Intelligence,
Computational Mechanics Publications, v.1, n2,1986, p135-
44.

[6] BOISSIER, O.; DEMAZEAU, Y. A distributed artificial
intelligence view on general purpose vision systems. In:
DEMAZEAU, Y; WERNER, E. (eds.) Decentralized AI-3.
Amsterdam, Elsevier, 1992. p.311-330.

[7] BOISSIER, O; DEMAZEAU, Y. ASIC: An architecture for
social and individual control and its application to
Computer Vision. In: EUROPEAN WORKSHOP ON
MODELING AUTONOMOUS AGENTS IN A MULTI-
AGENT WORLD, 1994. Proceedings. 1994. p.107-18.

[8] RIVLIN, E.; ALOIMONOS, Y.; ROSENFELD, A.
Purposive Recognition: a framework. CS-TR 2811,
University of Maryland, College Park, 1991.

[9] RILLO, M.; RILLO, A.H.R.C.; COSTA, L.A.R. The LSI
assembly cell. In: IFAC/IFIP/IFORS/IMACS/ISPE
Symposium on information control problems in
manufacturing technology, 7º, Toronto, 1992. Proceedings.
IFAC, 1992. p. 361-5.

[10] BALLARD, D.; BROWN, C. Computer Vision.
Englewood Cliffs, Prentice-Hall, 1982.

