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Abstract— The main objective of this article is to present computational simulations results and performance
analysis of the proposed crossover operations parameters adjustment methods for a parallel multiobjective genetic
algorithm (PMOGA) dedicated to dynamic systems eigenstructure assignment. The proposed model development
for crossover adjustment is presented in a first paper. The computational simulation results are performed on
high performance parallel computers and the analysis considers three result types: proposed methods comparison,

solutions evolution and state feedback controllers quality.
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1 Introduction

The most fundamental effort in this work is the de-
termination of state feedback controllers via LQR
design, ie, the final product that results from
this effort are controllers that have the ability to
perform eigenvalues and eigenvectors assignment.
Several steps, such as: the control problem for-
mulation and GA-optimizer aspects, have to be
taking into account before the controllers deter-
mination otherwise it is not possible to find out
feedback laws that satisfy the required eigenstruc-
ture. The GA optimizer, specifically, the crossover
(X-OVER) operation parameters, that can work
as a mechanism for the search guidance, is a rele-
vant matter to reach a satisfactory final result.

The performance of the proposed method was
verified on state space variable linearized model
that represents the dynamics of an aircraft. The
computational simulation results were performed
on parallel computational environment.

The proposed parameter adjustment methods
and the best solutions’ evolution, that is a func-
tion of LQR designs’ ) and R weighting matri-
ces, whose search is performed by GA optimizer,
are analysed together, ie, comparing the param-
eter adjustment influences on the search perfor-
mance. The second analysis considers the per-
formance of the controllers when they are imple-
mented on state variable model and are subjected
to an impulse signal perturbation.

The following four sections discuss the com-
putational simulations and performance analysis
of the proposed methods. The first one, makes a

2The authors are thankful to CENAPAD-SP for the com-
putational resources and to CAPES-PICDT for the finan-
cial support.

comparative analysis between the methods’ action
and the PMOGA search. The second one, presents
the proposed method efficiency by exhaustive par-
allel simulations. The third one, verifies the state
feedback controllers performance. The last one,
gives the concluding remarks of this work devel-
opment in a global vision.

2 X-OVER parameter actions

This section presents a comparative analysis of the
X-OVER operations parameter adjustment influ-
ences on the performance of the PMOGA search.
The PMOGA could not present feasible solutions,
for the selected cases, if the proposed methods ac-
tions were not utilized to improve the @ and R
matrices search.

The master task final population profiles for
the quasi-dynamic method and for the dynamic
methods (deterministic and adaptive rules) are
presented in Fig.1. The quasi-dynamic method
did not help to find a feasible controller, Fig.1a.
The adaptive rule, Fig.1b for Aq(t) # 0 and
Ar(t) # 0 helped the GA-optimizer to find weight-
ing matrices that lead to a whole family of fea-
sible controllers, whose worst sensitivity, A;-"”,
j =1,...,N, lies on between 0.79 and 0.98; but
for this rule with two variations, Aq(t) = 0 or
Ar(t) = 0, no feasible controllers were found for a
search cycle of 100 generations.

The dynamic right deterministic rules, Fig.
lc, improved the @@ and R matrices search, for
two variation set: (Ag(t) # 0 and Ar(t) # 0) and
(Aq(t) # 0 and Ar(t) = 0). For this rule six fea-
sible controllers were determined for each set of
variations, whose controllers A** lie on between
0.90 — 0.97 and 0.91 — 0.97, respectively. No feasi-
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Figure 1. Parameter setting actions on the master task final population profile

ble controllers were obtained for the following set:
(Ag(t) = 0 and Ar(t) # 0).

The left deterministic rule, Fig.1d, presented
six feasible controllers for its variation, Aq(t) # 0
and Ar(t) = 0, but for the other two no feasible
controllers could be determined. All rules types
and its variations improved the final populations
profiles.

Fig.’s 2 to 11 present the effects of the pro-
posed parameter setting control rules for a hard
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Figure 2. Quasi-dynamic Method - X-over operation pa-
rameters variation, maximum sensitivity and average sen-

sitivity versus search cycle k iterations.

convergence case that the quasi-dynamic method,

Fig.2, did not improve the search for ten CPU’s
parallel processing, ie, the PMOGA could not
find out ) and R matrices that lead to feasi-
ble controllers. Fach figure presents the mas-
ter task results and it consists of four curves;
types a and b curves show the ¢(t)gge and r(t)qge
parameter changes, respectively; types ¢ and d
curves show the best individual maximum sen-
sitivity for each k generation step, A}***, that
is given by minjmax;si;(Q, R) (i = 1,...,n and
j=1,...,N), where n is the dynamic system or-
der and N is the number of individuals in the GA-
optimizer population, and the worst maximum
sensitivity average, A{”, of the permanent pop-
ulation that is given by (Z;V maz;s;j(Q, R))/N,
respectively.

The adaptive rule and its main element that
directly influenced the off-springs formation are
the variation steps, Ag(t) and Ar(t), and this rule
improved the search for Aq(t) # 0 and Ar(t) # 0,
Fig. 3. Fig. 3a and Fig. 3b curves are related
with some @QR-individuals displacements to new
quadrants in the search space and at the beginning
of each new change point the GA- optimizer has a
chance to perform a local exploration of the quad-
rant or even stay in this region until the newest
change point appears, (Bottura and Neto, 2001).
After a certain number of generations, by the end
of the search cycle, the ¢(t)qge and r(t)qge param-
eters only accept small random variations, ie, this
policy allows to concentrate the search on a lim-
ited region of the solution space. Fig.3¢ shows



that around half of the search cycle, the first fea-
sible controller was obtained and for the rest of the
search cycle all individuals of the permanent pop-
ulation are assembled by feasible controllers, Fig.
1b. The A;’}c‘” average, Fig. 3d, was improved
before the first quarter of the search cycle, as for
quasi-dynamic method, Fig.2d, and the most sig-
nificant improvement was obtained after the 100"
generation. For Ag(t) = 0 or Ar(t) =0, Fig.’s 4
and 5, no feasible controllers were presented.
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Figure 3. Adaptive rule for Ag(t) # 0 and Ar(t) # 0 -
X-OVER operation parameters variation, maximum sensi-
tivity and average sensitivity versus search cycle k genera-
tions
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Figure 4. Adaptive rule for Aq(t) = 0 and Ar(t) # 0 -
X-OVER operation parameters variation, maximum sensi-
tivity and average maximum sensitivity versus search cycle
generations

Fig.’s 6 to 8 present the behavior of the dy-
namic right deterministic rules and its effects on
the weighting matrices search. An analysis, sim-
ilar to the one conducted for the adaptive rule
can be carried out for the other rules. As can
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Figure 5. Adpative rule for Ag(t) # 0 and Ar(t) = 0 -
X-OVER operation parameters variations, maximum sen-
sitivity and average maximum sensitivity versus search cy-
cle generations

be seen this rule presented feasible controllers for
Agq(t) # 0 and Ar(t) # 0, Fig. 6¢, and Ag(t) #0
and Ar(t) = 0, Fig. 6c¢, respectively; but the sec-
ond case presented a feasible controller for fewer
generations of the search cycle than the adaptive
rule. For the case Ag¢(t) = 0 and Ar(t) # 0,
no feasible controllers were presented or even any
kind of improvement on the best individual of the
initial population, besides the improvements ob-
tained for the maximum sensitivity average of the
entire population.
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Figure 6. Right direction deterministic rule for Aq(t) # 0
and Ar(t) # 0 - X-OVER operation parameters variation,
maximum sensitivity and average sensitivity versus search
cycle generations.
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Figure 7. Right direction deterministic rule for Ag(t) =0
and Ar(t) # 0 - X-OVER operation parameters variation,
maximum sensitivity and average sensitivity versus search
cycle generations
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Figure 8. Right direction deterministic rule for Aq(t) # 0
and Ar(t) = 0 - X-OVER operation parameters variations,
maximum sensitivity and average sensitivity versus search
cycle generations.

The dynamic left deterministic rule results are
presented in Fig.’s 9 to 11. Only the case, for
Aq(t) # 0 and Ar(t) = 0, Fig. 11, presented im-
provements on the search and the final permanent
population is assembled by six feasible controllers,
Fig.11d; the first feasible controller was obtained
around the 50" generation, Fig.1lc. The other
two cases, Fig.’s 9 and 11, did not present any
improvements on the search cycle generations, be-
sides the improvements provided to final popula-
tion profile.
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Figure 9. Left direction deterministic rule for Ag(t) # 0
and Ar(t) # 0 - X-OVER operation parameters variation,
maximum sensitivity and average sensitivity versus search
cycle generations.
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Figure 10. Left direction deterministic rule for Ag(t) =0
and Ar(t) #0 - X-OVER operation parameters variation,
maximum sensitivity and average sensitivity versus search
cycle generations.
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Figure 11. Left direction deterministic rule for Ag(t) # 0
and Ar(t) =0 - X-OVER operation parameters variation,
maximum sensitivity and average sensitivity versus search
cycle generations.



Case Search quantity Success
Minimum | Maximum | quantity
1 2 110 4
2 76 94 6
3 3 143 7
4 29 90 6
5 78 118 6
6 25 25 1
7 60 183 4
8 28 150 6
9 4 64 5
10 53 125 8

Table 1. Adaptive parameter setting performance results.

3 Exhaustive Simulations

The exhaustive simulation results are presented
on Tables 1 to 3. These tables show computa-
tional simulation results from ten cases for the
same dynamic system, each case corresponds to
different initial conditions and the PMOGA could
not produce any feasible solution when the pa-
rameters did not suffer any adjustment during the
search cycle for the quasi-dynamic method, but
solutions were found when the proposed dynamic
methods were activated considering Ag(t) # 0
and Ar(t) # 0. For each case, eight processors
were used, this means that 240 simulations were
performed to validate the proposed methods on
helping the GA-optmizer in the Q and R matri-
ces search that satisfies the desired FA. These ta-
bles present synthesized results, the minimum and
the maximum generations number of the search to
find out a feasible solution, as well as the number
of successful searches among 8 trials.

Comparing the performance results of the
three rules, Tables 1 to 3, it can be verified that
the adaptive rule led to the first feasible solution
and the majority of its feasible results happened
before the 100" generation of the search cycle,
this means that this rule is more effective than
the other two. The dynamic deterministic method
produced more successful results than the adap-
tive rule. Considering the deterministic method,
its right rule has presented a greater number of
successful results and were produced for a lesser
number of generations.

4 Controllers Performance

The controllers obtained from the exhaustive sim-
ulations, section 3, have been implemented on the
linearized state variable model and an impulse in-
put has been applied to verify their performance.
This procedure test was performed for each hard
case presented on Tables 1 to 3 and for families of
controllers obtained from just one processor. The
impulse simulation results were compared with a
basic controller, (Davis and Clarke, 1995), and it

Case Search quantity Success

Minimum | Maximum | quantity
1 59 94 3
2 64 101 8
3 35 136 8
4 35 125 8
5 83 180 8
6 62 150 3
7 52 189 6
8 55 186 5
9 35 105 7
10 37 186 8

Table 2. Dynamic left deterministic parameter setting per-
formance results.

Case Search quantity Success

Minimum | Maximum | quantity
1 3 134 7
2 73 125 8
3 3 163 8
4 19 195 7
5 28 93 5
6 19 42 3
7 72 185 6
8 28 189 7
9 4 107 8
10 28 115 8

Table 3. Dynamic right deterministic parameter setting
performance results.

was observed that the controllers presented good
performance for this kind of perturbation.

Three controllers performance, obtained with
the help of the adaptive method guidance, are
compared with the basic controller (Bcontroller)
performance, Fig. 12. As can be observed, task
07 controller performance, Fig. 12d, is the one
that presented best response when compared with
the basic, master and task 06 controllers. The
master and task 06 controllers presented a small
overshoot compared with Bcontroller, but they
present a greater settling time than the basic con-
troller.

The impulse signal response for a controller
family is presented in Fig. 13. In this case all
controllers were obtained from the same processor
task and the closed-loop dynamic system impulse
responses are very similar for controllers whose
worst sensitivity is not very close, as can be seen
in Fig.’s reffig-s408a) and b), for these controllers
the worst eigenvalues sensitivities are 0.73 and
0.84, respectively. The system impulse response
for controllers 09 and 14 implementation, Fig’s
13c) and d), are more damped than controllers
01 and 04 responses and for these controllers the
worst eigenvalues sensitivities are 0.90 and 0.99,
respectively. Considering that these controllers
originated from the same task, we can conclude
that as the controller worst sensitivity is near
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Figure 12. Case I - Impulse Response - Controllers ob-
tained with Adaptive rule

1 (one) the transient responses present a closer
damped response.
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Figure 13. Case I - Impulse Response for a Task 09 - Con-
troller family Controllers obtained with Adaptive rule.

5 Concluding Remarks

This work has presented the performance of meth-
ods for parameter adjustment of the crossover op-
eration, the main purpose of this parameter is to
control the degree of combination between two in-
dividuals. The methods were computationally im-
plemented as rules on a parallel multiobjective ge-
netic algorithm, specifically designed to search @)
and R weighting matrices of the Linear Quadratic
Regulator Problem, LQR. A control law, obtained
from LQR design, assigns the specified eigenstruc-

ture in a dynamic system and it efficiency has been
verified for cases that presented no feasible solu-
tion, when the proposed methods were not imple-
mented.

In general, all the three rules have presented
improvements on the PMOGA search, because
they have the ability to guide the search that leads
to a feasible eigenstructure assignment. The adap-
tive rule has shown to be the most efficient, be-
cause most of its results were obtained with lesser
generations of the search cycle.

The parallel design can become more efficient,
to increase the number of feasible solutions, if each
task assumes different rules for the X-OVER op-
eration parameters variation.
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