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Abstract[] This paper describes how to solve numerical equations of hydraulic problems that involve the calculation of free and forced
channels. The problem is modeled by using the equation of Manning. The resulting numerical equation allows the calculation of outflows,
inclination of the channels, roughness, loss of energy and other parameters that are function of the geometry of the channels. Since this equation
presents high non-linearities and therefore it doesn’t have a closed solution, we propose an alternative solution using Genetic Algorithms (GAs)

and Evolution Strategy (ES).
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1 Problem description

According to the hydraulics theory, the behavior of
the motion of fluids in forced and free conduits
(channels) can be modeled based on the equations of
Manning, Hazen-Willians, Darcy-Weisbach
(Colebrook-Write), and Kutter (Chezy) (Chadwick
and Morfett, 1994). These equations allow the
calculations of outflows, inclinations of the
channels, roughness, loss of energy and other
parameters that are function of the geometry of the
channels, e.g., circular, rectangular, triangular or
trapezoidal. In this work, we use the Manning
method whose general equation is described by:
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where d stands for discharge, ¢ stands for a constant,
A designates the channel area, s designates the
channel slope, » is the Manning coefficient and P is
the wet perimeter. For a channel with triangular
section, we can write the following equations:
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where s, is the right side slope, s, is the left side
dope and the # is the channel depth. Using the
International System, ¢ is equal 1. Introducing
equations (2) and (3) into the equation (1) and
rearranging it results:
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The equation (4) presents high non-linearities
and therefore it doesn’t have a closed solution. So
numerica methods may be employed to solve such a
problem. In some cases, numerical methods present
difficulties to find the optimal solution. In this
paper, we propose an alternative solution using
Genetic Algorithms (GAs) (Michalewicz, 1996) and
Evolution Strategies (E£S) (Beyer, 1995). G4 and ES
are search and optimization algorithms based on the
principle of natural evolution and population
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genetics, which have been applied successful to
many engineering problems in different knowledge
areas. The basic idea is to maintain a population
P@)x; @, ... x;@, .., x, 0  of  individuas

(candidate solutions) which evolve under selective
pressure that favors better solutions. The interest in
Evolutionary Algorithms is increasing very fast,
because their robust and powerful adaptive search
mechanisms. Evolutionary algorithms have been
used to dealing with multi-dimensional and multi-
modal search problems. In the following, we
describe the two evolutionary algorithms.

2 Genetic Algorithms

GAs maintain a population of individuals which are
generated at random. Each individud x;(¢)

represents a potential solution of the problem at hand.
Individuals are evaluated to give a measure of their
fitness. Then, a new population, iteration #+1, is
formed by sdection of the more fit individuals
(selection step). Some individuals of the new
populaion undergo transformations due to crossover
and mutation operators to form new solutions
(Michadewicz, 1996). After a certain number of
generations the search converges and, if successful,
the fittest individual represents the optimal solution.
GAs in its smplest form uses three operators:
selection, crossover and mutation.

Selection: In the sdlection step, individuals are
chosen to participate in the reproduction of new
individuals. In this paper, the smple and robust
tournament selection is used. This method consists
of a random selection of two or more individuals.
The individual with the highest fitness advances to
the next generation.

Crossover: The crossover operator combines
characteristics of two parent individuals to form two
offspring. In this paper arithmetical crossover is
used. Let x()and x,(r) be two individuals to be

crossed. Then the two offspring x3(¢+1) and
x4 (t +1) are produced as a linear combination of
their parents x;(r)and x,(t), i.e.,

x3 (t+]) =axy (1) +(1-a)xy() ©)

x4 (t+1) = (- a) x,(1) +ax,() (6)

where @ O [0,1]. The crossover operator is applied
with a probability p, .

Mutation: The mutation operator alters one or more
genes of a individual by a random change. Let the
individua x, (1) =x,@), ... X0, o (D), and the gene

x; to be sdected for mutation. The domain of the

variable x; is given by xj=l£j | wherex; and

;j denote the lower and upper bound of the variable
x;j, respectively. Then the result of the application

of this operator is x, () =x,m, e F ), X (1),

where ¥; is a random value (uniform probability

distribution) within the domain of X The mutation
operator is applied with a probability p,, .

3 Evolution Strategy

Evolution Strategy represents each individual as a
real-valued vector. Its main operator is mutation,
and it allows self-adaptation of strategy parameters
through standard deviation and covariance (Beyer,
1995). Comparable to other optimization techniques,
the performance of ES depends on a suitable choice of
internal rategy control parameters. Apart from afixed
sting, ES facilitate an adjustment of such parameters
within a sdf-adaptation procedure while in GAs the
control parameters are adjust by trial and error method.

The sdf-adaptation of Srategy parameters provides
one of the main festures of the success of ES, because
ES use evolutionary principles to search in the space of
object variables and strategy parameters S multaneoudy.
In the (wt+A)-ES case, the parental generation is
taken into account during sdection, while in the
(uA)-ES case only offspring undergoes selection,
and the parent die off. In this paper, a derandomized
(1+7)-ES with individual step-sizes and correlated
mutationsis employed (Ostermeier et al., 1993).

The implemented (1+1)-ES try to derandomize
the adaptation process by exploiting information
gathered in preceding iterations. Derandomized
adaptation usually takes place without mutation of
the strategy parameters itself. It uses selected points
(selected mutation steps) in object parameter space
for  dtrategy  parameter  adjustment.  The
derandomized (1+A)-ES has the start point chosen
randomly with uniform probability distribution, and
it use two operators. selection and mutation. The
recombination operator isnot utilized because (~1is
adopted.

Selection: The selection (adaptation) operator is
completely deterministic; it just chooses the best
fitted g individuals (1 < y < A) out of the set of A
offspring individuals. The individual (1~1) with the
highest fitness advances to the next generation, i.e.,

x}l(t+1) = x/\sef(t) (7)
where x, (1) isthe parameter vector of generation 1,

Asel marks the quantities of the se/ected offspring of
generation .



Mutation: The mutation operator is the man
operator and introduces random modification into
the population. The implemented algorithm realizes
mutation ellipsoids in the direction of the selected
offspring. The creation of A offspring is given by:

(1) =x,(t) +
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where i=[1,A]; d,,,4(t) arescaling factors of generation
t, &, isthe step-size changing factor (1,0.1)-normally
distributed, 8,47 is the step-size of isotropic mutations
of generation ¢, Z; is the random vector with
components (0,1)-normally distributed, v, is (0,1)-
normally distributed, J,,,2) is the sep-size of
anisotropic (correlated) mutations of generation ¢, Ay(#)
is the orientation of long axis of mutation dlipse in

generation ¢ (Ostermeier et al., 1993). The domain of
the variable X (object variable vector) is given by
%, =, 3], where x and x; dencte the lower and

upper bound of thevariable x ;, respectively.

4 Results

To illustrate the use of these evolutionary
algorithms, we show the calculation of the right side
dope (s,,) for a triangular channel according the
Manning method, which is described by the equation
(4). So we definethefunction f by:
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and the fitness function is calculated according to the
inverse of the absolute value of the function /. The
parameters used for the smulation are given in the
tablel.

Tablel. Simulation parameters.

Variable/ | Description Value
Parameter
d discharge 0.5 [m%q]
¢ constant 1
n Manning coefficient | 0.012
s channel slope 0.005 [m/m]
h depth 0.5[m]
Sis left sde dope 1.0[m/m]
Sys right side dope ?[m/m]

For the GA implemented, we used the red
representation. Each individual is codified as a
vector of numbers in floating point. In this case, the
individual consists of only one gene (the right side
slope). The lower and upper bounds of s, specified
by the designer was the interval [0,5]. The G4 was
initialized randomly with a population size ; =50,
crossover probability p, = 0.6, crossover parameter
a = 0.5, and mutation probability p, =0.05.

For the derandomized (1+))-ES implemented, a
population size of ;=1 parent and A =500ffspring
was used. The sdection and mutation operators
applied are as described in previous section.

The optimal value for the right side dope
obtained by using G4 and ES iss,s = 0.89558. Figure
1 deploys the convergence of ffor both G4 and ES.
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Figurel. Convergence of the GA and ES.

5 Conclusions

This paper presents an aternative approach to solve
numerical equations of hydraulic problems based on
genetic algorithms and evolution strategy. The
problem was described by using the Manning
equation. For the solution of the numerical problem
appropriate genetic operators and a fitness function
were employed. The validity of the solution was
demonstrated by a simulation example. As we can
note from the figure 1, G4 as well as ES found out
the value for the right side sope in less than 10
generations. The obtained results were equals,
showing the feasibility of both evdutionary
techniques. As the same way, you may determine the
other design variables, e.g., discharge, etc. The
results so far demonstrated clearly the potential of
these techniques to solving this kind of problem. In
future works, we plan to extend this one to cover
more design variables simultaneoudy giving so the
possibility of interaction with the designer, since
more than one feasible sol ution can be found.
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