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Abstract� �  The island model parallel genetic algorithm is described to approach the correspondence problem in computer
vision using contextual and structural features of a point, in which multiple points are simultaneously considered, under the
structural coherence constraint. The correspondence is achieved by optimizing similarity measurements among the points'
features and by satisfying the structural coherence constraint [4][13][14]. The Island Model Parallel Genetic Algorithm (GA) is
used to search a large space by evolving different populations separately, using the Dempster-Shafer calculus for an individual's
fitness evaluation. In order to try to introduce higher levels of diversity in the process, a new parameterization for the island
model parallel GA model is proposed. The model was applied to a pair of real world indoor images to demonstrate the usefulness
of the approach for the correspondence problem. The reported simulations were conducted using 9 virtual machines.
Comparisons made with previous work show a higher accuracy for the island model parallel GA.
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1 Introduction

This paper describes a parallel GA approach to the
correspondence problem in stereo vision, which is a
Computer Vision task that permits inferring 3D
information from 2D data (images). The
correspondence problem is the main problem related
to such a task. It consists of establishing the
correspondence among features in the images to
assure they are images of the same scene [1][3].

In [1][3][5] several methods and algorithms are
described that have been used to address the
correspondence problem. New paradigms like neural
networks, regularization, learning strategies,
optimization techniques [7], and genetic algorithms
[4][9][13][14][15] have also been tried, attempting to
incorporate and exploit new aspects that may lead to
more robust implementations that may cope with
intrinsic problems in stereo vision like occlusion, that
is, an object is blocked by others from one view to
the other, due to the arrangement of the cameras
(Figure 1).

The methods and algorithms for the
correspondence problem are classified as area-based,
token-based or hybrid approaches and they all must
satisfy the constraints to the problem stated in [2]:
point compatibilit y, uniqueness of correspondence,
and map continuity. However, they usually fail due to
problems in the images, such as ill umination changes,
occlusion, and the size and shape of the window
used. A hybrid approach exploits the features and
advantages of both area- and token-based methods
and algorithms.

Exploiting new aspects is the main stream in
research work on the correspondence problem that
have tried to exploit new aspects as in [8] to better
satisfy the constraints mentioned previously.

Whichever the approach is, the correspondence
among images requires the choice of features in a
reference image and the search for a similar features
in the other images. Such search may result in a large
number of possibiliti es, from which a unique
correspondence has to be chosen due to the
constraints to the problem.

Figure 1 - The occlusion problem (object 1) in a parallel camera
arrangement.

In [13][14][15] a point wise hybrid approach to
the correspondence problem is proposed, based on
contextual (area) and structural (token) features of a
point and its neighborhood, taken as corresponding
evidences. Similarities among corresponding points
are measured by applying differences, correlation,
and distance metrics. Multiple reference points (N)
are matched under the structural coherence
constraint, related to the geometry of the polygonal
regions emerged from the interconnection of the N
points. The process is developed in a low-level point
correspondence followed by a high-level
correspondence among the polygonal regions. The
complexity of the correspondence problem increases



with the number of simultaneous points to be
corresponded, the number of candidate points for the
reference points, the complexity of the geometric
features of the polygonal regions, and the existence
of occlusion in the images. A Genetic Algorithm is
used to search the solution space, guided by a fitness
function that considers the minimization of the sum
of differences among the contextual, structural, and
geometric evidences.

Figure 2 - The vertical l ine structure in a 3 x 3 window.
Weights are inserted as shown.

This paper describes a point wise approach to the
correspondence problem as a continuation of
previous work [13][14][15]. The correspondence
among the images is established by combining
evidences of correspondences, that is, the similarity
measurements among the contextual and structural
features of the points and the geometric features of
the polygonal regions.

Degrees of beliefs are assigned to the similarity
measurements. The Dempster-Shafer Theory for
uncertainty reasoning is used to perform the
combination of the evidences resulting in a combined
evidence with a degree of belief. Such measurement
guides the Island Model Parallel Genetic Algorithm
in the search for the best solution. The
parameterization used in the parallel GA
implementation is modified to increase diversity in
the search and reduce the convergence time.

Section 2 briefly describes the extraction of area
and token features used as corresponding evidences.
Section 3 introduces the Dempster-Shafer theory
concepts. Section 4 describes the Island Model
Parallel Genetic Algorithm. Section 5 presents some
results of applying the proposed methodology on
indoor images. Finally, section 6 brings the
conclusions and comments.

2 Corresponding Evidences

The methodology described in this paper uses a
point-wise hybrid approach to the correspondence
problem in which contextual features of a point
provide local and global information of the context of
the a point, within a certain neighborhood (area). The
contextual features are the micro area (determined by
a predefined window size) and the macro area (within
a window n times bigger than the micro area) of the

point. Such features are first established in the
reference image and search in the other image. The
similarities are computed by correlating the features.

Structural features consist of binary tokens
computed by operating on the image pixels within a
window with the size of the micro area. The results in
this paper consider 8 such features: the vertical and
horizontal li nes, the principal and secondary
diagonals, and the bottom right, top right, top left,
and bottom left corners. Perceptron neural networks
are used to extract such features (Figure 2), thus
avoiding gradient operations for edge detection and a
token description phase, which are time consuming
tasks. The weights of the Perceptrons are inserted and
represent prior knowledge of each different desired
binary structure. As an example, Figure 2 shows a
Perceptron neural network architecture for extracting
the vertical li ne structure in a 3 x 3 window. Similar
networks are used for the other binary features. It is
to be noticed that bigger windows will require
redefinition of these neural network architectures for
such structures.

Two additional binary structures are the pattern
of differences among the central pixel and its
connected neighbors, and the predominant structure,
computed within a connected neighborhood. The
pattern of differences gives the directions of
differences among the point and its neighbors. The
predominant structure shows the spatial distribution
of the pixels that lead to high levels of energy for
certain predefined orientations. Both features require
a definition of connectivity to fit windows which are
greater than 3 x 3.
Definition 1. The main neighborhood of a point P is
defined by the points on the same line coordinate or
on the same pixel coordinate of point P (Figure 3a).
Definition 2. The main neighborhood and every
point in the vicinity of P, limited to the window size
(Figure 3b), define the secondary neighborhood of a
point P.
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Figure 3 - Differences among the central pixel the 4
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The pattern of differences is defined as an ordered
binary vector D with n2-1 components given by the
threshold function.
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A Perceptron neural network, with weight
insertion, as in Figure 2, computes the pattern of
differences within a window. As an example, for the
3 x 3 image window in Figure 2, the pattern of
differences is given by:
D = [ T(12-38), T(11-38), T(41-38), T(40-38), T(37-38),
T(10-38), T(11-38), T(10-38) ]=>D=[ 0, 0, 1, 1, 0, 0, 0, 0 ]

The predominant structure is computed by the
convolution of the image window with predefined
morphological kernels, as in Figure 4 (for 3 x 3
window) defined by equation (1), where: CK is the
computed correlation for kernel K; n is the window
size; l and p are the line and pixel coordinates of each
pixel in the image; fK(i,j) is the kernel K value at
position (i,j). Equation (1) computes the correlation
between the normalized image window and a kernel.
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Figure 4 - Basic binary morphological structures within a 3 x 3
window.

The kernel with highest convolution value is
chosen as the predominant structure within the
window. This process can be thought of as an energy
analysis given by the convolution. Figure 4 shows
examples of 20 binary morphological kernels for a 3
x 3 window. Bigger windows lead to a larger number

of kernels to be defined. The bigger the window size
and the larger the number of structural features, the
more complex the binary structures are, thereby
increasing the likelihood of the uniqueness constraint
to be satisfied.

By considering the contextual and structural
features of a point, the correspondence takes place
under the continuity map constraint, which requires
that a reference point and a candidate corresponding
point must lie within similar macro and micro
contexts, and must belong to similar structures within
the images. For this purpose 14 similarity criteria are
adopted for the correspondence of a candidate point
to a reference point:O  The non-normalized Euclidean distance between the

micro areas (ES)O  The Correlation index between the micro (Cmicro)
areasO  The Correlation index between the macro (Cmacro)
areasO  The Hamming distance between the 10 different
binary structures  (N1  N2  N3  N4  N5  N6  N7  N8  N9

N10)O  The Absolute difference between the gray levels (G)

Following feature extraction, each candidate
point i is assigned a vector with similarity
measurements for the 14 different matching criteria,
together with the point line and pixel coordinates (l i,
pi).

Qi= [ l i pi ES Cmacro N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 G Cmicro]

2.1 Geometric Features

Three geometric features deal with the structural
coherence constraint between the polygonal regions:P  Sum of the angles formed by the sides of the

polygonal region in relation to the horizontal
line;P  Area of the polygonal region;P  Sum of the Euclidean distances among the
incenter of the polygonal region and its vertices.
The geometric features must be computed for

both the reference and candidates polygonal regions
and the similarity among them are computed by
absolute differences.

The use of contextual and structural features of
each point (vertex), as well as geometric properties of
the polygonal regions characterizes the methodology
described in this paper as a hierarchical approach to
the correspondence problem, in which point
correspondence happens in a low level by analyzing
local properties of a point, and a high level
correspondence occurs globally across the image,
while matching the polygonal regions. Thus, for a
given reference polygonal region, the correspondence
is a process of finding a polygonal region in the other
image, among a large number of candidate regions
(or search space), that may match the reference.
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3 Uncertainty Reasoning in the
       Correspondence Evaluation

3.1 The Dempster-Shafer Theory

The Dempster-Shafer (DS) Theory assumes a
Universe of Discourse U or Frame of Discernment,
which is a set of mutually exclusive alternatives that
may correspond to an attribute value domain [10].
Then, if one is trying to determine the disease of a
patient, for instance, the set U may consist of all
possible diseases. In DS theory each subset S of U
has associated to it: a basic probabilit y m(S) (or the
strength of some evidence), a belief Bel(S) (Belief),
and a plausible belief Pls(S) (Plausibilit y) for which
the values must belong to the interval [0,1], and
Bel(S) cannot be greater than Pls(S).

In applying a rule, for instance, m may represent
the effect of that rule. Bel(S) summarizes all the
reasons to believe S. Pls(S) expresses how much one
should believe in S if all currently unknown facts
were to support S. Thus, the true belief in S will be
somewhere in the belief interval [Bel(S), Pls(S)].

The basic Probabilit y Assignment m is defined
as:     m : 2U Q   [0,1]
where m( R ) = 0 ( R  is the empty set), and the sum of m
over all subsets of U is 1 ( S S T  U m(S ) = 1).

It can be shown that for a given basic
probabilit y assignment m, the belief (Bel) of a subset
A of U is the sum of m(B) for all subsets B of A, and
that the plausibilit y (Pls) of a subset A of U is 1 -
Bel(A'), where A' is the complement of A in U.

Two basic probabilit y assignments m1 and m2 are
combined into a third basic probabilit y assignment by
the othorgonal sum m1U m2 (Dempster rule of
combination) defined as
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Equation (2) is the original formula for basic
probabiliti es combination; however it is time
consuming. A faster alternative to the combination of
evidences is given in [12], which is equivalent to the
orthogonal sum of equation (2). Equations (3) and (4)
directly combine beliefs and plausibiliti es.
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3.2 Correspondence Associations

The correspondence evidences found are
mapped into basic probabiliti es, in which only the
available information is considered, that is, no
probabilit y is assigned to evidences that contradicts
the hypothesis. Then, each candidate polygonal
region will have 14 beliefs and plausabiliti es
associated to the structural and contextual
information of the points, and three beliefs and

plausibiliti es associated to the geometric evidences.
The Dempster-Shafer calculus combines such beliefs
and plausibiliti es resulting in a belief and a
plausibilit y of the combined evidence that represent a
consensus on the correspondence. Figure 5 shows the
result of applying the Dempster-Shafer Theory to
correspond one point in a pair of images. The aim of
the method presented in this paper to maximize the
belief in the combined evidences.
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Figure 5 - Results of applying the Dempster-Shafer Theory to
establish the correspondence of one point. The graphics show the
degrees of belief and plausibility for each candidate point.

4 The Island Model Parallel GA

The idea behind the island model parallel GA is
the independent (parallel) evolution of separated
subpopulations, based on the fact that distributed
multiple subpopulations, with local rules and
interactions form a more realistic model of species in
nature [6][11]. A fundamental characteristic of the
island model parallel GA is the migration of highly
fitted individuals across the subpopulations, which
increases the selective pressure since highly fitted
individuals will mean new reproduction attempts in
the receiving subpopulation. The highly fitted
individuals will help to maintain the genetic diversity
of the local subpopulation.

The island model parallel GA implementation
requires parameter specification to be used in the
various GAs. The required parameters are the type of
GA to be used in each processor, the number of
migrating individuals, the migration frequency, and
the policy for choosing the migrating and the
substituted individuals. Such scheme results in a
more realistic model of species in nature [6]. Figure 6
shows the algorithm to implement the island model
GA.

Island_Model_GA( )
begin

t=0; initialize P(t); evaluate P(t);
while ( NOT Stop condition ) do
begin
       t=t+1;
       select P(t) from P(t-1);

                        recombine P(t);

Right Image Final Correspondence



                        send(migrating_individual)
                        if ( migration_generation )

 mig_ind = receive_migrating( )
 rep_ind = chose_individual_for_change( )
change_individuals(P(t), mig_ind, rep_ind)

       end
          evaluate P(t);

end
end

Figure 6 - The Island Model Genetic Algorithm.

The migration scheme is predetermined, that is,
the sub-populations know in advance the destination
where to send its migrating individual. However, a
sub-population should have the opportunity to send
its migrating individual to any other sub-population,
so that, each sub-population could have the same
probabilit y to bring in new diversity a migrating
individual might be able to.

This paper proposes a migration scheme for the
island model GA, in which all the sub-populations
have the same probabilit y of receiving a high fitted
individual. The migrating individuals are all sent to a
repository with identification tags. At its migrating
generation the sub-population requests randomly
chosen individual from the repository. It then
continues the evolution process.

5 Results

The present approach was applied to several real
world image pairs with different sizes and gray
levels, aiming at establishing the correspondence
among N (N=6) simultaneous points as in [13][14].

Initially, N (N=6) reference points are chosen in
the left image (L) (Figure 7.a). The candidate
corresponding points are then selected in the right
image (R) (Figure 7.b), based on contextual features
of the points. The similarities among the features of
the points are computed and arranged in a vector that
is assigned to the candidate point.

The similarity measurements are then mapped
into beliefs and plausibiliti es. The sub-populations
are randomly initialized with a fixed number of
individuals (100 in the experiments). Each individual
is an ordered sequence of randomly chosen vertices,
forming a polygonal region,   Ni QQQQ ......21

where Qi belongs to a set SCi of candidate points
showing relative similarity with point i.

The experiments were conducted by using 9
processors evolving 9 sub-populations during 200
generations. Point evidences were combined by
equations (3) and (4), thus resulting in a belief and
plausibilit y on the combined point evidences. The
geometric features of the polygonal regions were
mapped into beliefs and plausibiliti es that were
combined with the belief and plausibilit y of the
combined evidence of the points, thus leading to a
final belief and plausibilit y that represent a consensus
on the correspondence. Among all the individuals in

the population, the process picks the one with highest
belief on the combined evidences. Equation (3) is the
fitness function that measures the performance of
individuals in each subpopulation. Each genetic
algorithm used a 50% crossover probabilit y and a
25% mutation probabilit y.

The uncertainty reasoning approach was applied
to the same image pairs using one GA only, in order
to compare it with the discussed parallel
implementation in terms of computational time.
Figure 8 shows a comparison of the evolution for one
GA and for the parallel implementation. The parallel
implementation quickly reaches a stable solution,
when compared to the use of a single GA.

Table 1 shows the computed squared errors for
the correspondences found by the parallel GA. The
mean squared error between the set of references and
the set of corresponding points has an accuracy of
less than 1 pixel.

Table 1 – Computed squared errors for the correspondences in
Figure 5.

Reference
points

Solution Ground
truth

Squared
errors

Line Pixel Line Pixel Line Pixel Line Pixel
1 56 150 55 136 55 136 0 0
2 34 91 34 77 34 77 0 0
3 88 69 89 27 88 27 1 0
4 173 90 172 46 172 46 0 0
5 168 226 169 187 169 187 0 0
6 137 241 137 223 137 223 0 0

Mean Squared Error : 0.166 0

An iterative process is used to overcome the
occlusion problem. Such process consists of
alternating the reference image from one iteration to
the other. The process then chooses an initial set of
reference points, searches for the correspondences in
the other image, which become the references for the
next iteration, and so on. In the experiments, the
algorithm converges to sets of repeated points, from
an iteration to the next.

6 Conclusion

This paper describes the use of a parallel GA to
solve the correspondence problem in computer
vision. Structural and contextual features of the
points are used as correspondence evidences to which
beliefs and plausibiliti es are assigned.

The beliefs and plausibiliti es are combined under
the Dempster-Shafer uncertainty-reasoning paradigm.
The correspondence problem is taken as a
maximization problem, in which the combined
evidences are maximized. Feature extraction follows
[13] and [14]. The structural coherence of the
polygonal regions is also considered, thus permitting
simultaneous correspondence of multiple points.

The model aims at establishing control points in
the image, before recovering a complete disparity
map. Figure 9 shows a computed disparity map for
the corresponded points in Figures 7a and 7b.



Increasing the number of multiple points, implies
in more complex geometric features of the polygonal
region and a larger number of simultaneous
correspondences.

The experiments showed the effectiveness of the
use of a parallel genetic search, in pursuing the best
correspondence for multiple reference points, within
a huge search space.

Figure 7 - a) Reference image with 6 points; b) Corresponding
points.

Figure 8 - Performance comparison between the use of a) one
sequential GA and b) the island model parallel GA.

Figure 9. Disparity map generated from the 6 correspondences
found in Figures 7a and 7b.
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