
RoboFEI 2014 Team Description Paper

Fernando Rodrigues Jr., Danilo Pucci, Feliphe G. Galiza, Caio Schunk, Vitor
Hugo M. Beck, Francisco Biaso, Victor Torres, Thiago Silva, Victor Amaral,

José Angelo Gurzoni Jr., Reinaldo A. C. Bianchi, and Flavio Tonidandel

Robotics and Artificial Intelligence Laboratory
Centro Universitário da FEI, São Bernardo do Campo, Brazil

{flaviot, rbianchi}@fei.edu.br

Abstract. This paper presents an overview of the RoboFEI team state
for the RoboCup Small Size League competition.
The paper contains descriptions of the mechanical, electrical and soft-
ware modules, designed to enable the robots to achieve playing soccer
capabilities in the dynamic environment of the Small Size League.

1 Introduction

For the RoboCup 2014, RoboFEI team intends to use basically the same elec-
tronic project that has been used during the last four years, with minor mod-
ifications. The Mechanical design is under maintenance, studies are focused to
avoid the chip kick parts deformations.

The strategy software has been refactored and turned the code more ag-
ile, easy and efficient. The next step is add new features and functionalities to
improve the robot’s skills.

2 Electronic Design

The electronic design has been used for the last four years and received few
modifications since reached desired performance and stage of development.

RoboFEI’s electronic consists of two boards: the main board is responsible
for all embedded computation and robot’s motion control. The Kicker board
commands the kicking devices and it’s associated power electronics. These two
boards are described in details in this section.

2.1 Main Board

The main board (Fig. 1) has a Xilinx Spartan 3 FPGA (XC3S400) responsible
for performing all the logic and control functions. Embedded into this FPGA are
a soft-core microcontroller IP, the Microblaze running on version 8.1, five brush-
less motor controllers, sensor control modules and the kicker board command.
The integration of all the functions, including the microcontroller, in the same
IC eliminates the difficulties related to component interconnection and avoids



(a) Main board rev. B (b) Main board rev. C

Fig. 1. Old Main board, and the current version

the maintenance of multiple firmwares, while at same time considerably reduc-
ing the number of components on the board. The Xilinx Spartan 3, with its
Microblaze soft-core operating at 50 MHz, provides fast computation, because
of its integrated hardware FPU (floating-point arithmetic unit). The embedded
firmware is loaded in a 4M words PROM memory connected to the FPGA.

The five brushless motor drivers are designed with the IRF7389 N-P com-
plementary channel MOSFETs, an feature Allegro ACS712 current sensors. The
reading of the ACS712 is made by a AD7928 Analog-to-Digital IC. The power
to the main board and motors is provided by one LiPo battery of 3-cells (11.1V )
and 2200 mAh capacity.

The radio system is based on the Nordic nRF24L01+ transceiver. These
transceivers operate on the frequency range between 2.4 and 2.5GHz and have
data transmission rates of up to 2Mbps, allowing telemetry data to be obtained
from the robots live during the matches. Each robot carries one transceiver, con-
nected to the microcontroller via SPI bus, which is used to both send and receive
data. The robot’s transceivers communicates with the radio station connected
to the strategy computer. This radio station contains two nRF24L01+ modules,
operating on independent channels, one to receive and another to transmit data.
An ARM7 CPU is responsible for the transceivers operation, data queuing, data
integrity validation and interfacing with the USB port of the radio. The board
also features a RF amplifier based on the MGA-85563 IC, used to boost the TX
signal to 15dBm, ensuring enough power to reach the robots reliably even at
larger distances.

Although RoboFEI’s Main board is a fully functional and mature hardware
design, its life-cycle is still closely monitored. A new revision of the board, shown
in Fig. 1(b), has been developed. The RAM memory was not being actively used
and has been replaced by a SPI flash memory, intended to store the robot’s
sensors and status measurement data. A motor-enable circuit with an IRF9310
MOSFET was also added, to protect the transistors on the brushless controller
circuit from transient surges during power on and off. The last addition was
an auto power-off circuit, to avoid damage to both the battery and electronics



circuitry in case the robot’s battery gets exhausted (i.e. if it is forgotten powered
on).

2.2 Kicker Board

The kicker board, shown in Fig. 2.2, is responsible for controlling both the shoot-
ing and chip kick devices. It uses a boost circuit designed with the MC34063 IC.
This IC produces a 100 KHz PWM signal that charges two 2700 µF capacitors
up to 200V . The MC34063 controls the whole circuit, sparing the main-board’s
CPU from the need to generate the PWM signal and monitor the capacitor’s
charge. The board features two IRFSL4127 MOSFETs, responsible for activat-
ing the shooting and chip solenoids. Its power supply is independent, fed by a
3-cell (11.1V ), 800mAh, LiPo battery, and all the connections to the main board
are opto-coupled, to avoid spikes and eventual damage to sensitive electronic cir-
cuitry.

Fig. 2. Kicker Board.

3 Mechanical Design

In compliance with the SSL rules, the height of the robot is 148 mm, the max-
imum percentage of ball coverage is 15% and the maximum projection of the
robot on the ground is 146 mm.

The current robot uses a 6000 series aluminum alloy as main material, the
factor hardness/weight has a good relation and less frequent part replacements
are needed. Wheel axes and the small rollers of the omni-directional wheels are
exposed to severe stress thus are made of stainless steel instead. Nylon is found
in battery’s supports due to electrical isolation and its lightweight.

The Robot weighs about 2.6Kg and the general design could be seen on Fig
3 and 4.



Table 1. Robot’s Mechanical Specifications.

Height 148 mm

Weight 2,6 kg

Percentage of ball coverage 15%

Main Material 6000 series Aluminium Alloy

Roller bar material Polyurethane (PU):
Hardness of 20, 25 and 30 Shore A

Driving motor Maxon EC-flat 45 50W

Gear ratio 3:1

Dribbler device motor Maxon EC-Max 22 25W

Solenoid Plunger material SAE1020 steel

Solenoid coil AWG21 wire

Fig. 3. The RoboFEI robot.

Fig. 4. New geometry of the kick device



4 Path Planning and Obstacle avoidance

The path planning and obstacle avoidance algorithm employed is based on the
Rapid-Exploring Random Tree (RRT) with KD-Tree data structures, proposed
by [1], and on the ERRT algorithm developed by [5], complemented by an al-
gorithm to include preferred path heuristics and set the angle of approach. The
algorithm based on RRT was chosen because (i) its capacity to efficiently ex-
plore large state spaces using randomization, (ii) the probabilistic completeness
offered, (iii) its lookahead feature and (iv) the easiness of the algorithm’s exten-
sion, when new constraints or heuristics are deemed necessary.

This section focuses on describing this add-on algorithm, which is imple-
mented on top of the ERRT base algorithm.

The add-on algorithm has the function to set the angle which the robot
approaches the ending point, as commanded by the strategy layer, an item that
many path planners do not treat. It is not desirable, for example, that a robot
going to the ball on the defensive field accidentally hits the ball in the direction
of its own goal, or yet, that an attacking robot arrives at the ball in a position in
between the ball and the opponent’s goal. To create a path that conforms to the
angle of approach requirement, a circular virtual obstacle centered on the ending
point is created, with a 10◦ width circle segment and vertex at the desired angle
removed. This effectively forces the path planner to create a path the reaches the
ending point passing through this 10◦ opening. The radius of this obstacle-like
constraint is set to a value close to half the size of a robot.

5 Strategy System

Fig. 5. The Software Diagram

For this year we will use the same software structure(Fig. 5) used last year
that basically consist of some world modeling blocks, logically independent agent



modules, and visualization and data logging blocks. For this season the work is
concentrated at a refactoring process that the software is undergoing.

5.1 World Modeling

The world model is updated by the state predictor module. This module receives
vision data from the SSL-Vision and motion command data from the agent
modules, sent when they command the robots via radio, and performs state
predictions, The prediction is to advance the positions sent by the SSL-Vision
from their original capture time to the present and then forwarding one strategy
cycle in the future, the so called latency of the strategy system. This latency is
currently on the order of 80ms.

The prediction algorithms used for ball, robots and adversaries are differ-
ent.The ball prediction is made by an Extended Kalman filter (EKF) (see [7]),
a well known method for position estimation.

The robot’s prediction is performed similarly to [2], with multi-layer per-
ceptron neural networks. These networks are trained off-line to learn the robot’s
motion model, receiving past frames and motion commands as input and a frame
n steps in the future as output. Once trained, the networks are used for on-line
estimation of the robot’s position and rotation.

As for opponent estimation, currently it is done with simple extrapolation of
the last velocity data and Gaussian functions.

5.2 Agent Modules

Each robot player is an independent module, executing its own instance of one
or more strategy submodules and its hardware specific functions (such as motion
control and sensing). The current implementation relies basically on a layered
strategy architecture and a market based approach for dynamic allocation of
functions, both described ahead on this section.

5.3 Strategy module

Building multi-agent systems in a layered architecture with different levels of
abstraction is a popular approach (see [6], [3] and [4]) well suited as foundation
for machine learning algorithms, one of the research goals. For this reason, the
strategy module architecture was divided in three abstraction layers.

The lowest layer has the so called Primitives. Primitives are actions that
mostly involve directly activating or deactivating a hardware module such as to
kick the ball with a given strength, activate the dribbling device, rotate or move
to a position.1

On top of the primitive layer, is the Skills layer. Skills are also short duration
actions but involving use of one or more primitives and additional computation,

1 Actually, moving to a position is a special case of a primitive with underlying complex
logic. It calls the path planning system to perform obstacle avoidance.



such as speed estimation, forecasting of objects’ positions and measurement of
primitive tasks’ completion. This layer has a small set of skill functions, yet that
represent the basic skills required in a robot soccer game, like shooting the ball
to the goal (aiming where to shoot), passing the ball to a teammate, dribbling,
defending the goal line or tackling the ball (moving toward the ball and kicking
it away).

One example of such skill is the Indirect Free Kick skill, which employs a
multi-criteria weighted evaluation to determine the best for the robot to pass
the ball to. Grids are constructed in different areas of the field, then the weighted
multi-criteria evaluation function is employed to decide which of the grids con-
tains the best candidate position. Once the area is chosen, the function recom-
putes using a finer grid, to determine the exact position. The objectives evaluated
are the Euclidean distance of each position, in relation to both the robot and the
ball, the width of the angle a robot in that position would have to to kick to the
goal and the distance between the current positions of the teammates receiving
the pass and the chosen positions in the grid.

The skills are employed by the Roles layer, which contains different roles,
created using combinations of skills and the logic required to coordinate their
execution. There are roles called fullback, defender, midfielder, striker, forward
and attacker. No particular robot is tied to a given role (except the goalkeeper),
and there is no limitation on how many instances of the same role can exist,
what allows dynamic selection mechanisms to create role combinations without
restrictions.

5.4 Work In Progress

The robot’s mechanical is under continuous improvement, the height of chip kick
device and the roller ball handling are requiring main attention. The Chip kick
system is under strong mechanical stress. After some kicks the parts needs to be
replaced, the exceeded dissipation of energy and non-optimized geometry causes
important deformations, thus we have been working in a new mechanism with
the proposal to increase the lever arm distance to preserve the same torque with
less force values.

Our solenoid must be optimized, it’s super dimensioned occupying too much
space and wasting plenty amount of energy. The power dissipation is damaging
some mechanical structures leading to frequently repairs. The optimization will
be based on studies about electromagnetic theory using finite elements method
(FEM) looking for an optimal design. Parameters like plunger and outer coil
diameter, plunger material, voltage and time charge of capacitors will be con-
sidered.

Aiming at improving the quality of the ball handling, a new roller mechanism
is being developed, the device consists of a inverted pendulum where the damping
is provided by a viscoelastic foam.

After almost a year into the refactoring code project, it was very positive.
The implemented software is consistent with its conceptual design and the code



review based on code standards helps keeping the code clean and easy to main-
tain.

About an year ago, we started a code refactoring project, with a new ma-
jor software version. The results are very positive. With the refactoring, the
programming code is once again consistent with its conceptual design, what re-
moved several glitches and deadlocks, and also allowed us to view and fix parts
of the program that indeed had conceptual errors. One of the basis of the new
code is a continuous code review system, by which at least one reviewer (among
the programmers of the team) must sign-off the code before it is released, avoid-
ing problems in code readability, such as lack of clarity and comments, as well
as standardization and performance problems. The review system has proven
so positive that we intend to try tool for Git repositories called Gerrit 2, that
controls the work-flow of peer code reviews and controls them before the actual
commits to the main repository.

As the refactoring project comes close to completion, we resumed the work
on new code, adding new features and functionalities. One of these new func-
tionalities is the research of an optimized scientific library to provide linear
algebra support, with matrices operations, numerical solvers and optimization
algorithms. This is still early work, but so far the candidate libraries are Dlib 3,
Eigen 4 and Ceres 5.

Acknowledgments

We would like to thank, in advance, the Small Size League Committee, for the
consideration of our material. We would like also to immensely thank the staff
of Centro Universitário da FEI, for all the help we always received.

References

1. A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for motion
planning. In IEEE International Conference on Robotics and Automation, pages
632–637, 2002.

2. Sven Behnke, Anna Egorova, Alexander Gloye, Raul Rojas, and Mark Simon. Pre-
dicting away robot control latency. In Proceedings of 7th RoboCup International
Symposium. Springer, 2003.

3. Michael Bowling, Brett Browning, and Manuela Veloso. Plays as effective multiagent
plans enabling opponent-adaptive play selection. In Proceedings of International
Conference on Automated Planning and Scheduling (ICAPS’04), 2004.

4. Brett Browning, James Bruce, Michael Bowling, and Manuela Veloso. Stp: Skills,
tactics and plays for multi-robot control in adversarial environments. In IEEE
Journal of Control and Systems Engineering, volume 219, pages 33–52, 2005.

2 http://code.google.com/p/gerrit/
3 http://dlib.net/
4 http://eigen.tuxfamily.org
5 http://code.google.com/p/ceres-solver



5. James Bruce and Manuela Veloso. Real-time randomized path planning for robot
navigation. In Proceedings of IROS-2002, 2002.

6. Maja J Mataric. Learning in behavior-based multi-robot systems: Policies, models,
and other agents. Cognitive Systems Research, pages 81–93, April 2001.

7. G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report
TR 95-041, Department of Computer Science, University of North Carolina, 2001.


