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 This paper describes how to solve numerical equations of hydraulic problems that involve the calculation of free and forced 

channels. The problem is modeled by using the equation of Manning. The resulting numerical equation allows the calculation of outflows, 
inclination of the channels, roughness, loss of energy and other parameters that are function of the geometry of the channels. Since this equation 
presents high non-linearities and therefore it doesn’ t have a closed solution, we propose an alternative solution using Genetic Algorithms ( ×\ØÚÙ ) 
and Evolution Strategy (Û5Ü ). 
Ý�Þàß0áQâ�ã
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 Genetic Algorithms; evolution strategy, channel design. 
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According to the hydraulics theory, the behavior of 
the motion of fluids in forced and free conduits 
(channels) can be modeled based on the equations of 
Manning, Hazen-Willians, Darcy-Weisbach 
(Colebrook-Write), and Kutter (Chezy) (Chadwick 
and Morfett, 1994). These equations allow the 
calculations of outflows, inclinations of the 
channels, roughness, loss of energy and other 
parameters that are function of the geometry of the 
channels, e.g., circular, rectangular, triangular or 
trapezoidal. In this work, we use the Manning 
method whose general equation is described by: 
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where þ  stands for discharge, ÿ  stands for a constant, �
 designates the channel area, �  designates the 

channel slope, �  is the Manning coefficient and �  is 
the wet perimeter. For a channel with triangular 
section, we can write the following equations:  
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where �����  is the right side slope, ��� �  is the left side 
slope and the �  is the channel depth. Using the 
International System, �  is equal 1. Introducing 
equations (2) and (3) into the equation (1) and 
rearranging it results: 
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The equation (4) presents high non-linearities 

and therefore it doesn’ t have a closed solution. So 
numerical methods may be employed to solve such a 
problem. In some cases, numerical methods present 
difficulties to find the optimal solution. In this 
paper, we propose an alternative solution using 
Genetic Algorithms ( %'&)( ) (Michalewicz, 1996) and 
Evolution Strategies (*,+ ) (Beyer, 1995). -/.  and 021  
are search and optimization algorithms based on the 
principle of natural evolution and population 



genetics, which have been applied successful to 
many engineering problems in different knowledge 
areas. The basic idea is to maintain a population 

{ }3 4 53�4 57698 8 8:63 4 5;698 8 8:64< => ??? :)(  of individuals 

(candidate solutions) which evolve under selective 
pressure that favors better solutions. The interest in 
Evolutionary Algorithms is increasing very fast, 
because their robust and powerful adaptive search 
mechanisms. Evolutionary algorithms have been 
used to dealing with multi-dimensional and multi-
modal search problems. In the following, we 
describe the two evolutionary algorithms. 
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 maintain a population of individuals which are 
generated at random. Each individual )( ^_`  

represents a potential solution of the problem at hand. 
Individuals are evaluated to give a measure of their 
fi tness. Then, a new population, iteration a +1, is 
formed by selection of the more fit individuals 
(selection step). Some individuals of the new 
population undergo transformations due to crossover 
and mutation operators to form new solutions 
(Michalewicz, 1996). After a certain number of 
generations the search converges and, if successful, 
the fittest individual represents the optimal solution. b'c)d

 in its simplest form uses three operators: 
selection, crossover and mutation. 

 eXfFgQfFhFiQjlk9mon
In the selection step, individuals are 

chosen to participate in the reproduction of new 
individuals. In this paper, the simple and robust 
tournament selection is used. This method consists 
of a random selection of two or more individuals. 
The individual with the highest fitness advances to 
the next generation. 

 prq7s9t�t7s9uwv:qyx
The crossover operator combines 

characteristics of two parent individuals to form two 
offspring. In this paper arithmetical crossover is 
used. Let )(1 z{ and )(2 |}  be two individuals to be 

crossed. Then the two offspring )1(3 +~�  and 

)1(4 +�� are produced as a linear combination of 

their parents )(1 �� and ),(2 ��  i.e.,
 

  )()1()()1( 213 ����� ��� −+=+  (5) 
 
  )()()1()1( 214 ����� ��� +−=+  (6) 

 
where �  ∈ [0,1]. The crossover operator is applied 
with a probability c

� . 
 ���S�����l�Q�9�o�

 The mutation operator alters one or more 
genes of a individual by a random change. Let the 
individual �� ��� ����� � �w¡ ¡ ¡¢����� � �w¡ ¡ ¡:����� � £¤¥¦ =  and the gene 

§¨  to be selected for mutation. The domain of the 

variable ©ª  is given by [ ]««« ¬¬¬ = , where j
­ and 

j
® denote the lower and upper bound of the variable 

j
¯ , respectively. Then the result of the application 

of this operator is °±² ³ ´ µ¶³�´ µ ·w¸ ¸ ¸:·¶³ ´ µ ·w¸ ¸ ¸:·¶³ ´ µ ¹º»¼ =

where j
½ ¾  is a random value (uniform probability 

distribution) within the domain of ¿ÀÁ  The mutation 

operator is applied with a probability ÂÃ . 

 
 ÄÆÅMÇwÈ9ÉlÊGËJÌÍÈFÎZÏ�ËÑÐFÒ9ËJÓFÔ9Õ

Evolution Strategy represents each individual as a 
real-valued vector. Its main operator is mutation, 
and it allows self-adaptation of strategy parameters 
through standard deviation and covariance (Beyer, 
1995). Comparable to other optimization techniques, 
the performance of Ö'×  depends on a suitable choice of 
internal strategy control parameters. Apart from a fixed 
setting, ØÚÙ  facilitate an adjustment of such parameters 
within a self-adaptation procedure while in ÛÝÜMÞ  the 
control parameters are adjust by trial and error method. 

The self-adaptation of strategy parameters provides 
one of the main features of the success of ß'à , because á'â

 use evolutionary principles to search in the space of 
object variables and strategy parameters simultaneously. 
In the (µ+λ)-ã,ä  case, the parental generation is 
taken into account during selection, while in the 
(µ,λ)-å2æ  case only offspring undergoes selection, 
and the parent die off. In this paper, a derandomized 
(1+λ)-ç2è  with individual step-sizes and correlated 
mutations is employed (Ostermeier éFêìë�í ., 1993). 

The implemented (1+λ)-î,ï  try to derandomize 
the adaptation process by exploiting information 
gathered in preceding iterations. Derandomized 
adaptation usually takes place without mutation of 
the strategy parameters itself. It uses selected points 
(selected mutation steps) in object parameter space 
for strategy parameter adjustment. The 
derandomized (1+λ)-ðÚñ  has the start point chosen 
randomly with uniform probabil ity distribution, and 
it use two operators: selection and mutation. The 
recombination operator is not uti lized because µ=1 is 
adopted.  

 òXóFôlóFõ÷ölølù9úoû
The selection (adaptation) operator is 

completely deterministic; it just chooses the best 
fitted µ individuals (1 ≤ µ < λ) out of the set of λ 
offspring individuals. The individual (µ=1) with the 
highest fitness advances to the next generation, i.e., 
 ü

µ( ý +1) = þ λ ÿ�� � ( � )  (7) 

where ��� ��  is the parameter vector of generation � , 
λ	�

�  marks the quantities of the ���
� ected offspring of 
generation � . 
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The mutation operator is the main 

operator and introduces random modification into 
the population. The implemented algorithm realizes 
mutation ellipsoids in the direction of the selected 
offspring. The creation of λ offspring is given by: 

 ! λ " ( # +1) = $ µ(t) +  
   δ%�&('()+*+, - ⋅ . ξ / δ 0 1�243+5 64798 +ψ : δ ;(<>=�?+@ ACBEDGF+H IJI (8) 
 
where K =[1;λ]; L�M NOCPGQ4R  are scaling factors of generation S , Tξ  is the step-size changing factor (1,0.1)-normally 

distributed, U�V WX YJZ  is the step-size of [ \^] tropic mutations 

of generation _ ; `a  is the random vector with 

components (0,1)-normally distributed, b  is (0,1)-

normally distributed, c�d ef�gih  is the step-size of 

anisotropic (correlated) mutations of generation j , k�l mnpo
 

is the orientation of long axis of mutation ellipse in 
generation q  (Ostermeier rtspu�v ., 1993). The domain of 
the variable wx  (object variable vector) is given by 

[ ]yyy zzz = , where {| and }~ denote the lower and 

upper bound of the variable ���  respectively.  
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To illustrate the use of these evolutionary 
algorithms, we show the calculation of the right side 
slope ( �^�+� ) for a triangular channel according the 
Manning method, which is described by the equation 
(4). So we define the function  �   by: 
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and the fitness function is calculated according to the 
inverse of the absolute value of the function � . The 
parameters used for the simulation are given in the 
table1. 

 
Table1. Simulation parameters. 

 
Variable/ 
Parameter 

Description Value 

�
discharge 0.5 [m3/s] 

� constant 1 � Manning coefficient 0.012 � channel slope 0.005 [m/m] �
depth 0.5 [m]  ^¡ ¢ left side slope 1.0 [m/m] £^¤+¥ right side slope ? [m/m] 

 

For the ¦¨§  implemented, we used the real 
representation. Each individual is codified as a 
vector of numbers in floating point. In this case, the 
individual consists of only one gene (the right side 
slope). The lower and upper bounds of ©^ª�«  specified 
by the designer was the interval 5] [0, . The ¬¨­  was 

initialized randomly with a population size 50=µ , 

crossover probability ,60®=¯° crossover parameter ±  = 0.5, and mutation probability 0.05.=²³  

For the derandomized (1+λ)-́¶µ  implemented, a 
population size of 1=µ  parent and 50=λ offspring 

was used. The selection and mutation operators 
applied are as described in previous section.  

The optimal value for the right side slope 
obtained by using ·¨¸  and ¹»º  is ¼ rs = 0.89558. Figure 
1 deploys the convergence of  ½  for both ¾¶¿  and ÀÂÁ . 

Figure1. Convergence of the ÃpÄ  and ÅÂÆ . 
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This paper presents an alternative approach to solve 
numerical equations of hydraulic problems based on 
genetic algorithms and evolution strategy. The 
problem was described by using the Manning 
equation. For the solution of the numerical problem 
appropriate genetic operators and a fitness function 
were employed. The validity of the solution was 
demonstrated by a simulation example. As we can 
note from the figure 1, ÓpÔ  as well as ÕÂÖ  found out 
the value for the right side slope in less than 10 
generations. The obtained results were equals, 
showing the feasibil ity of both evolutionary 
techniques. As the same way, you may determine the 
other design variables, e.g., discharge, etc. The 
results so far demonstrated clearly the potential of 
these techniques to solving this kind of problem. In 
future works, we plan to extend this one to cover 
more design variables simultaneously giving so the 
possibili ty of interaction with the designer, since 
more than one feasible solution can be found. 
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