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Abstract— The genetic algorithm (GA) initial population or constraints hardness can lead the biased search
to be tracked over unfeasible regions of the solution space. An alternative to overcome this undesirable situation
is the application of adaptive or deterministic technics to adjust some parameters of a GA-optimizer dedicated
to eigenstructure assignment via LQR designs. In this work, it is proposed a method to control parameters
of the crossover (X-OVER) operation based on the population’s average fitness and restrictions satisfaction as
a reference to adjust those parameters, in the sense of guiding the search intelligently into feasible solutions.
The proposed method is translated into an algorithm and implemented into a multiobjective genetic optimizer
decision-making unit. Finally, the proposed adaptive strategy performance is verified into a dynamic systems
model. The results of this research are presented in two papers, this paper introduces the problem formulation
and a second one deals with computational simulations and result analysis.
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1 Introduction

The solution of eigenstructure assignment (EA)
problem via linear quadratic regulator (LQR) de-
sign faces a great difficulty in finding the @) and R
weighting matrices that assigns the desired eigen-
values and eigenvectors. Motivated by this issue,
research has been focused in the last three decades
to find out these matrices in a deterministic man-
ner for pole placement, (Medanic et al., 1988),
(Kawasaki and Shimemura, 1983) and (Graupe,
1972), and for FA, (Harvey and Stein, 1978),
(Stein, 1979), (Ochi and Kanai, 1996), (Choi and
Seo, 1999b) and (Choi and Seo, 1999a).

In our days, high speed computers emergence
lead to the fast development and almost imme-
diate usage of evolutionary computation tech-
nics, (Béck, 1996), such as genetic algorithm,
(J.H., 1975) and (Goldberg, 1989), in many fields
of human knowledge. Therefore, the appearance
of these methods promoted a new way for Q) and R
matrices search in the nineties, as an alternative to
the deterministic manner, for FA via LQR design.
This new way is concerned with random search
biased technics to find out these matrices, specifi-
cally genetic algorithms, (Davis and Clarke, 1995)
and (Bottura and Neto, 1999a).

The method developed by (Bottura and Neto,
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1999a) has driven into the development of a frame-
work for a FA based on a genetic algorithm (GA)
optimizer, that is in charge of the search, and on
a decision making unit (DMU), that is in charge
of the search guidance. The DMU, based on the
multi-armed bandit paradigm, schema theorem
and preference articulation, had promoted good
improvements on the ) and R matrices search,
(Bottura and Neto, 1999¢). However, much better
improvements have been obtained for adjustment
on the GA-optimizer crossover operation age pa-
rameter before the search cycle activation.

This work presents the development and the
performance of two methods that allow the pa-
rameter adjustment of the crossover operator pa-
rameter, during the weighting matrices search.
The development of these methods were stimu-
lated by the EA good results with parameter tun-
ing. The parameter adjustment before the search
has been carried out, and at the same time looking
for a way to keep the designer as far as possible
of realizing inferences on the search cycle. The
main benefit of the methods is the search cycle
reduction, each step of the search is guided taking
into account performance indexes obtained from
fitness function.

The paper first part is organized as follows.
Section 2 presents the parallel multiobjective ge-
netic algorithm (PMOGA) optimizer framework.
The fundamentals and the proposed crossover (X-
OVER) parameter control methods are discussed
in section 3. Finally, the concluding remarks are
presented in section 4.



2 PMOGA optimizer framework

The LQR regulator problem formulated as an FA
a problem, the multiobjective genetic algorithm
MOGA basic elements main features and the dis-
tributed parallelization are addressed in this sec-
tion. A deeper treatment of this issues can be
found in (Bottura and Neto, 1999a), (Bottura
and Neto, 1999¢), (Bottura and Neto, 1999b) and
(Bottura and Neto, 2000)

2.1 The FA as a LQR formulation

The main reason to assign the dynamic system,
Eq.1, eigenvalues and eigenvectors via the LQR
state feedback design is because this method pro-
vides a closed loop system with guaranteed ro-
bustness for the gain and the phase margins,
(Dorato et al., 1995).

& = Ax+ Bu (1)

where z is the state variables vector of n x 1
order , u is the control law vector of m x n order,
A represents the system dynamic matrix of n x n
order and B represents the control matrix of n xm
order.

The LQR design to assign the eigenstructure
can be seen as three step process: optimal state
feedback control law determination, closed loop
eigenstructure calculation and calculated eigenval-
ues and eigenvectors verification.

In the first step, the LQR design problem for-
mulation allows the determination of a control
law v = Kz, whose gains —K(Q,R) are given
by the algebraic Riccati equation, that minimizes
the quadratic cost function, fooo [z Qx +uT Ruldt,
subject to the dynamic system, & = Az 4+ Bu, re-
striction.

In the second step, the closed loop dynamic
system, & = (A— BK(Q, R))z, is obtained by the
control law implementation, u, and its eigenstruc-
ture calculated.

In the third step, the calculated values are
compared with the desired eigenstructure, i.e.,
the closed loop spectrum must satisfy the desired
range and its eigenvectors must satisfy the re-
quired eigenvalues sensitivities. Then, the LQR
design problem is formulated as multiobjective
problem (MOP), relations 2 to 4, dedicated to EA
by joining the LQR solution and a the closed loop
eigenvalues sensitivity bounds, inequality 3, and
the eigenvalues spectrum, inequality 4.

min 2 5i(Q, R) (2)
S.t.

ALi SAci(Q,R) < Ag; i=1,...,n (4

where s;(Q, R) = (”&é?(’é?}”%z)lz‘zfj(ic(fé};!h )/€e; is
the i-th normalized eigenvalues sensitivity and
the i-th design specification ¢; > 0; || L:(Q, R)]|2
and ||R;(Q, R)||2 are the 2-norm of the left and
right eigenvectors, respectively, and < L;(Q, R)
R;(Q, R) > is the eigenvectors dot product. Ap;
and ApR; are the left and right i-ths eigenvalues
bounds, respectively, for the i-th calculated eigen-

value \¢g;-

2.2 MOGA’s basic elements

The GA-optimizer and the DMU are the MOGA
basic elements. The GA-optimizer explores the
search space to find out @ and R matrices that can
satisfy the required eigenstructure and the DMU
defines how the search must be done to obtain
these matrices.

In a high level of abstraction the GA-
optimizer can be considered as a three stage struc-
ture. In the first, the @ and R matrices are mod-
eled, each pair of matrices comprises an individual
QR and a set of QR individual comprises a popu-
lation; they are modeled in a decimal basis. In the
second stage, the genetic chromosomic operations
are performed; besides the traditional genetic op-
erations as crossover, mutation and duplication of
another operator called guest was developed to
untrack the QR population of saturated regions
or even increase the genetic material diversity be-
cause a feature of this GA is to stress the search
space with a small size population. In the third,
the fitness function calculation ranks each indi-
vidual of the population after each search cycle;
this GA is comprised of a fitness function (FF)
set, called fitness function team (FFT), each of
which represents the same environment in a dif-
ferent manner.

The DMU is a logical device designed to
guide the GA search. The decisions taken by
this logical device are based on fitness function
team structures, schema theory, multiarmed ban-
dit paradigm and Pareto’s optimality criterion.
The X-OVER operation is the interaction point
between the GA-optimizer and the strategies for-
mulated on the DMU, ie, DMU actions are imple-
mented and DM U input are the closed loop system
cost functions and eigenstructure values.

2.8 The distributed parallelization

The FA solution determined by the proposed
method is a two level parallelization process. The
first level is related with GA-optimizer, in this par-
allelization an initial population is randomly as-
sembled by the coordinator (master) MOGA and
it is distributed among several coordinates (slaves)
MOGA’s, each MOGA evolves the initial QR indi-
viduals set and the final population is sent to the
coordinator MOGA after some stopping criterion



is reached, this model is called independent run
parallelization, (Koza, 1992). The second level of
parallelization is related with the LQR problem
solution, several LQR designs are performed si-
multaneously among the distributed MOGA’s.

The parallel MOGA (PMOGA) model for EA
on distributed environment, as function of GA-
optimizers, DMU’s, FF team, genetic operations
and so on, is defined by Eq’s (5- 8)

The PMOGA:

PMOGA = {MOGA,, .., MOGA,_1}  (5)

where MOGAq is the master MOGA and
MOGA;,i=1,...n—1, are the MOGA slaves.
The master and slaves MOGA’s:

]\/IOGAO = {GAO — op, DMU(]} (6)
MOGA, == {GAZ — op, DMUZ},

1=1,...,n—1

where GAg — op and DMU, are the master
optimizer and its DMU. GA; —op and DMU;, i =
1,...,n—1, are slaves GA-optimizer and DM U’s,
respectively.

The master and slaves GA-optimizers:

GAg —op = {G(QR),CO(QR), EV(FF)} (7)
GA; —op ={CO(QR), EV(FF)},

i=1,...,n—1

where G(QR) is the QR initial population
generator, CO(QR) are the chromosomic oper-
ators, that are built on the individual selec-
tion criteria and the genetic operators (mutation,
crossover, duplication and guest). EV(FF) is the
fitness function evaluation operators.

The DMU’s:

DMU; = {Sears(QR, FF.ank), (8)
S(QR),STOc(QR)}

i=1,....n—1

where Sears(QR, FF.ank) is the search
strategies definition for the next (t + 1) QR-
generation as a function of the ranked ¢ popula-
tion. S(QR) are the selection criterion operators
used to replace individuals of the permanent pop-
ulation. STO¢c(QR) are the GA-op stop criteria
operators.

3 Parameter control methods

Parameters adaptation of evolutionary computa-
tion algorithms (ECA) is not an easy task, be-
cause there are quite a few parameters that can

Class Function Parameter
Search Cycle X-over probability PX
mutation probability PM
duplication probability PD
guest probability PV
Genetic X-OVER Q % factor age
Operations X-OVER R % factor Tage
global mutation factor FGM
local mutation base LBM
local mutation exponent LE]\/]
Population size POpS
number of replaced Popgr
individuals at each generation

Table 1. GA-optimizer parameter classification

be adjusted to improve the search and if most of
the parameters are adjusted a coordination among
them must be taking into account. The meth-
ods developed in this section, mainly, follows the
taxonomy of FCA parameter control proposed in
(Eiben et al., 1999), but there are some instances
in which an extension for the taxonomy can be
proposed to handle some events.

Table 1 presents the GA-optimizer parame-
ters that can be adjusted to increase the search
performance to reach the required EA. In this ap-
plication, the X-OVER age parameter adjustment
was chosen to be the one that will be controlled
during the search cycle iterations, because the
search is stressed on the crossover chromosomic
operation.

The general idea behind the proposed meth-
ods for parameter variation that regulates the de-
gree of the X-OVER operation is presented on
Fig.1. The search space is divided in quadrants
and these quadrants are called artificial niche.
The main idea is to move some QR-individuals
into other quadrants of the search space or even
to move individuals into regions of the same quad-
rant by X-OVER parameter variations and to ex-
plore quadrant regions by giving small variations
to these parameters. The number of search trials
on a giving region is established by the number of
unsuccessful trials.

The developed GA-optimizer performs three
types of X-OVER operations. The first is the
standard operation, QR individuals off-springs are
formed of parts of two parents randomly selected
based on fitness proportionality, Eq. 9. The sec-
ond type is based on the schema theory and on a
database assembled with the best feasible individ-
uals of the search cycle, one of the parents comes
from the permanent population, chosen alike as
the standard operation type, and the other comes
from the feasible database, randomly chosen in
accordance with his storage position, after the in-
dividuals’ selection another choice is done to de-
fine the schema type that will be kept on after the
crossover operation. The third type of operation
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Figure 1. Solution space exploration by X-over parameters
variations

is performed in a similar way as the second op-
eration type, but the database is assembled with
unfeasible individuals; this operation explores the
multi-armed bandit (MAB) paradigm.

QR051 = Qosl U Rosl (9)
QR052 = Q052 U R082

where QR,s, and QR,s, are the off-springs
that result from a linear combination of @, Eq.10,
parents alleles.

Qosl = Q(t)agerl + |q(t)age - 1‘@172 (10>
Qos; = q(t)ageQps + |q(t)age — 1|@p,

where ¢(t)qge is the Q alleles X-OVER param-
eter that can be changed during the search cycle
iterations according to rules defined by the de-
signer. @p, and @, are the @ alleles of parents
QR; and QRs, respectively. The R,s, and R,
are assembled in a similar way.

Types 2 and 3 of X-OVER operations, the
q(t)age, Eq.10, or 7(t)q4e parameters are equal one
for the search cycle iterations under consideration
and depending on the random choice for a @ or R
schema type. Supposing that a @-schema was ran-
domly chosen from the MAB database, Eq.11 rep-
resents the two off-springs that are formed from
the Qp, ., alleles and the ¢(t)qge parameter is
one. The R,s, and R,s, alleles are assembled as
part of the R,, and R,,,,,, Eq.12. The two QR
off-springs are given by Eq.9.

QOS1 = QPMAB (11)
Qosz = QP}\IAB

where Qp,, ., are the @ alleles that comes
from the MAB database.

Ros, = r(t)ageRpl + |T(t)age — 1Ry, ,£12)
ROS2 = T(t)ageRpAlAB + |T(t)age - 1|RP1

where r(t)qge is the R alleles age’s parameter.

The model for the X-OVER age parameter
variation is represented by Eq.13, this equation
rules the values that can be assumed by ¢(t)qge
parameter. This function values changes accord-
ing to two directions on a straight line and the di-
rection changes are defined by fitness function av-
erages, the best feasible solution and the amount
of search trials on a given direction. The ¢(t)qge
initial value is given on the right direction.

qt)r =q(t—1); + Aq(t)
if g4 >0

q(t) =q(t—1)
if g <0

Q(t)age = — Aq(t) (13)

where ¢(t), and ¢(t); are the parameter values
into the right and left directions. The Ag(t) is the
q(t)age variation step; this value may be constant
or not during the search cycle and may be ad-
justed in intervals, synchronized with ¢(¢) change
points, defined by the designer. This rule actions,
in general, are presented in Fig. 2.

a) Qage fixed values b) rage fixed values
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Figure 2. @ and R alleles X-over parameters setup and

variation steps versus search cycle change points

Change points

The qq4, Eq.14, is given by a boolean function
that defines the ¢(t)q4. parameter search direc-
tion, if the function value is greater than zero the
variation goes into the right on the straight line
and if its value is lesser than zero its variation goes
to the left.

qa = qa(A(Q, R)*™, E(Q, R)™", (14)
A(Q, R)™*, AD,)

where A(Q, R)* is the population sensitiv-
ity average, (Zj\’ max; st(Q,R) /N), N is the



Method | Rule Aq(t) AT(t) Dvalq Dvalr
QD RrT 0 0 o0 o0
DN Rt #0 #0 | << SC | << 8C

RO #0 #0 00 00

Table 2. Parameters variations methods and rules.Rf—
Several points of the search cycle, Rf— Adaptive, R°—
Deterministic

population size, on the search cycle step t. The
E(Q, R)* is the population fitness cost function
average value, (va E}(Q,R)/N), on step t. The
A(Q, R)™** is given by min; max; s(Q, R)!, i.e.,
it represents the best individual of the population
on step t. The AD, is a function of the max-
imum number of faulty trials variations allowed
on a given direction. The boolean function g4 in
terms of logical and relational operator is given by
Eq. 15, this parameter has its direction changed
only if all the relations are false.

qa = 5(6)™ V e(t)™ v 8(£)™= v 6D(t), (15)

where §%V(t) is a boolean value that re-
sults from the comparison of (A(Q,R,t)* <
A(Q, R,t — 1)®). e(t)® is a boolean value that
results from the comparison of (E(Q, R,t)* <
E(Q,R,t — 1)®). §(t) is a boolean value that
results from the comparison of (A(Q, R, )™ <
A(Q, R,t—1)m®). §D(t), is a boolean value that
results from the comparison of (AD(t) < Dya,)
and Dy, is the maximum value of the parameter
variations on a given direction if none of the other
relations were not satisfied.

The parameter variation model, Eq. 13, al-
lows to obtain two methods for ¢(t)age and 7(t)qge
variations, Table 2. They are classified as quasi-
dynamic (@QD) and dynamic (DN) methods.

In the quasi-dynamic method parameter
changes are ruled by fixed variations during the
search cycle, Fig.’s 2(a and b). For this case, pa-
rameter Ag(t) is zero during the whole search cy-
cle.

The second method has two rules: adaptive
and deterministic. The first rule is called adap-
tive because its Aq(t) fixed parameter is not zero
and its fixed parameter D, of the boolean func-
tion, Eq. 15, is less than the number of the search
cycle (SC) iterations. The second rule is consid-
ered deterministically controlled because its fixed
parameter D,q, is always greater than the num-
ber of the search cycle iterations and its parame-
ter Ag(t) or Ar(t) is not zero; in this rule ¢(t)qge
and 7(t)qge parameters can not change to the left
or the right directions, which are defined by the
designer.

4 Concluding Remarks

A model development for parameter adjustment,
that regulates the degree of combination of two in-

dividuals performed by X-OVER operation, and
two methods, that results from certain assump-
tions over the proposed model, has been presented
as a function of performance index and constant
parameters established by the designer.

The model basic steps are based on the re-
sults obtained from the fitness function structure
and the information furnished by these results are
evaluated by boolean and relational operators.

The performance evaluation of the proposed
methods has shown their effectiveness. The eval-
uation tests are performed to allocate an eigen-
structure of a dynamic system and its results
are presented in a second paper, (Bottura and
Neto, 2001).
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