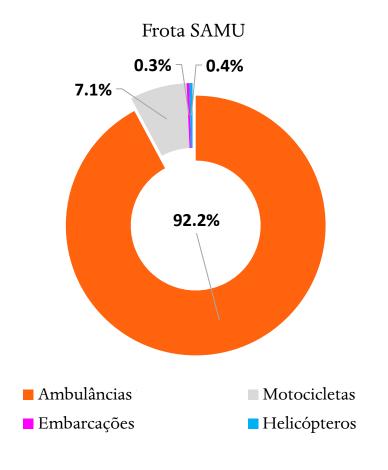


Sistema de amortecimento para veículos de atendimento emergencial terrestre.

ORGANOGRAMA

Fonte: Autores



SMOOTH SAVING

2

Fonte: boavontade.com

Fonte: aratuon.com

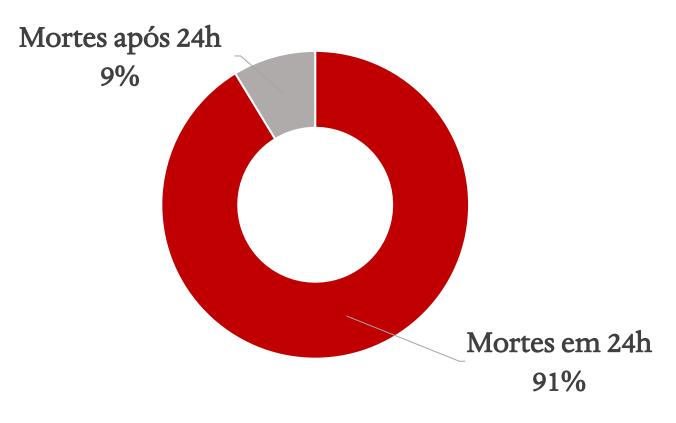
Fonte: jaciaranews.com

Fonte: jornaldebrasilia.com

Fonte: Ministério da Saúde

5570 municípios

Cada veículo atende, em média,


1,4 municípios

Fonte: Ministério da Saúde

Distribuição de óbitos decorrentes de acidente de trânsito

Custo unitário por óbito decorrente de acidente de trânsito

R\$ 374.811,00

Custo total estimado em 2019

R\$ 15,3 bi

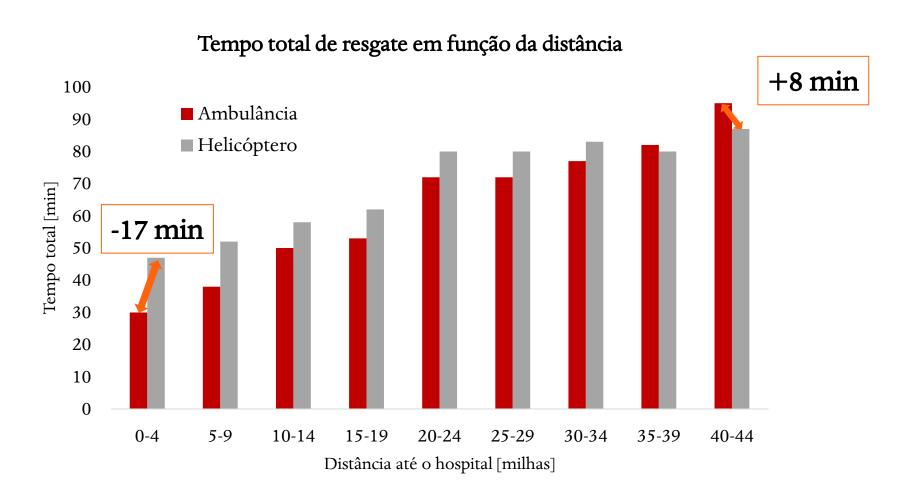
Fonte: Departamento Nacional de Infraestrutura e Transito

Resgate aéreo

Fonte: TV Globo

- ✓ Fácil acesso a regiões não pavimentadas;
- ✓ Melhores condições de trabalho da equipe médica;
- ✓ Melhores condições para estabilização do paciente.

Resgate terrestre


Fonte: soymotor.com

- ✓ Menor custo de operação;
 - ✓ Maior espaço interno;
- ✓ Grande frota disponível;
- ✓ Atende todos os hospitais;
 - ✓ Menos suscetível às influências climáticas.

Fonte: MICHAELS, D. et. al. (2018) Helicopter versus ground ambulance: review of national database for outcomes in survival in transferred trauma patients in the USA.

Fonte: "Adaptado de" the Journal of Trauma

Resgate aéreo

Resgate terrestre

Fonte: soymotor.com

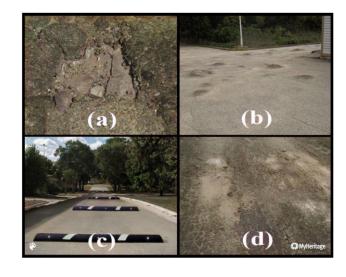
"pacientes com mesmas características e grau de risco, que foram transferidos de helicóptero, tiveram <u>57,0%</u> menos probabilidade de morrer do que aqueles transferidos por meio terrestre". (MICHAELS, 2019)

"O <u>nível mais alto de atendimento capaz de ser oferecido pela equipe médica do helicóptero (...)</u> está associado a <u>melhores resultados</u> em comparação ao transporte terrestre".

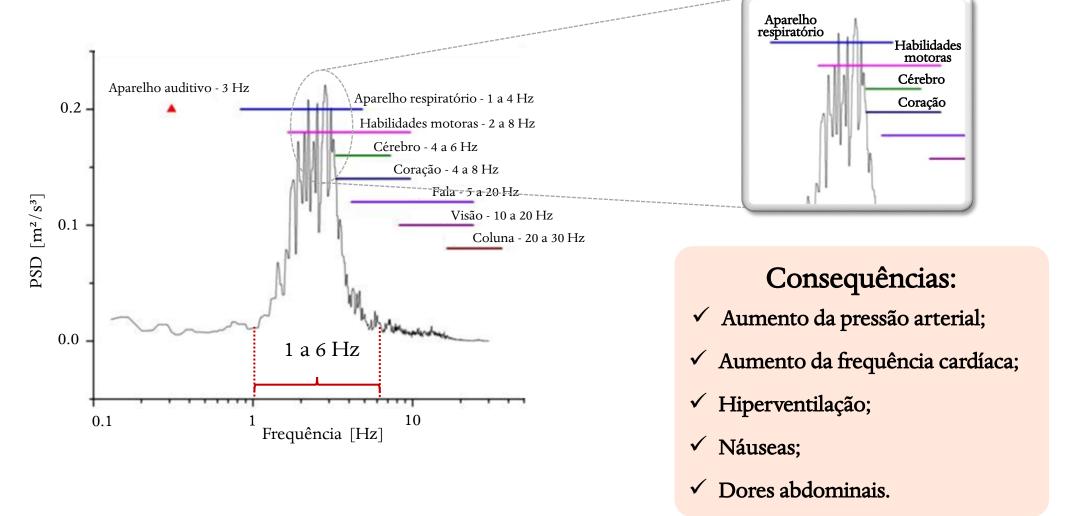
(MICHAELS, 2019)

- ❖ Porque a eficiência do resgate aéreo, quando se compara casos similares, é maior que a do resgate terrestre?
- ❖ Por que a equipe médica do resgate aéreo é capaz de oferecer melhor atendimento?

❖É possível melhorar o atendimento terrestre?



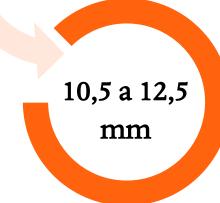
- ❖ (a) Ruas não pavimentadas;
- (b) Estradas secundárias pavimentas;
- ❖ (c) Ruas pavimentadas da cidade;
- ❖ (d) Rodovias pavimentadas.

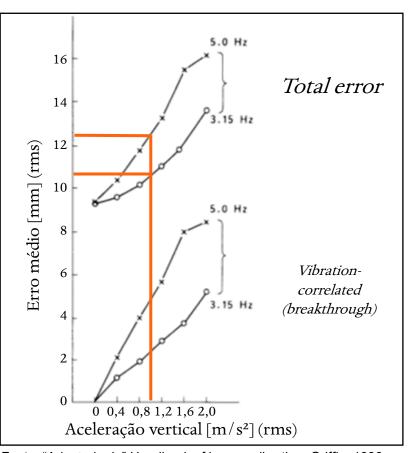

- ❖ (a) Buracos;
- (b) Ondulações;
- ❖ (c) Redutores de velocidade;
- ❖ (d) Pavimento desgastado.

Fonte: Cotnoir, P. D. (2010). Ambulance Vibration Suppression via Force Field Domain Control

Efeitos fisiológicos causados pela vibração:

Fonte: "Adaptado de" Cotnoir, P. D. (2010). Ambulance Vibration Suppression via Force Field Domain Control

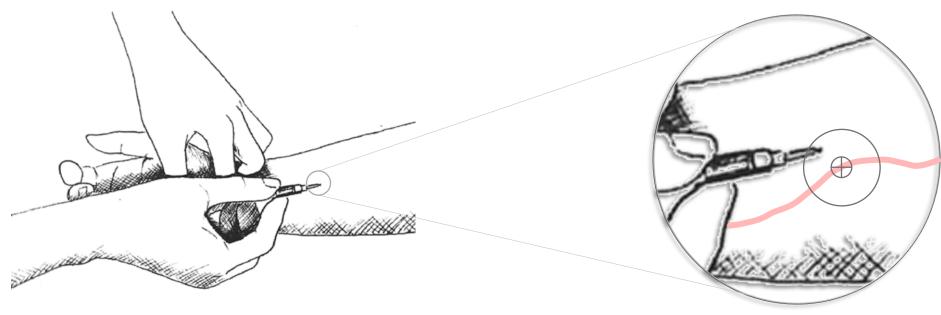



✓ Amplitude de acelerações predominante durante os testes.

1 a 6 Hz

✓ Faixa de frequência em que essas amplitudes foram observadas.

Erro médio na realização de tarefas manuais por influência da vibração e amplitude.



Fonte: "Adaptado de" Handbook of human vibration, Griffin, 1996

Fonte: Cotnoir, P. D. (2010). Ambulance Vibration Suppression via Force Field Domain Control

Fonte: "Adaptado de" Manual do Técnico de Enfermagem

"Na prática, um erro de 10,5 a 12,5 mm é um impedimento significativo para o desempenho de procedimentos médicos comumente realizados durante o transporte." (COTNOIR, 2010)

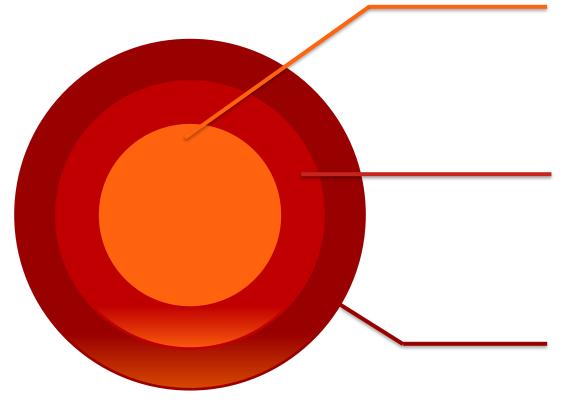
PROBLEMA

Paciente e equipe médica estão submetidos a amplitudes de aceleração vertical de, em média, 1 m/s², o que prejudica a realização de procedimentos medicos e pode agravar o quadro clínico do paciente.

PROPÓSITO

Desenvolver uma solução que atenue a amplitude de acelerações verticais médias no interior da ambulância.

QUAIS PODERIAM SER OS GANHOS DE UM PROJETO COMO ESSE?


Paciente terá maior conforto durante o resgate A equipe médica terá melhores condições para realizar os procedimentos necessários

A probabilidade de agravar o quadro clínico do paciente diminui

A probabilidade de salvar a vida do paciente aumenta

GOLDEN CIRCLE

POR QUÊ?

Acreditamos que os **recursos tecnológicos** devam ser utilizados para trazer **melhor qualidade de vida** para as pessoas.

COMO?

Por meio de uma solução que possa **reduzir o desconforto** e **melhorar a segurança** de pacientes **durante resgate** em veículos de atendimento emergencial.

O QUÊ?

Desenvolvimento de um sistema, para esse tipo de veículo, capaz de atenuar a amplitude de acelerações verticais médias recebida pelos pacientes e profissionais de saúde.

ANÁLISE DE VIABILIDADE

A amplitude de acelerações verticais médias encontrada em ambulâncias pode prejudicar o quadro clínico do paciente, colocando sua vida em risco, e a realização de procedimentos médicos.

Entidades governamentais, hospitais públicos e privados, montadoras de furgões, adaptadoras e locadoras de ambulâncias.

DISPOSTO A PAGAR

O sistema deve ser capaz de proporcionar melhores condições de trabalho para a equipe médica e maior conforto ao paciente, sem exigir a compra de novas ambulâncias e representando um custo de 10 a 12% do preço de venda dos veículos.

DANOS E DESCONFORTO POR VIBRAÇÃO

SETOR DA SAÚDE PÚBLICA E PRIVADA

MELHORES CONDIÇÕES SEM EXIGIR A COMPRA DE UMA NOVA AMBULÂNCIA

REQUISITOS DE PROJETO

Reduzir a amplitude das acelerações verticais médias [m/s²] transmitidas ao paciente e à equipe médica devido às irregularidades do solo, que atuam na faixa de 1 a 6 Hertz.

Possíveis alternativas encontradas:

Amortecimento de maca

Plataforma com amortecimento

Suspensão com controle ativo

Pneus não pneumáticos

Suspensão de cabina

Amortecimento de maca:

Fonte: Stem.it

VANTAGENS:


- ✓ Paciente é transportado com maior conforto e segurança;
 - ✓ Não ocupa espaço extra no interior da ambulância;
 - ✓ Não exige treinamento da equipe para utilização.

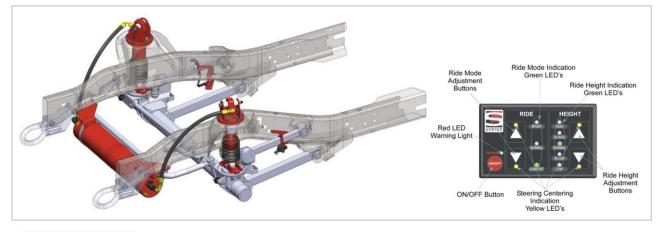
DESVANTAGENS:

- ✓ Não proporciona melhores condições de trabalho aos profissionais de saúde;
- ✓ Exige modificações severas ao assoalho da ambulância;

Plataforma com amortecimento:

Fonte: Cotnoir (2010)

VANTAGENS:


- ✓ Proporciona maior conforto e segurança tanto para o paciente, quanto para os profissionais de saúde;
 - ✓ Possível adaptação aos veículos já existentes;
- ✓ Sistema totalmente automatizado, independe de interação com a equipe médica.

DESVANTAGENS:

- ✓ Compromete o espaço interno da cabine, devido à altura necessária para instalar as molas e amortecedores;
- ✓ Promove movimento relativo entre os equipamentos no interior da ambulância, podendo ferir os passageiros;
- ✓ Exige modificações severas ao assoalho da ambulância;
 ✓ Alta complexidade de projeto.

Suspensão com controle ativo:

Fonte: LiquidSpring

VANTAGENS:

- ✓ Capacidade de proporcionar maior conforto e segurança tanto para o paciente, quanto para a equipe médica;
 - ✓ Possível adaptação aos veículos já existentes;
 - ✓ Não compromete o espaço interno da cabine;

DESVANTAGENS:

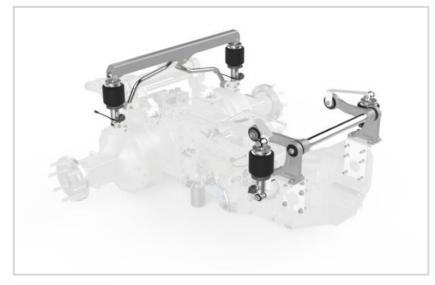
- ✓ Exige sistema de controle;
- ✓ Elevado número de componetes.

Pneus não pneumáticos:

Fonte: Michellin

Pneus não pneumáticos podem oferecer melhor desempenho ao transpassar pequenos obstáculos, pois devido a sua geometria interna complacente, as oscilações transmitidas à carroceria podem ser reduzidas.

VANTAGENS:


- ✓ Facilidade de instalação;
- ✓ Facilidade de substituição;
- ✓ Aplicável aos veículos já existentes;
- ✓ Baixo número de componentes.

DESVANTAGENS:

- ✓ Alta complexidade de projeto;
- ✓ Alta complexidade de manufatura;
- √ Não se adequa a diferentes condições de operação;
- ✓ Confiabilidade e segurança ainda desconhecidas.

Suspensão de cabina:

Fonte: ZF Sachs

VANTAGENS:

 ✓ Capacidade de proporcionar maior conforto e segurança tanto para o paciente, quanto para a equipe médica;
 ✓ Não compromete o espaço interno;

DESVANTAGENS:

- ✓ Demanda mudanças severas em toda a carroceria do veículo;
 - ✓ Não aplicabilidade a veículos já existentes;
 - ✓ Eleva o centro de gravidade;
 - ✓ Alta complexidade de projeto.

MATRIZ DE DECISÃO

Critério	Peso	Ambulancia comum	Amortecimento da maca	Amortecimento do assoalho	Suspensão com controle ativo	Pneu não pneumático	Amortecimento da carroceria
Capacidade de reduzir a amplitude de acelerações no paciente	25%	0	2	2	2	1	2
Capacidade de melhoria na precisão do serviço médico	25%	0	0	2	2	1	2
Complexidade de implementação	10%	0	-1	-2	-1	0	-2
Complexidade do projeto	10%	0	-1	-1	-1	-1	-2
Espaço interno	10%	0	0	-2	0	0	0
Adaptabilidade	10%	0	-1	-1	-1	0	-2
Número de componentes	5%	0	-1	-1	-1	0	-1
Custo de implementação	2.5%	0	-1	-2	-2	-1	-2
Custo de manutenção	2.5%	0	-1	-2	-1	-1	-1
Total	100%	0	0.1	0.25	0.575	0.35	0.275

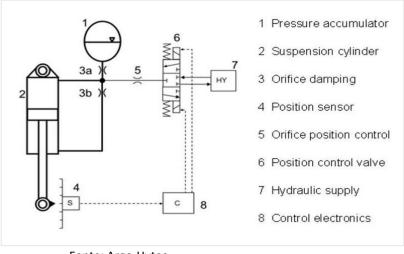
	Legenda
-2	muito pior
-1	pior
0	igual
1	melhor
2	muito melhor

MATRIZ DE DECISÃO

Critério	Peso	Suspensão com controle ativo	Amortecimento da maca	Amortecimento do assoalho	Pneu não pneumático	Amortecimento da carroceria
Capacidade de reduzir a amplitude de acelerações no paciente	25%	0	0	0	-1	0
Capacidade de melhoria na precisão do serviço médico	25%	0	-2	0	-1	0
Complexidade de implementação	10%	0	0	-1	1	-2
Complexidade do projeto	10%	0	1	1	-1	-1
Espaço interno	10%	0	0	-2	0	0
Adaptabilidade	10%	0	1	0	2	-2
Número de componentes	5%	0	0	0	2	0
Custo de implementação	2.5%	0	0	0	1	-1
Custo de manutenção	2.5%	0	1	-1	0	0
Total	100%	0	-0.275	-0.225	-0.175	-0.525

	Legenda
-2	muito pior
-1	pior
0	igual
1	melhor
2	muito melhor

MELHOR DESIGN



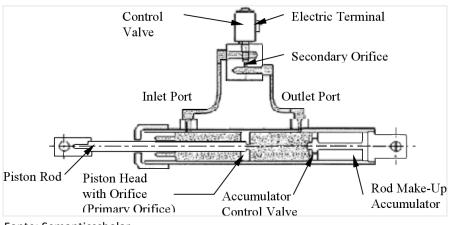
SUSPENSÃO COM CONTROLE ATIVO

Amortecedor com atuador hidráulico

Fonte: VETR

- Fonte: Argo-Hytos
- Poucas opções de kits pré-fabricados;
- Sistema pesado e pouco compacto;
- Difícil adequação ao envelopamento do sistema.

MELHOR DESIGN



SUSPENSÃO COM CONTROLE ATIVO

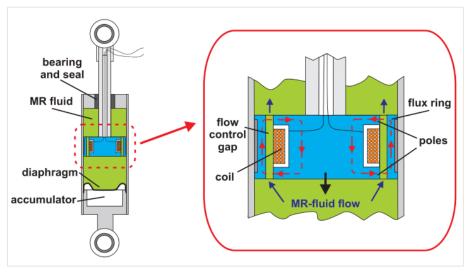
EMONROE INTERVIOR

Fonte: Monroe

Amortecedor com orifício variável

Fonte: Semanticscholar

- Poucas opções de kits pré-fabricados;
- Simples, leve e compacto;
- Facilidade de adequação ao envelopamento do sistema.


MELHOR DESIGN

SUSPENSÃO COM CONTROLE ATIVO

Amortecedor Magnéto Reológico (MR)

Fonte: Purandare

Fonte: Magneride

- Maior disponibilidade de opções pré-fabricadas;
- Simples, leve e compacto;
- Facilidade de adequação ao envelopamento do sistema.

STORYBOARD

Medição das oscilações

Transmissão dos dados à ECU

Cálculo do amortecimento ótimo

Alteração do amortecimento

Modulação da corrente elétrica

STORYBOARD

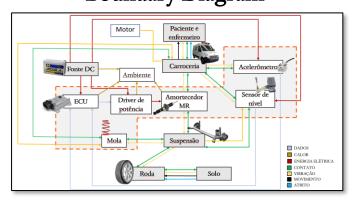
Medição das oscilações

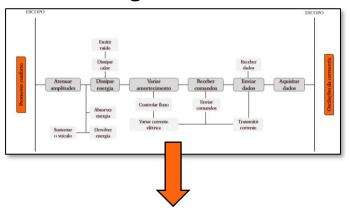
Cálculo do amortecimento ótimo

Redução das acelerações verticais

Alteração do amortecimento

Modulação da corrente elétrica





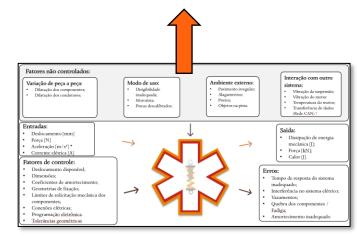

Boundary Diagram

Diagrama FAST

DFMEA

Engenharia Reversa

P-diagram

$\overline{}$			FALHAS POSSÍVEIS			fnDices								
MBTI	COMPONENTE	FUNÇÕES	MODO	EFEITO(S)	CAUSA(S)	CONTROLE PREVENÇÃO	CONTROLE DETECÇÃO	Ocorrência	Gravidade	Detecção	RPN			
					Ressecamento dos retentores	Manutenção periódica	Homologação dos retentores	1	7	4	28	\rightarrow	84	
			Vazamento	Redução da capacidade de amortecimento	Deterioração do retentor por poeira	Limpeza periódica	Homologação dos retentores à abrasividade	3	7	4	84		04	
					acumulada na haste	Selecionar os fixadores de acordo com					_	4		
		Dissipar energia	Ruptura do ponto de ancoragem	Vibração excessiva: desmontagem do amortecedor	Esforços acima do especificado	normas internacionais	Simulação estrutural	1	9	2	18			
		Dissipar energia	Ruptura do ponto de ancoragem	vibração excessiva; desmontagem do amortecedor	Instalação inadequada	Desenvolvimento do padrão de serviço	Inspeção dos pontos de ancoragem no	3	9	1	27			
,	Amortecedor MR	-			Esforços acima do especificado	Respeitar limite de carga	final da montagem Simulação estrutural	1	8	2	16			
	Annotteection with		Quebra de componente interno	Vibração excessiva; redução da capacidade de amortecimento; ruído; aumento de temperatura;			Inspeção dos pontos de ancoragem no	3	8	1	24			
				·	Instalação inadequada	Verificação dos procedimentos de instalação	final da montagem			1				
		Manter contato	Coeficiente de amortecimento não adequado Ruptura do chicote	Frequência de oscilação fora da vocação do veículo Incapacidade de variar o coeficiente de amortecimento	Dimensionamento incorreto Fixação inadeguada do chicote:	Manutenção periódica Verificação dos procedimentos de instalação	Simulação computacional Ensaio de tração	1	8	1	8			
		Variar coeficiente de	Ruptura do Cincole	incapacidade de variar o coenciente de amortecimento	Conexão inadequada entre os conectores				, ,	· ·	_			
		amortecimento	Quebra do conector	Incapacidade de variar o coeficiente de amortecimento	dos chicotes na linha de montagem	Verificação dos procedimentos de instalação	Ensaios de tração no conector	1	8	1	8		225	
_					Impactos	Encapsulamento dos chicotes Montagem e vedação corretas	Ensaio de impacto no conector Simulação de transferência de calor	1	8	1	20		225	
					Superaquecimento Oxidação	Vedação correta	Inspecão amostral de estanqueidade	2	5	3	30			
			Lentidão de processamento	Lentidão da variação do coeficiente de amortecimento	Incapacidade de processamento	Escolha correta do processador com o	Medição da velocidade de	3	8	3	72			
		Analisar dados		Resposta inadequada do sistema; redução do conforto	Análise incorreta das condições de contorno	fornecedor	processamento Validação/calibração				225	\rightarrow		
		Analisar dados	Programação incorreta	Resposta madequada do sistema; redução do conforto		Programação correta	Não há modos de detecção (evento	5	5	9		_ ,		
			C	former of the contrate constants	Curto circuito por enchentes	Posicionamento estratégico	aleatório de campo)	2	5	10	100		100	
2	ECU		Super-aquecimento	Interrupção do envio de comandos	Troca de calor inadequada	Posicionamento em regiões de melhor troca	Simulação computacional	2	5	2	20		100	
					Quebra do conector e ruptura do chicote	de calor Verificação dos procedimentos de instalação	Ensaios de tração e impacto	1	5	1	5			
		Receber dados		Incapacidade de variar o coeficiente de amortecimento			Inspeção dos parâmetros requisitados		_	7				
			Não receber dados		Sensor de nível inoperante	Manutenção do sensor de nível	para o fornecedor	3	7	7	147			
					Acelerômetro inoperante	Manutenção do acelerômetro	Inspeção dos parâmetros requisitados para o fornecedor	3	7	7	147	\		
		Enviar comandos	Não enviar comandos	Incapacidade de variar o coeficiente de amortecimento	Quebra do conector e ruptura do chicote	Verificação dos procedimentos de instalação	Ensaios de tração e impacto	1	5	1	5			
						Atentar aos dados experimentais e de	Ensaio mecânico e simulação					71		
		Absorver energia		Transição para regime plástico	Mudança de rigidez	Esforços acima do especificado	simulação, bem como seguir as normas	estrutural	1	9	1	9	_	147
						regulamentadoras Atentar aos dados experimentais e de					_			
			Atingir fim de curso	Impacto agressivo na massa suspensa	Dimensionamento incorreto	simulação, bem como seguir as normas	Ensaio mecânico e simulação estrutural	1	8	1	8			
						regulamentadoras	estuturai							
			Curso insuficiente de mola descarregada	Apoio em apenas 3 rodas (Carro desequilibrado)	Verificação incorreta de projeto	Atentar aos dados experimentais e de simulação, bem como seguir as normas	Ensaio e simulação de deformação	1	9	,	9			
	Mola	Manter contato				regulamentadoras		-			_			
3	MOIR		Rigidez da mola inadequado	Frequência de oscilação fora da vocação do veículo	Dimensionamento incorreto	Garantir qualidade técnica dos projetistas	Simulação computacional	1	7	1	7		1.47	
		Devolver energia	Transição para regime plástico	Veículo desequilibrado	Dimensionamento incorreto	Atentar aos dados experimentais e de simulação, bem como seguir as normas	Ensaio mecânico e simulação	1	9	,	9		147	
			Devolver energia		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		regulamentadoras	estrutural						
			Obstrução de curso	Veículo desequilibrado	Objeto preso entre as espiras da mola	Limpeza periódica e proteção contra	Não há modos de detecção (evento	1	8	10	80			
				rectio desequinorado		entrada de objetos Atentar aos dados experimentais e de	aleatório de campo)				-			
		Sustentar veículo	Fratura da mola	Massa suspensa não é mais sustentada	Esforços acima do especificado	simulação, bem como seguir as normas	Ensaio mecânico e simulação estrutural	1	9	1	9			
_						regulamentadoras					<u> </u>			
		Enviar dados	Envio incorreto de dados	Variação incorreta do coeficiente de amortecimento	Calibração incorreta na instalação	Desenvolvimento do padrão de serviço	Inspeção da calibração no final da montagem	2	7	1	14			
		Elivial dados	Envio incorreto de dados	variação incorreta do coenciente de amortecimento	Impacto contra objetos	Posicionamento em locais estratégicos	Nenhum	2	7	10	140		1.40	
4	Sensor de nível				Calibração incorreta	Desenvolvimento do padrão de serviço	Inspeção da calibração no final da	2	7	1	14		140	
7	ocasor de inver			Variação incorreta do coeficiente de amortecimento	Campiação Incorreta	Descritorimento do padrão de serviço	montagem	-			-			
		Aquisitar dados	Aquisição incorreta de dados	Vanação incorreta do coeliciente de amortecimento	Folga devido à fixação incorreta	Desenvolvimento do padrão de serviço	Inspeção da fixação no final da montagem	3	7	1	21			
					Impacto contra objetos	Posicionamento em locais estratégicos	Nenhum	2	7	10	140	<u> </u>		
			Envio incorreto de dados	Variação incorreta do coeficiente de amortecimento	Fixação inadequada	Verificação dos procedimentos de instalação	Inspeção da fixação no final da	3	5	1	15			
		Enviar dados			-	Verificação da capacidade do operador de	montagem Homologação através de ensaios não				-			
5	Acelerômetro		Não enviar dados	Incapacidade de variar o coeficiente de amortecimento	Soldagem incorreta	realização da soldagem	destrutivos	2	5	2	20	7	1.40	
		Aquisitar dados	Aquisição incorreta de dados	Variação incorreta do coeficiente de amortecimento	Fixação inadequada	Verificação dos procedimentos de instalação	Inspeção da fixação no final da	1	5	1	5		140	
\rightarrow			* *			Verificação da capacidade do operador de	montagem				\vdash			
			Não variar a corrente	Incapacidade de variar o coeficiente de amortecimento	Soldagem incorreta	realização da soldagem	Inspeção amostral	2	5	1	10			
		Variar corrente elétrica			Oxidação excessiva	Isolamento à umidade	Medição do nível máximo de oxidação	1	5	2	10			
6	Driver de Potência		Variar de forma inadequada	Diminuição da capacidade de variar o coeficiente de amortecimento	Oxidação	Isolamento à umidade Posicionamento em regiões de melhor troca	Medição do nível máximo de oxidação Simulação computacional de troca de	1	5	2	10			
			variat de 10111a madequada	Samuação da capacidade de variar o cocacerne de amortecimento	Temperatura excessiva	de calor	calor	1	5	2	10			
		Receber comandos	Não receber comandos	Incapacidade de variar o coeficiente de amortecimento	ECU e Driver de potência não se	Garantir qualidade técnica dos	Validação da programação	2	5	2	20			
\rightarrow					"conversam"	programadores	Homologação através de ensaios de		-		_			
			Não enviar dados	Incapacidade de variar o coeficiente de amortecimento	Rompimento	Proteção contra esforços excessivos	tração	1	5	2	10			
7	Chicote	Enviar dados			Oxidação	Isolamento à prova de água	Medição do nível máximo de oxidação	3	5	3	45			
			Envio de dados incorretos	Coeficiente de amortecimento variado de forma incorreta	Temperatura excessiva	Posicionamento em regiões de melhor troca	Simulação computacional	2	5	2	20			
\rightarrow					Amolecimento do material devido ao efeito	de calor Posicionamento em regiões de melhor troca					-			
	Conector	Unir chicotes	Desconecção	Incapacidade de variar o coeficiente de amortecimento	Joule	de calor	Simulação computacional	1	5	2	10			
8	Conscior	Omr encotes	Desconecção	incapacidade de variar o coenciente de amortecimento	Encaixe "macho-fêmea" inadequado	Atentar às características técnicas do	Inspeção amostral	1	5	5	25			
ı		ı		I I	·	produto	1	ı	I	1	1			

FALHA DE COMPONENTES ELÉTRICOS

TTTT A	COMPONENTE	FUNÇÕES		FALHAS POSSÍVEIS	ÍNDICES						
HEM	COMPONENTE	FUNÇUE3	MODO	EFEITO(S)	CAUSA(S)	CONTROLE PREVENÇÃO	CONTROLE DETECÇÃO	Ocorrência	Gravidade	Detecção	RPN
		Analisar dados	Programação incorreta	Resposta inadequada do sistema; redução do conforto	Análise incorreta das condições de contorno	Programação correta	Validação/calibração	5	5	9	225
2	ECU	Anansar dados	Super-aquecimento	Interrupção do envio de comandos	Curto circuito por enchentes	Posicionamento estratégico	Não há modos de detecção (evento aleatório de campo)	2	5	10	100
۷	ECU	Receber dados	s Não receber dados	Incapacidade de variar o coeficiente de amortecimento	Sensor de nível inoperante	Manutenção do sensor de nível	Inspeção dos parâmetros requisitados para o fornecedor	3	7	7	147
					Acelerômetro inoperante	Manutenção do acelerômetro	Inspeção dos parâmetros requisitados para o fornecedor	3	7	7	147
4	Sensor de nível	Enviar dados	Envio incorreto de dados	Variação incorreta do coeficiente de amortecimento	Impacto contra objetos	Posicionamento em locais estratégicos	Nenhum	2	7	10	140
4		Aquisitar dados	Aquisição incorreta de dados	Variação incorreta do coeficiente de amortecimento	Impacto contra objetos	Posicionamento em locais estratégicos	Nenhum	2	7	10	140

SENSOR DE NÍVEL

ECU

Potenciais de falha:

- Análise incorreta das condições de contorno (inputs) na programação;
- Perda de comunicação com os sensores do sistema.

Consequências:

- Resposta inadequada do sistema;
- Incapacidade de variar a condição de amortecimento;
- Escolha da configuração de amortecimento inadequada;
- Redução do conforto.

Ações recomendadas:

- Elaboração de procedimentos de validação do protótipo;
- Elaboração de planos de manutenção;
- Posicionamento dos componentes de forma estratégica.

FALHA DE COMPONENTES MECÂNICOS

ITEM	COMPONENTE	FUNCÕES		FALHAS PO	SSÍVEIS	ÍNDICES					
I I EIVI		FUNÇUES	MODO	EFEITO(S)	CAUSA(S)	CONTROLE PREVENÇÃO	CONTROLE DETECÇÃO	Ocorrência	Gravidade	Detecção	RPN
1	Amortecedor MR	Dissipar energia	Vazamento	Redução da capacidade de amortecimento	Deterioração do retentor por poeira acumulada na haste	Limpeza periódica	Homologação dos retentores à abrasividade	3	7	4	84

AMORTECEDOR MR

VAZAMENTO

Potenciais de falha:

- Excesso de material acumulado entre retentor e haste (atrito e desgaste);
- Alta temperatura (degradação acelerada).

Consequências:

- Diminuição da capacidade de reduzir as amplitudes de aceleração vertical;
- Redução do conforto.

Ações recomendadas:

- Seleção de materiais que possuam resistência ou isolamento térmico;
- Elaboração de planos de manutenção.

SCAMPER

Substituir

Substituir os amortecedores magneto-reológicos por amortecedores ativos.

Combinar

Combinar amortecedores magneto-reológicos a molas pneumáticas.

Adaptar

Adaptar amortecedor semi ativo commercial aos veículos já existentes.

Modificar

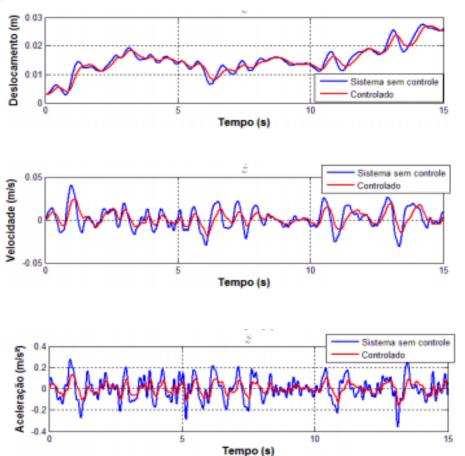
Modificação da central de controle para acrescentar controle de rigidez através de molas pneumáticas.

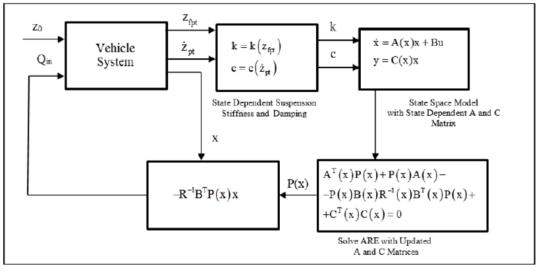
Por para outro uso

Utilizar em furgões que transportam cargas frágeis.

Eliminar

Eliminar o conjunto de amortecedores magneto-reológicos dianteiros.




Reverter

Ler o percurso para adaptar a suspensão antes do obstáculo.

TARGET

Fonte: Saglam, F.

Golçalves, M. **CONTROLE SDRE APLICADO EM SUSPENSÃO VEICULAR COM AMORTECEDOR MAGNETO-REOLÓGICO.** UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ, 2017.

Moretti, E. **MODELAGEM E PROJETO DE UM SISTEMA DE CONTROLE ÓTIMO DA SUSPENSÃO SEMI-ATIVA DE UM AUTOMÓVEL.** Universidade de São Paulo, 2015.

Reduzir em 50% a amplitude de aceleração vertical média no interior das ambulâncias, em relação aos valores iniciais.

Moretti, E.(2015) Gonçalvez, M. (2017)

MÉTODO DE CÁLCULO

CÁLCULO DA FREQUÊNCIA NATURAL

$$f_n = \frac{1}{2 * \pi} * \sqrt{\frac{k}{m}}$$

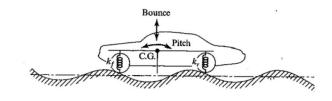
 $\checkmark f_n$: Frequência natural da massa não suspensa

 \checkmark k: Rigidez de mola equivalente

✓ m: Massa do veículo no eixo

GILLESPIE

Massa suspensa:


$$1 Hz < f n_{ms} < 2 Hz$$

Massa não suspensa:

$$10 \, Hz < fn_{mns} < 20 \, Hz$$

OLLEY

$$fn, f = (0.7 \leftrightarrow 0.9) * fn, r$$

OLLEY, M. Independent Wheel Suspensions-Its Whys and Wherefores. SAE, 1934 GILLESPIE, T. D. Fundamentals of Vehicle Dynamics. SAE, 1992

MÉTODO DE CÁLCULO

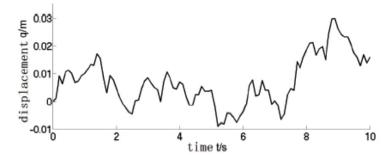


Table C.2 — Road classification

Road class	Degree of roughness			
Road Class	Lower limit	Geometric mean	Upper limit	Geometric mean
		Spatial frequ	ency units, n	
		$G_{\rm d}(n_0)^{\rm a}$		$G_{\rm V}(n)$
		10 ⁻⁶ m ³		10-6 m
A	_	16	32	6,3
В	32	64	128	25,3
С	128	256	512	101,1
D	512	1 024	2 048	404,3
Е	2 048	4 094	8 192	1 617
F	8 192	16 384	32 768	6 468
G	32 768	65 536	131 072	25 873
Н	131 072	262 144	_	103 490

Fonte: Norma ISO8608

$$q(t) = \sqrt{k} \int_0^t w(t)dt$$

$$\sqrt{k} = 2\pi n_0 \sqrt{G_q(n_0)v}$$

$$\sqrt{k} = 2\pi n_0 \sqrt{G_q(n_0)v}$$

Fonte: Adaptado de WANG e QIANG, 2017

RAJ, A. et. al. Modelling and Analysis of Skyhook and Fuzzy Logic Controls in Semi-Active Suspension System. International Conference on Industrial Instrumentation and Control, 2015.

XIMENES, D. et al. AVAS: sistema de suspensão pneumático com rigidez ajustável para veículos de resgate. CENTRO UNIVERSITÁRIO FEI, 2017 ISO 8606:2016. Mechanical vibration — Road surface profiles — Reporting of measured data. 2016.

WANG, J. e QIANG, B. Road simulation for four-wheel vehicle whole input power spectral density. AIP CONFERENCE . 2017.

SUSPENSÃO TRASEIRA

$$k_{mola} = \frac{\left(2 + \frac{1}{6}\right) * 210000 * 6 * 100 * 6^3}{6 * 538,59^3}$$

$$k_{mola} = 62,91 \ N/m \ m$$

 $f_{n,suspensa} = 1,501 Hz$

 $f_{n,n\tilde{a}o\ suspensa} = 10,045\ Hz$

SUSPENSÃO DIANTEIRA

$$f_{n,massa\ suspensa\ (D)} = 0.9 * 1.501$$

$$f_{n,massa\ suspensa\ (D)} = 1,351\ Hz$$

$$f_{n,n\tilde{a}o\ suspensa} = 10,605\ Hz$$

$$k_{mola} = 66,41 \ N/m m$$

AMBULÂNCIA COMUM

$$k_{mola(T)} = 120 \, N/m \, m$$

$$f_{n,suspensa(T)} = 1,88 Hz$$

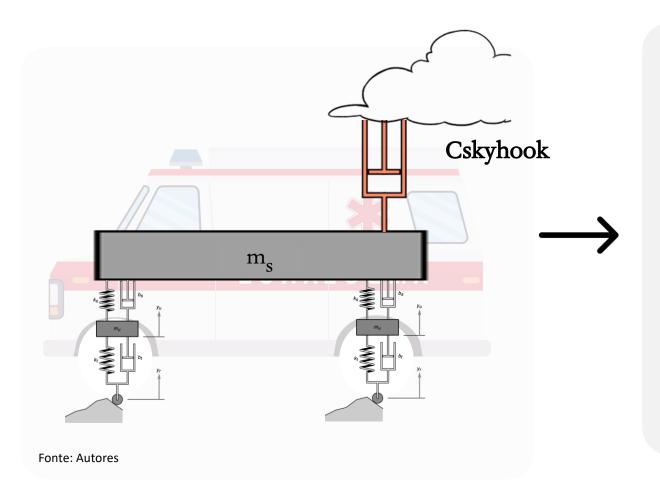
$$k_{mola(D)} = 96 \, N/m \, m$$

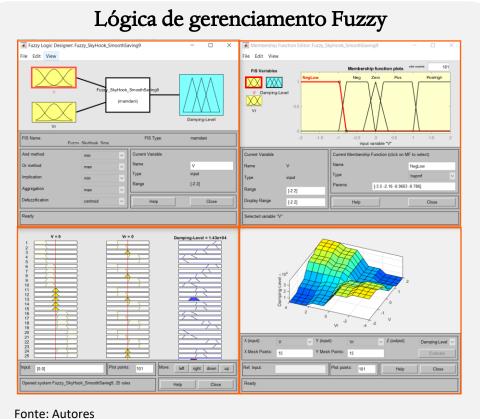
$$f_{n,suspensa(D)} = 1,75 Hz$$

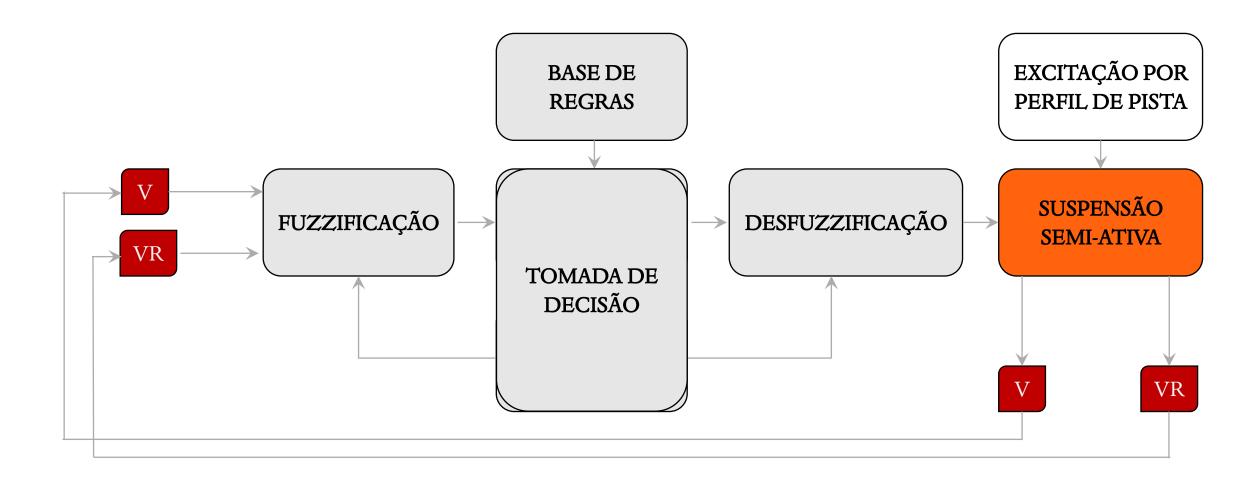
SMOOTH SAVING

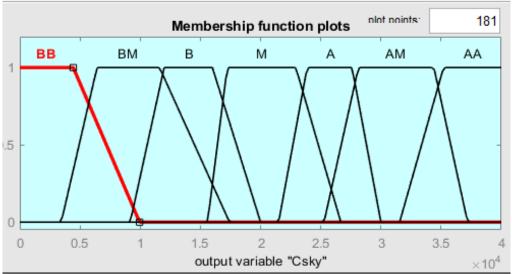
$$k_{mola(T)} = 62,91 \ N/m m$$

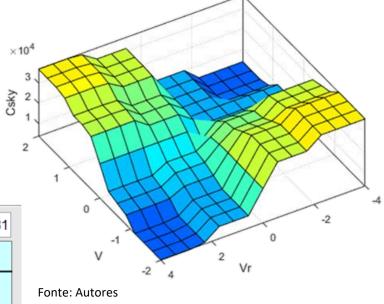
$$f_{n,suspensa(T)} = 1,501 Hz$$


$$k_{mola(D)} = 66,41 \ N/m m$$


$$f_{n,suspensa(D)} = 1,351 Hz$$

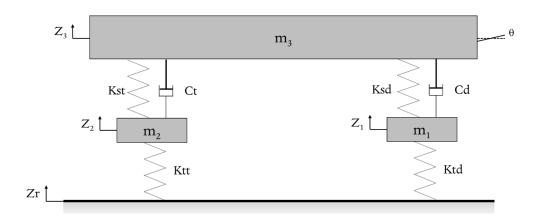


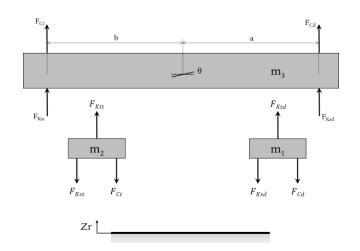




Velocidade da massa suspensa						
		NegLow	Neg	Zero	Pos	PosHigh
	NegLow	AA	AM	M	BM	BB
Velocidade	Neg	AM	A	M	В	BM
Relativa	Zero	M	M	В	M	M
	Pos	ВМ	В	М	A	AM
	PosHigh	ВВ	ВМ	М	AM	AA

Fonte: Autores





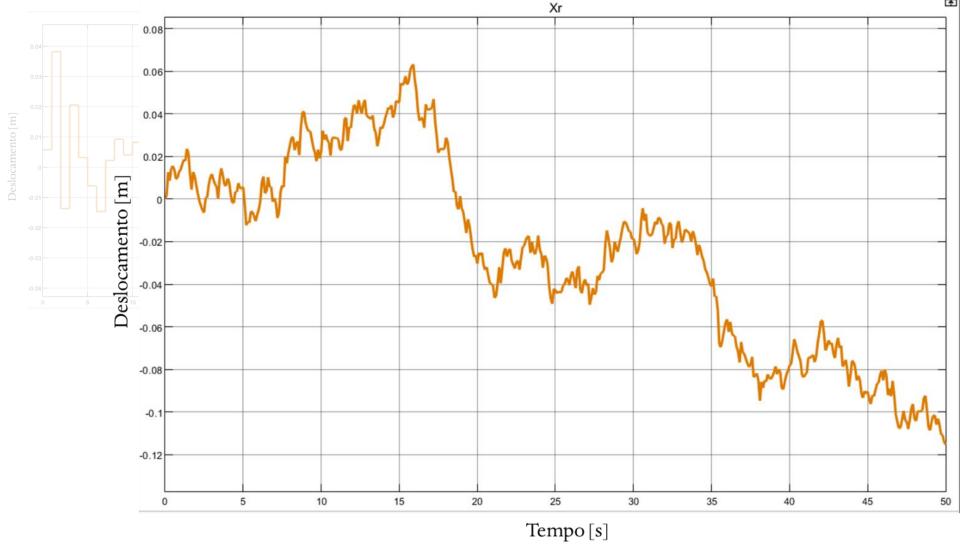
RAJ, A. et. al. **Modelling and Analysis of Skyhook and Fuzzy Logic Controls in Semi-Active Suspension System.** International Conference on Industrial Instrumentation and Control, 2015.

$$\ddot{Z_{3}} = \frac{-Kst * (Z_{3} - Z_{2} - b * \theta) - Ksd * (Z_{3} - Z_{1} + a * \theta) - Cd * (\dot{Z}_{3} - \dot{Z}_{1} + a * \dot{\theta}) - Ct * (\dot{Z}_{3} - \dot{Z}_{1} - b * \dot{\theta})}{m_{3}}$$

$$\ddot{Z_1} = \frac{Cd * (\dot{Z}_3 - \dot{Z}_1 + a * \dot{\theta}) + Ksd * (Z_3 - Z_1 + a * \theta) - Ktd * (Z_1 - Z_r)}{m_1}$$

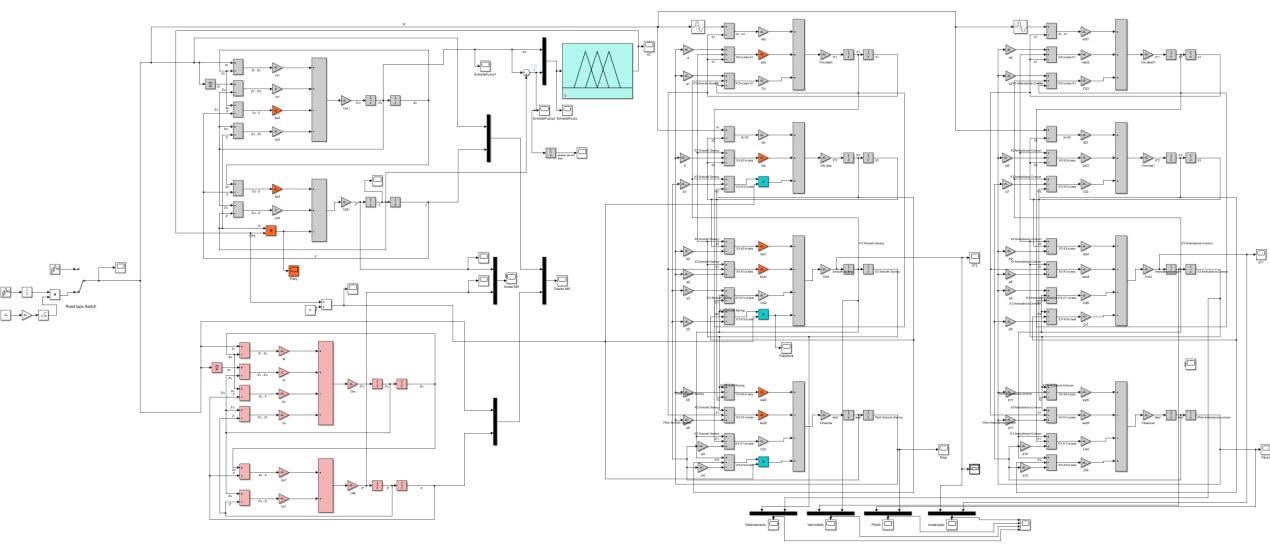
$$\ddot{Z_2} = \frac{Ct * (\dot{Z}_3 - \dot{Z}_2 - b * \dot{\theta}) + Kst * (Z_3 - Z_2 - b * \theta) - Ktt * (Z_2 - Z_r)}{m_2}$$

$$\ddot{\theta} = \frac{Kst * (Z_3 - Z_2 - b * \theta) - Ksd * (Z_3 - Z_1 + a * \theta) - Cd * (\dot{Z}_3 - \dot{Z}_1 + a * \dot{\theta}) + Ct * (\dot{Z}_3 - \dot{Z}_2 - b * \dot{\theta})}{I}$$

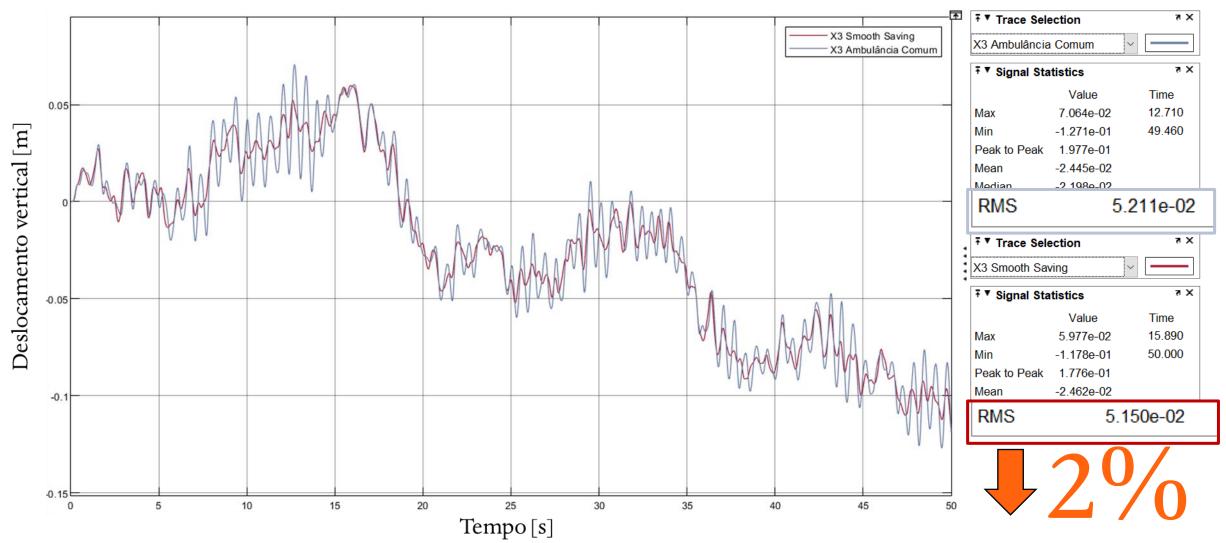

Table C.2 — Road classification

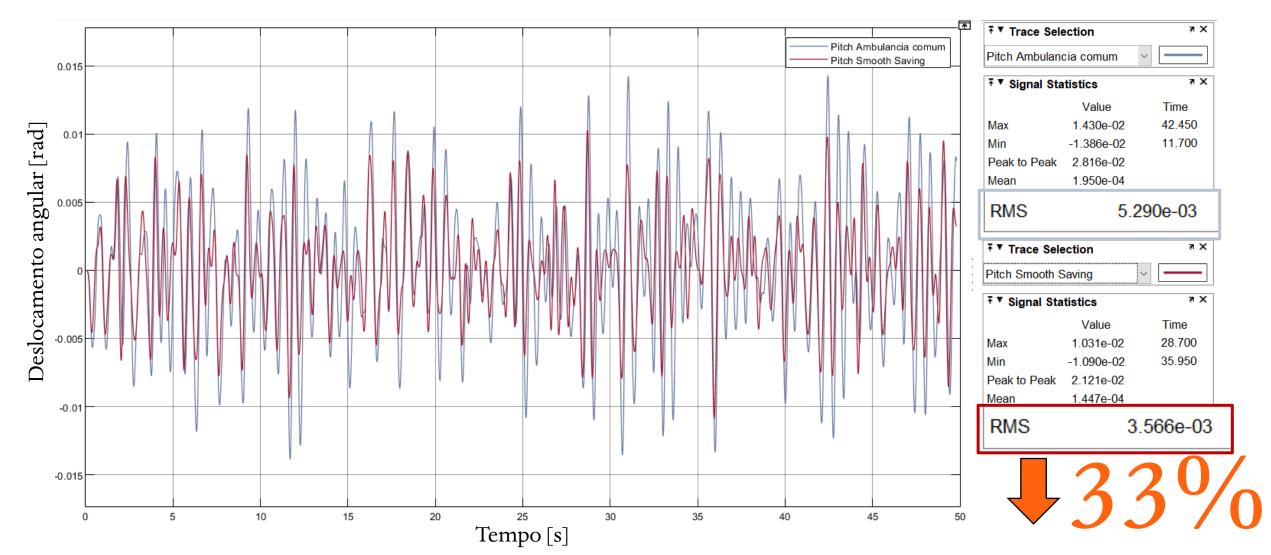
Road class	Degree of roughness				
Road class	Lower limit	Lower limit Geometric mean Upper limit			
		Spatial frequ	iency units, n		
		$G_{\mathbf{d}}(n_0)^{\mathbf{a}}$		$G_{\mathbf{v}}(n)$	
		$10^{-6}\mathrm{m}^3$		10 ⁻⁶ m	
A	_	16	32	6,3	
В	32	64	128	25,3	
С	128	256	512	101,1	
D	512	1 024	2 048	404,3	
Е	2 048	4 094	8 192	1 617	
F	8 192	16 384	32 768	6 468	
G	32 768	65 536	131 072	25 873	
Н	131 072	262 144		103 490	

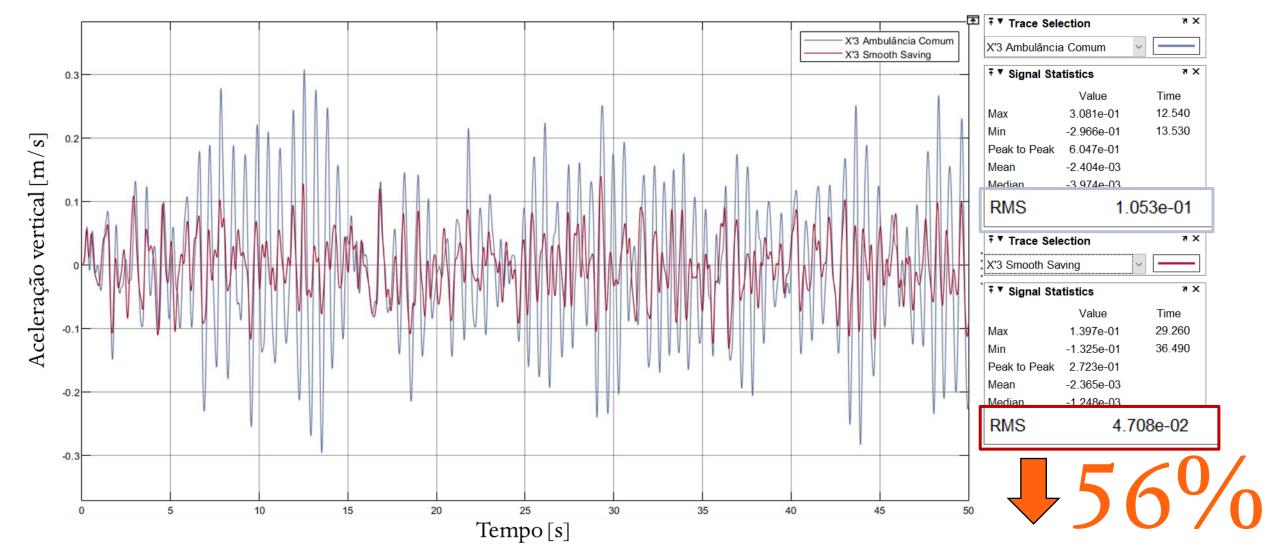
ISO 8606:2016. Mechanical vibration — Road surface profiles — Reporting of measured data. 2016.

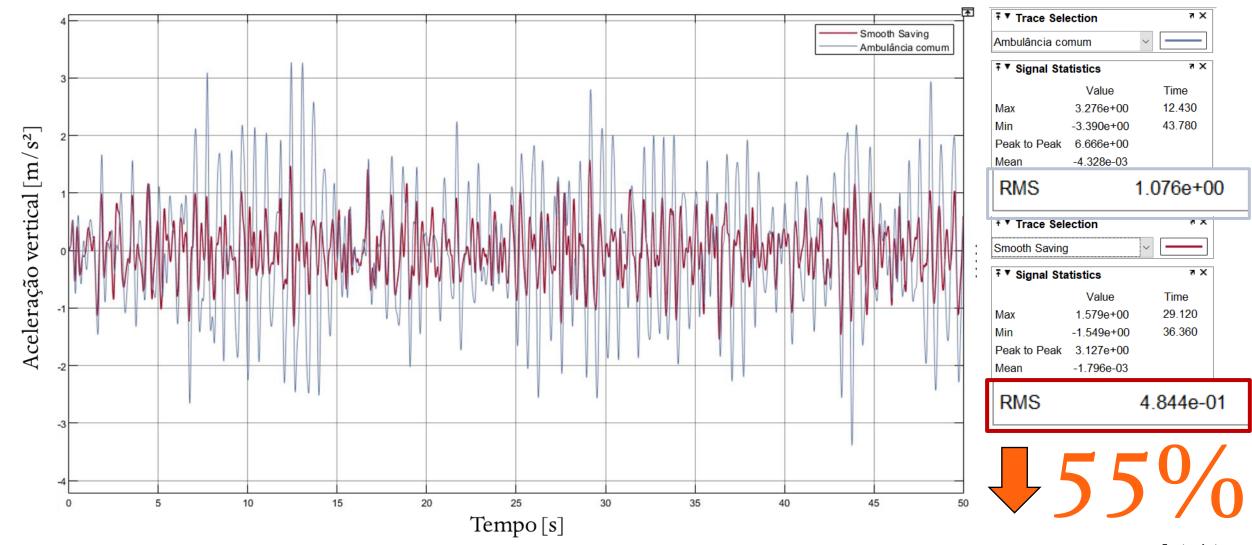


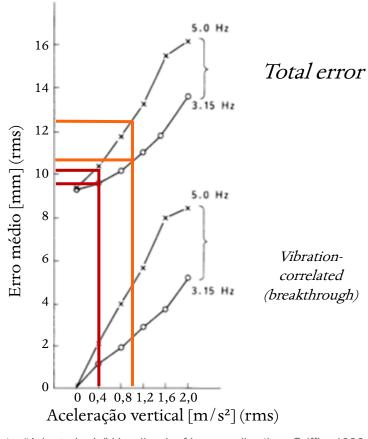
WANG, J. e QIANG, B. Road simulation for four-wheel vehicle whole input power spectral density. AIP CONFERENCE . 2017.



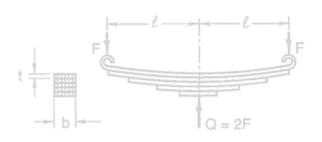






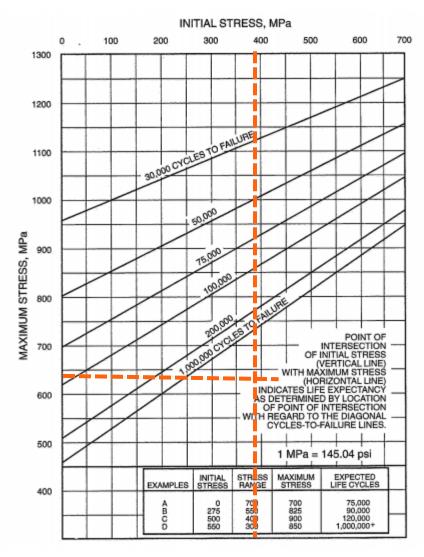


 $\Rightarrow 20\%$


Fonte: "Adaptado de" Handbook of human vibration, Griffin, 1996

VERIFICAÇÕES ESTRUTURAIS

FEIXE DE MOLAS TRASEIRO



Dados do Feixe de Molas			
E (MPa)	210000		
w (mm)	100		
h (mm)	6		
I (mm)	538,59		
n	6		
n′	1		
Dados das massas			
Suspensa (T) (kg)	538		
Suspensa (D) (kg)	692		
Não suspensa (D) (kg)	60		
Não suspensa (T) (kg)	66		
Dados do Pneu			
k pneu (N/mm)	200		

$$\sigma_{s,m\acute{a}x} = \delta_{m\acute{a}x} * \frac{\left(2 + \frac{n'}{n}\right) * E * t}{2 * l^2}$$

$$\sigma_{s,m\acute{a}x}=658,79~MPa$$

$$CS = \frac{\sigma_e}{\sigma_{s,m\acute{a}x}} = \frac{1330}{658,79} = 2,02$$

MILLIKEN, W. F.; MILLIKEN, D. L. Race car vehicles Dynamics, Warrendale: SAE International, 1995.

VERIFICAÇÕES ESTRUTURAIS

MOLAS HELICOIDAIS DIANTEIRAS

Dados de Projeto		
D interno (mm)	130,000	
d (mm)	20,00	
D externo (mm)	170,000	
D (mm)	150,000	
С	7,500	
Ks	1,067	
Ка	1,197	
δ máx (mm)	160,000	
G aço (MPa)	78400,0	
Altura livre	410,0	
k mola (N/mm)	66,413	

Dados do material				
τ escoamento (MPa)	770			
σ resistência (MPa)	1700			
σ escoamento (MPa)	1330			
C tam	0,898			
τ resistência (MPa)	1360			
Sn (MPa)	390			

$$k_{mola} = \frac{G * d}{8 * N_a * C^3} = 66,41 \, N/mm$$

$$au_{m ext{a}x} = rac{8*F_{m ext{a}x}*C*K_S}{\pi*d^2} = 541,2 \text{ MPa}$$

$$CS = \frac{\tau_{escoamento}}{\tau_{m\acute{a}x}} = 1,42$$

$$\tau_m = \frac{8 * F_m * C * K_S}{\pi * d^2} = 443,46 \text{ MPa}$$

$$au_a = \frac{8 * F_a * C * K_a}{\pi * d^2} = 107,70 \text{ MPa}$$

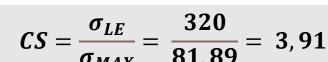
$$S_{n,real} = S_n * C_{tam}$$

$$\frac{\tau_a}{S_{n,real}} + \frac{\tau_m}{\tau_e} = \frac{1}{n_s}$$

$$\frac{\tau_a}{S_{n,real}} + \frac{\tau_m}{\tau_r} = \frac{1}{n_G}$$

$$n_s = 1,125$$

$$n_G = 1,565$$


VERIFICAÇÕES ESTRUTURAIS

EIXO TRASEIRO

- ✓ Material: Aço ABNT 1020
- ✓ Limite de escoamento: 320 MPA
- ✓ Máxima força atuante: 6000 N

Fonte: Autores

Equivalent Stress

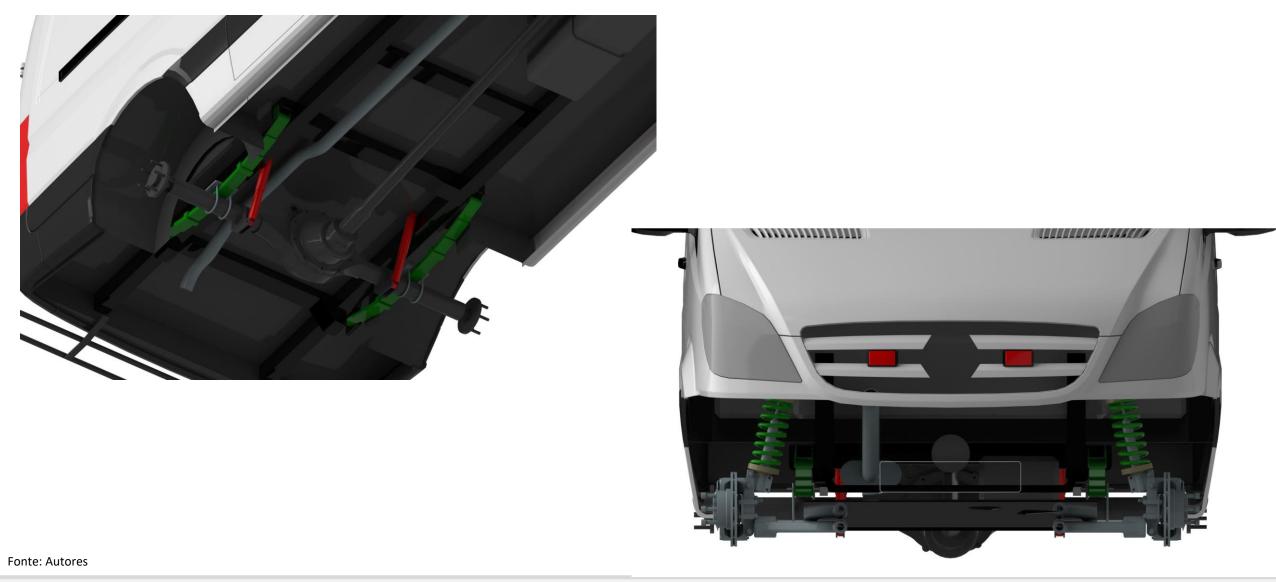
Unit: MPa

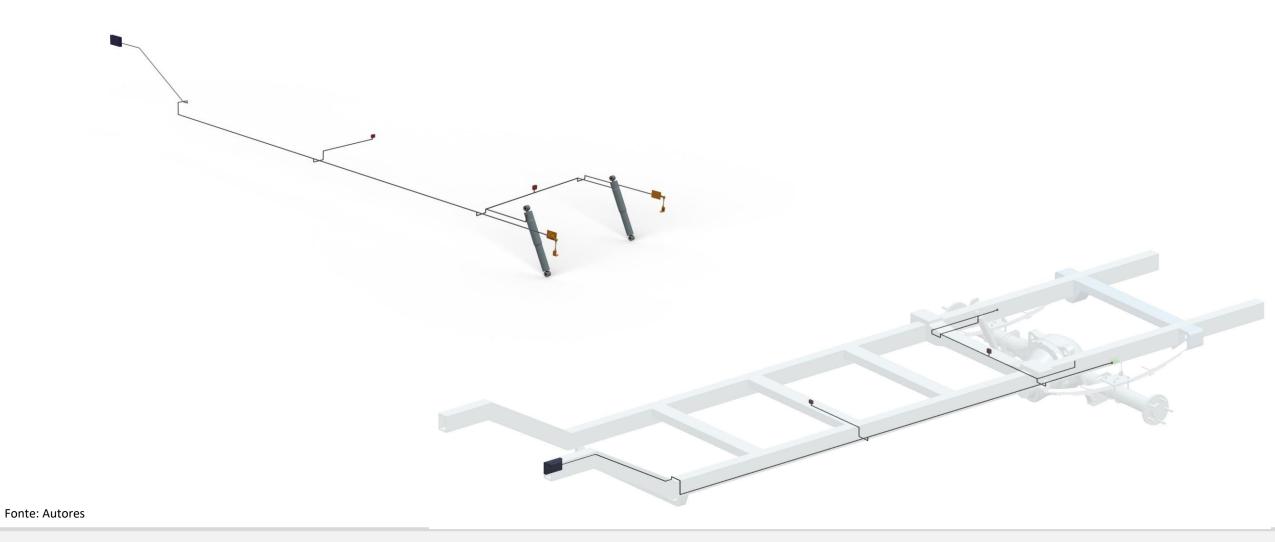
63,699

18,2

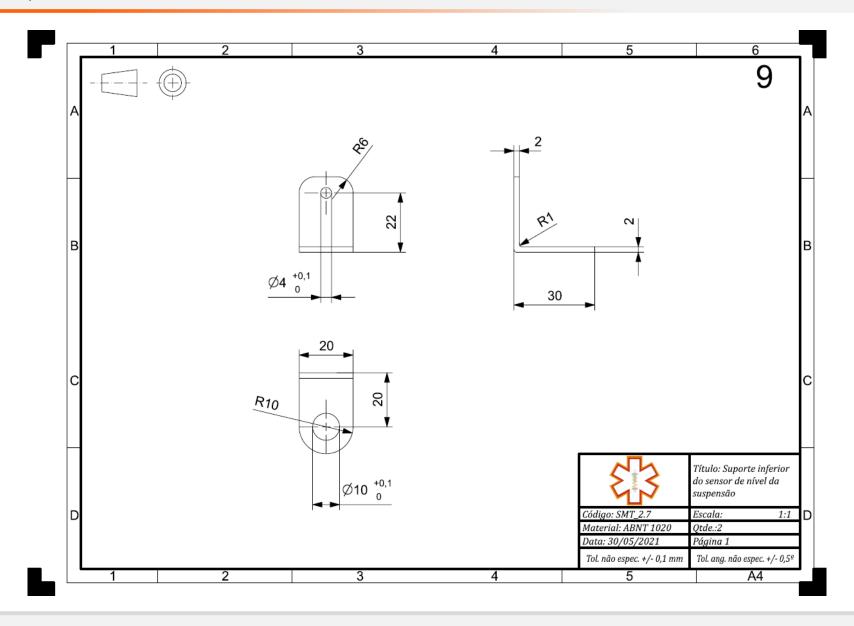
Type: Equivalent (von-Mises) Stress

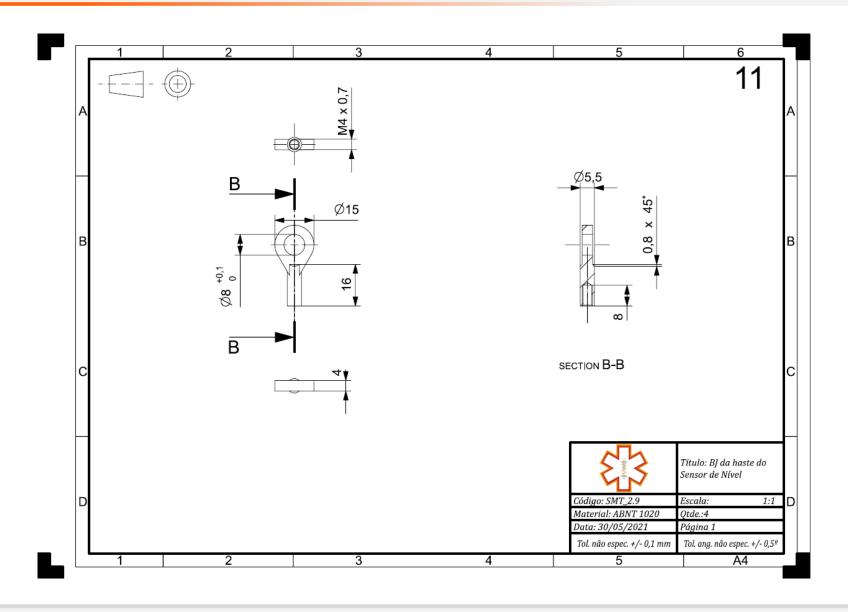
81,899 Max

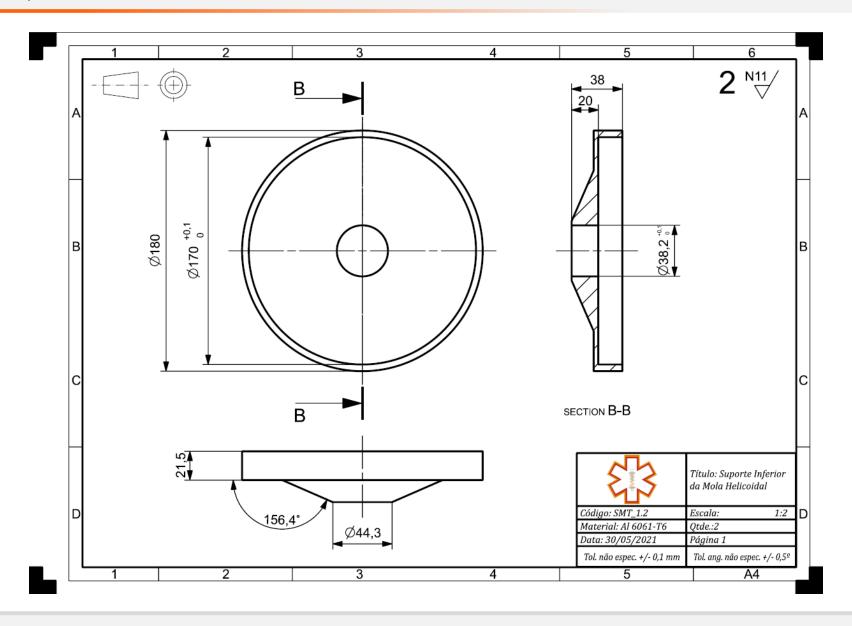




SMOOTH SAVING

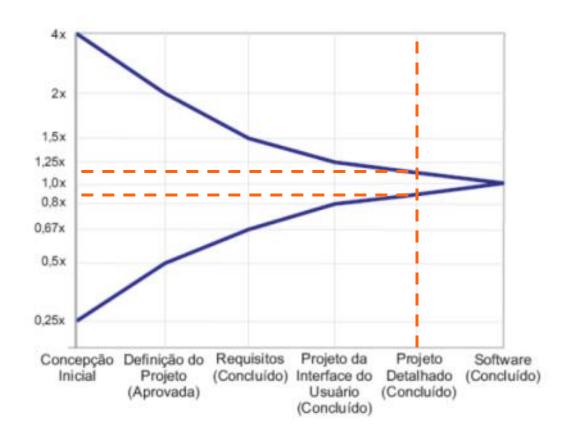






CUSTOS DO PRODUTO

COMPONENTES				
Item	Quantidade (unidade)	Custo (unitário)	Custo (Total)	
Amortecedor magneto relógico	2	R\$ 1.402,50	R\$ 2.805,00	
ECU programável veicular	1	R\$ 1.690,00	R\$ 1.690,00	
Feixe molas dimensionada	2	R\$ 580,00	R\$ 1.160,00	
Molas Helicoidais	2	R\$ 485,00	R\$ 970,00	
Sensor de altura para suspensão	4	R\$ 232,00	R\$ 928,00	
Acelerômetro	2	R\$ 1.699,00	R\$ 3.398,00	
Driver de Potência pwm	2	R\$ 58,00	R\$ 116,00	
Chicote elétrico veicular	1	R\$ 300,00	R\$ 300,00	
Conectores para o chicote	12	R\$ 2,50	R\$ 30,00	
Parafuso Allen M12 x 80,0 mm	10	R\$ 4,54	R\$ 45,40	
Arruela M12	20	R\$ 0,12	R\$ 2,40	
Porca M12	20	R\$ 0,57	R\$ 11,40	
Investime		R\$ 11.456,20		


CUSTO	DE DESENVO	OLVIN	MENTO	
Item	Quantidade (horas)	Custo	(unitário)	Investimento
Desenvolvimento do Produto	700	R\$	180,00	R\$ 126.000,00
Testes de Performance	200	R\$	300,00	R\$ 60.000,00
Testes de Durabilidade	400	R\$	250,00	R\$ 100.000,00
NVH	200	R\$	300,00	R\$ 60.000,00
Testes em Veículo	200	R\$	600,00	R\$ 120.000,00
Investimento total				R\$ 466.000,00

R\$ 11.456,20

CUSTOS DO PRODUTO

Variação	Custo do produto
0,90x	R\$ 10.310,58
1,00x	R\$ 11.456,20
1,125x	R\$ 12.888,23

Fonte: Agile Momentum

BUSSINESS MODEL CANVAS

Parcerias Chave

Empresas fabricantes de amortecedores:

Empresas de prestação de serviços de resgate;

Fornecedores;

Empresa fabricantes de módulo de controle.

Atividades chaves

Estudo e venda do sistema e componentes de reposição;

Pós venda (Garantia, Atualização da ECU).

Recursos Chaves

Proposta de valor

Atenuar picos das acelerações verticais a fim de diminuir o estresse no paciente;

Melhorar condições de trabalho da equipe de paramédicos.

Relacionamento

Visita técnica comercial:

Assessoria de projeto;

Suporte de Pós Venda.

Segmentos de clientes

Empresas de adaptação de ambulâncias;

Empresas de locação de ambulâncias.

Venda direta;

Feiras Automobilísticas;

Redes sociais;

Canais

Feiras de sistema de saúde:

Anúncios em sites e revistas do setor.

Estrutura de custos

Softwares;

medições;

programação;

Banco de dados de

Equipe de projetos e

Equipe de vendas;

Custos Fixos:

Custos Variáveis:

Maquinas para manufatura.

Recursos humanos;

Aquisição de dados e validação;

Infraestrutura física (escritórios,

Pagamentos de fornecedores;

computadores etc.); Licenças de softwares.

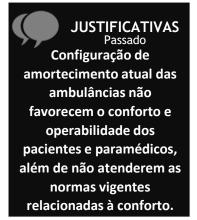
Ações de marketing e divulgação;

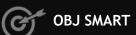
Compra de peças.

Fontes de receita

Venda do sistema de suspensão;

Venda de peças de reposição.


Fonte: Autores


SMOOTH SAVING

CANVAS DE PROJETO

Atenuar as amplitudes de aceleração vertical média tal que garanta uma melhoria no conforto e cumprimento das normas vigentes além de melhorar a operabilidade dos profissionais de saúde.

BENEFÍCIOS Futuro

Diminuir traumas ao paciente durante o período de transporte até o Hospital.

PRODUTO

Novo dispositivo capaz de proporcionar uma melhoria significativa no quesito conforto e operabilidade.

REQUISITOS

As acelerações médias verticais provocadas por irregularidades na via devem ser atenuados, visando o cumprimento das normas vigentes relacionadas à conforto.

Manter ou aumentar a velocidade média da ambulância.

Diminuir erros médicos causados pelas acelerações verticais médias.

STAKEHOLDERS Externos & Fatores Externos

- Fabricante de furgões e adaptadoras de ambulâncias
 Hospitais
- Motoristas e paramédicos de ambulâncias
- Empresas de locação de ambulâncias
- Entidades governamentais

PREMISSAS

Captação de recursos para desenvolvimento do novo dispositivo e realização de testes.

Formar parceria com hospitais e empresas de ambulâncias para testes e discussões.

RISCOS

Falta de domínio de softwares/programação.

Limitação de recurso financeiro disponível.

Dificuldade de correlacionar engenharia/medicina.

Validação do projeto.

EQUIPE

Professor coordenador.

Professor orientador.

Professor coorientador.

CLM

Grupo Smooth Saving

ambulância.

GRUPOS DE ENTREGAS

A: Estudo dos malefícios causados pelas vibrações da

B: Coleta e análise de dados práticos

C: Desenvolvimento do novo dispositivo

D: Validação do sistema

LINHA DO TEMPO

A: Julho / 2020

B: Novembro / 2020

C: Janeiro / 2021

D: Março / 2021

RESTRIÇÕES

Número limitado de testes em campo para validação.

Coleta de dado restrita à disponibilidade dos StakeHolders.

Pandemia COVID-19.

CUSTOS

Aquisição de dados práticos.

Material para desenvolvimento do novo dispositivo.

Fonte: Autores

SMOOTH SAVING

https://smoothsaving2021.wixsite.com/smooth-saving

COTNOIR, P. D. **Ambulance Vibration Suppression via Force Field Domain Control.** 20 Abr. 2020. Worcester Polytechinic Institute

RAEMAEKERS, A. **Active vibration isolator design for ambulance patients.** 2009 Eindhoven University of Technology, Eindhoven, Holland.

CUNNINGHAM, P.; RUTLEDGE, R.; BAKER, C.C. and CLANCY, T.V. **A Comparison of the association of helicopter and ground ambulance transport with the outcome of injury in trauma patients transported from the scene.** Journal of Trauma. 1997

GILLESPIE, T. D. Fundamentals of Vehicle Dynamics. 3rd edition, Warrendale, SAE Inc.

SILVA, L. M. N. e; MALVEZZI, P. **Análise dos movimentos e graus de liberdade requeridos para um sistema atenuador de vibrações em macas de ambulância.** Instituto Mauá de Tecnologia.

NICHOLL, J. et. al. A Review of the costs and benefits of helicopter emergency ambulance services in England and Wales. University of Sheffield, 2003.

ALMEIDA, P. et. al. **Análise dos atendimentos do SAMU 192: Componente móvel de atenção às urgências e emergências.** Universidade Estadual Paulista, 2016

DELGADO, M. et. al. Cost-Effectiveness of Helicopter Versus Ground Emergency Medical Services for Trauma Scene Transport in the United States. Annals of Emergency Medicine, 2013

MICHAELS, D. et. al. Helicopter versus ground ambulance: review of national database for outcomes in survival in transferred trauma patients in the USA. Trauma Surgery & Acute Care Open, 2018.

KENNEDY, J et. al. Impact of road humps on vehicles and their occupants. TRL Report, 2004.

MICHAELS, D. et. al. Helicopter versus ground ambulance: review of national database for outcomes in survival in transferred trauma patients in the USA. Trauma Surgery & Acute Care Open, 2018.

GRANLUND, J. Whole-body vibration when riding on rough roads. Vagverket, 2000.

DIAZ, M. et. al. When Is the Helicopter Faster? A Comparison of Helicopter and Ground Ambulance Transport Times. The Journal of trauma, 2005.

OLIVEIRA, F. et. al. **Prevalência dos atendimentos realizados pelo Serviço de Atendimento Móvel de Urgência (SAMU/GV) nos anos 2009-2013.** Universidade Vale do Rio Doce, 2014.

SECRETARIA DA SAÚDE. Protocolo operacional padrão SAMU 192.

SAIFUL, M. et. al. Ride comfort evaluations on electric vehicle conversion and improvement using Magnetorheological semi active suspension system. Universiti Teknologi Malaysia, 2011.

CRIVELLARO, C. Controle robusto de suspensão semi-ativa para caminhonetes utilizando amortecedores magneto-reológicos. Escola Politécnica da Universidade de São Paulo, 2008.

TANAKA, M. Controle inteligente de vibrações utilizando amortecedor magneto reológico. Universidade Federal do Rio Grande do Norte, 2017.

TORRES, T. Controle preditivo aplicado a um modelo não linear de suspensão automotive semiativa com amortecedor magneto-reológico. Universidade Federal da Bahia, 2016.

IEZZO, R. Desenvolvimento de um Sistema de suspensão com amortecimento semi-ativo "Slow-active" com custo competitivo. Universidade Estadual de Campinas, 2010.

GRIMSTAD, M. et al. **Design of MIMO Control Systems for Semi-Active Dampers combined with Active Anti-roll Bars.** Chalmers University of Technology, 2018.

MORETTI, E. et al. **MODELAGEM E PROJETO DE UM SISTEMA DE CONTROLE ÓTIMO DA SUSPENSÃO SEMI-ATIVA DE UM AUTOMÓVEL.** 2016.

SHIRAHATT, A. et al. Optimal Design of Passenger Car Suspension for Ride and Road Holding. 2008

SOLIMAN, A. et al. **Semi-active suspension systems from research to mass-market – A review**. Journal of Low Frequency, Noise, Vibration and active control, 2019.

YAO, J. The dynamics analysis of a ferrofluid shock absorber. Journal of Magnetism and Magnetic Materials, 2016.

CORBRIDGE, C. et al. Vibration and comfort: vertical and lateral motion in the range 0.5 to 5.0 Hz. North Carolina State University, 2007.

SAVARESI, S. et al. **SEMI-ACTIVE SUSPENSIONS: AN OPTIMAL CONTROL STRATEGY FOR A QUARTER-CAR MODEL.** IFAC Advances in Automotive Control , 2004.

MOURA, E. Estudo de suspensões passiva, semitativa MR e ativa. Universidade Estadual de Itajubá, 2003.

GONÇALVES, M. **CONTROLE SDRE APLICADO EM SUSPENSÃO VEICULAR COM AMORTECEDOR MAGNETO-REOLÓGICO.** UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ, 2017.

ANFLOR, C. et al. Estudo da transmissibilidade da vibração no corpo humano na direção vertical e desenvolvimento de um modelo biodinâmico de quatro graus de liberdade. 1998.

BOURMISTROVA, A. et al. Multiobjective optimization of active and semi-active suspension system with application of evolutionary algorithm. 2005

RAJ, A. et. al. Modelling and Analysis of Skyhook and Fuzzy Logic Controls in Semi-Active Suspension System. International Conference on Industrial Instrumentation and Control, 2015.

XIMENES, D. et al. **AVAS: sistema de suspensão pneumático com rigidez ajustável para veículos de resgate.** CENTRO UNIVERSITÁRIO FEI, 2017

ISO 8606:2016. Mechanical vibration — Road surface profiles — Reporting of measured data. 2016.

WANG, J. e QIANG, B. Road simulation for four-wheel vehicle whole input power spectral density. AIP CONFERENCE . 2017.

MORLIN, F. **Análise da dinâmica vertical de um veículo fora de estrada.** UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. 2017.

VASSAL, C. et al. **OPTIMAL SKYHOOK CONTROL FOR SEMI-ACTIVE SUSPENSIONS.** Laboratoire d'Automatique de Grenoble. 2006.

DHARANKAR, C. et al. Numerical generation of road profile through spectral description for simulation of vehicle suspension. The Brazilian Society of Mechanical Sciences and Engineering, 2016

PATEL, C. et al. **MODELLING AND VIBRATION ANALYSIS OF A ROAD PROFILE MEASURING SYSTEM.** Department of Mechanical Engineering Charotar Institute of Technology, 2010

