SIMULATING LOOSELY AND TIGHTLY COUPLED MULTI-ROBOT
COOPERATION

Luiz CHAIMOWICZ, MARIO CAMPOS

VERLab - DCC - Universidade Federal de Minas Gerais,
Belo Horizonte, MG, Brasil, 31270-901
{chaimo, mario}@dcc.ufmg.br

Viay KuMAR

GRASP Lab. — Univ. of Pennsylvania, Philadelphia, PA, USA, 1910/

kumar@grasp.cis.upenn.edu

Abstract— This paper presents MuRoS, a simulator for multi-robot cooperation. MuRoS allows the simula-
tion of different robots in several types of cooperative tasks, ranging from tightly coupled to loosely coupled tasks.
We show the implementation of two of these tasks in the simulator: Forage and Cooperative Manipulation, and
discuss important results related to cooperative robotics such as scalability, communication and hybrid control.

Key Words— Cooperative Robotics, Multi-robot simulation

1 Introduction

The use of multi-robot teams has received much
attention in the last few years. The basic idea is
to have groups of robots working cooperatively to
execute different types of tasks. The use of mul-
tiple robots increase the overall reliability of the
system, while decreasing the task complexity and
execution time. Groups of simpler and less ex-
pensive robots can be used instead of expensive
specialized robots in the execution of several ap-
plications.

Also, there are certain kinds of tasks, named
Tightly Coupled Tasks, that cannot be exe-
cuted by a single robot and require the use of
multiple robots working cooperatively. To exe-
cute tightly coupled tasks, the robots must act
in a highly coordinated fashion and this normally
requires some knowledge about the states and ac-
tions of the teammates, either through implicit
(sensory perception) or explicit communication.
Further, in many cases, each robot is critical to
the task and an individual failure could cause fail-
ure of the task as a whole. These are different
from the Loosely Coupled Tasks, that can be
executed by a single robot alone, but have bet-
ter performance when a team of robots is used.
When executing loosely coupled tasks, the robots
can act independently from each other and strict
coordination is not required. Surveys of cooper-
ative robotics applications can be found in (Cao
et al., 1997) and (Parker, 2000).

Good simulation tools are very important in
the study of cooperative robotics. Normally, it
is difficult and expensive to get and maintain
multi-robot teams, mainly when a large number
of robots (more than 10 for example) are required.
Multi-robot simulators allow researchers to obtain
results rapidly and to implement and test different

approaches before starting real implementations.

This paper presents MuRoS?, a Multi-Robot
Simulator that can be used for simulating vari-
ous types of tasks, ranging from loosely coupled
to tightly coupled cooperative tasks. Developed
using object orientation in the MS Windows en-
vironment, MuRoS has a very friendly user inter-
face and can be easily extended with the devel-
opment of new classes and the implementation of
new robots, controllers and sensors. Used alone or
in conjunction with implementations in real plat-
forms, the simulator has allowed the study of dif-
ferent aspects of cooperative robotics in several
application domains, such as: cooperative manip-
ulation (Chaimowicz et al., 2001), robot forma-
tions (Fierro et al., 2001) and robot control (Das
et al., 2001).

There are some general simulators for coop-
erative robotics in the literature. For example,
Teambots (Balch and Hybinette, 2000) is imple-
mented in Java but use only the behavior based
paradigm to control the robots. Other simula-
tor is Stage, that simulates mobile robots moving
in and sensing a two-dimensional bitmapped envi-
ronment, controlled through a device server called
Player (Gerkey et al., 2001). An extension that
groups a previous version of Stage with a wireless
network simulator is described in (Ye et al., 2001).
Another interesting approach is CHARON, a tool
for modelling and analyzing hybrid systems that
can be used to simulate multi-robot coordination
and control (Alur et al., 2000). General software
tools such as Matlab and Simulink (Mathworks,
2001) have also been used to simulate some spe-
cific cooperative robotic applications. The main
advantage of MuRoS is that it allows the imple-
mentation of various types of robots with different
characteristics, thus the user is not restricted to

ahttp:\\www.verlab.dcc.ufmg.br\muros

use a specific kind of robot or controller given by
the simulator. Also, its friendly user interface and
good performance makes MuRoS a powerful tool
for simulating cooperative robotics.

This work also presents two test bed applica-
tions developed and tested on the simulator. The
first one is a Forage task, in which a group of
robots must search an environment looking for
items and collect these items taking them to a
specific goal. It is a classical example of loosely
coupled cooperation. The second is a cooperative
manipulation task, where the robots must collabo-
rate to transport a large object between two differ-
ent locations in the environment. It is an example
of a tightly coupled task, that cannot be executed
by a single robot. These applications allow us
to study several important aspects of cooperative
robotics such as scalability, communication and
hybrid control.

This paper is organized as follows: next sec-
tion gives a general overview of the simulator, in-
cluding the class hierarchy, controllers and com-
munication. Section 3 presents the forage appli-
cation while Section 4 shows the cooperative ma-
nipulation task. Finally, section 5 brings the con-
clusion and possibilities for future work.

2 MuRoS: a Multi-Robot Simulator

2.1 General Description

MuRoS is an object oriented simulator developed
in Visual C++ for the MS Windows environment.
It allows the simulation of several multi-robot ap-
plications such as cooperative manipulation, for-
mation control, foraging, etc. Both loosely cou-
pled and tightly coupled tasks can be simulated.
It has a friendly user interface that allows the in-
stantiation of different types of robots, the cre-
ation of obstacles (circles, rectangles and poly-
gons) and the observation of the simulation in real
time. Also, result data can be exported to other
tools such as Matlab for future analysis. New
types of robots can be implemented with differ-
ent controllers, driving mechanisms and sensors,
inheriting characteristics from other robots. Ex-
plicit communication can be simulated, allowing
the robots to exchange information during the
task execution. New applications can also be
developed making the simulator a very powerful
tool. Figure 1 shows a snapshot of the simulator
with 4 nonholonomic robots carrying an object, 10
robots moving towards the goal and 3 obstacles.
The simulator has a very good performance
because it uses two different threads: one for the
integration of dynamic equations and other for the
real time display. As expected, the performance
decreases as the number of robots increase, be-
cause more equations must be updated in each
simulation step. An important feature is that sev-
eral simulation parameters, such as the integra-

0= e OONHENO §

| | _'l_l
LLeemogo> OO0 9
Fasds Tem 1547 Ptz 14

Figure 1. Snapshot of MuRoS interface

tion step and controller constants, can be changed
dynamically during the execution. This adds flex-
ibility to the system and makes the simulations
more efficient.

2.2 Class Hierarchy

One of the fundamental concepts in objected ori-
ented programming is inheritance. The inheri-
tance mechanism allows the developer to create
base classes with general characteristics of an en-
tity and specialize them in new subclasses, with
the addition of members, methods and the redefi-
nition of virtual functions. It is a very important
concept, mainly when code reuse and extensibility
are necessary.

In MuRoS, we have implemented a class hi-
erarchy that allows the creation of new types of
robots inheriting characteristics from classes that
had already been developed. The main class
is CRobot that contains the basic members and
methods of a generic robot. In the first level of
inheritance, we have the subclasses CRobotHolo-
nomic and CRobotNonHolonomic, each one with
its proper characteristics. From them, we can de-
rive more specific classes, for example: CRobot-
Forage with robots for the forage task or CRobot-
Labmate representing a TRC Labmate platform
equipped with a compliant arm (Sugar and Ku-
mar, 1998). Basically, to create a new type of
robot, the user will have to inherit from one of the
CRobot* classes, redefine some of its functions and
add methods and data members for new capabili-
ties such as new sensors, controllers and planners.

The class hierarchy also include different
types of obstacles, objects and a class for map-
ping and planning, that is used by some of the
robots. Figure 2 shows the class hierarchy dia-
gram. Some internal classes of the simulator (for
example the class that controls the user interface)
are not shown in this figure.

‘CMapPath ‘ ‘Cobstacle ‘

CRobotHolonomic *
{costacetes_

CRobotNonHolonomic ‘ ‘ CBox ‘
[cavcrae |
Hcoore |
{caooveon |

Figure 2. Class hierarchy of the simulator

2.8 Controllers

Different types of controllers can be implemented
in the simulator. A distributed hybrid approach is
used, where each robot can switch among different
discrete states (modes), having different continu-
ous controllers in each mode. Thus, the robots can
dynamically change their behavior during the task
execution, adapting better to changes and unex-
pected events in the task and on the environment.

Basically, the user can define the dynamic
equations that control the robots in each mode,
and the simulator integrate these equations dis-
playing the robots’ trajectories in real time.
Switches between different controllers are trig-
gered based on the robots’ states, perception of
the environment and explicit communication, as
we show in the examples of next sections. In the
applications presented in this paper, we use po-
tential field controllers, where the robots are at-
tracted by the goal and repulsed by each other.
Other controllers for holonomic and nonholonomic
robots have also been implemented in the simu-
lator, such as path following, leader-follower and
open loop approaches.

2.4 Communication

The robots can exchange information (messages)
using explicit communication. All messages are
broadcast and received by all robots. There are
two types of communication: synchronous and
asynchronous. In synchronous communication,
the messages are sent and received continuously in
a constant rate while in asynchronous communica-
tion, an interruption is generated when a message
is received. Synchronous messages are important
in situations where the robots must receive con-
stant updates about the state of the others, for
example, in a leader-follower cooperative manip-
ulation task (Chaimowicz et al., 2001). On the
other hand, asynchronous communication is used
when, for example, one robot needs to inform the
others about unexpected events or discrete state
changes such as the presence of obstacles, robot
failures, etc.

2.5 Sensors, Localization and Mapping

Each robot is equipped with a sensor that allows
it to detect the presence of obstacles, robots and
other targets in a certain range. For now, a strong
assumption of the simulator is that each robot
knows its exact position in the environment, i.e.,
we are not considering odometry errors. In real
robots, odometry errors can be corrected using
stochastic localization algorithms, that can esti-
mate the robot position using features detected
in the environment and other robots’ estimations.
These kind of algorithms are currently being im-
plemented in the simulator. Knowing their posi-
tion and using information acquired by the sen-
sors, the robots can construct maps of the envi-
ronment and plan trajectories in some of the tasks.

3 Loosely-Coupled Task: Forage

As an example of a loosely coupled cooperative
task simulation, we present here some experiments
of a forage task. As mentioned, in the forage task
the robots must search the environment for items,
retrieve, and transport these items to a goal loca-
tion. It is a classical example of a loosely coupled
cooperative task and has been used by several re-
searchers as a test bed for simulations and real
implementations of cooperative architectures, for
example (Arkin et al., 1993) and (Drogoul and
Ferber, 1992).

In our simulation, the robots use potential
field controllers and discrete mode switching to
guide themselves during the execution of the task.
The control is completely distributed. There are
three basic discrete modes: Wander, Retrieve
and Transport (Figure 3). In the Wander mode
each robot searches the environment for items to
be retrieved. When it detects an item, the robot
changes its state to Retrieve and moves to get the
item. After getting it, the robot switches to the
Transport mode and carry the item to the goal.

Item Item

Retrieve

Item delivered to the goal

Figure 3. Discrete state diagram for the forage task

Figure 4 shows a snapshot of the simulator
during the forage task: the items are the small
dots in the screen, while the robots are the cir-
cles. The sensor range of each robot is shown as a
dashed circle around it. There are 4 robots in the
Transport mode carrying items (black), 4 in the
Wander mode (light gray) and 2 in the Retrieve
mode (dark gray, at the bottom-left of the screen).
The goal is marked with an x

g |

b E—
L eemEOs 004
Pty Tee Es Fote 10

Figure 4. Snapshot of MuRoS during a forage task

Four different algorithms have been imple-
mented to coordinate the robots during the forage
task:

1. Random: in this algorithm, the robots move
randomly around the area and, when they
find a item, they retrieve and transport it
to the goal. There is no communication or
multi-robot strategy.

2. List: this algorithm is very similar to the
previous one, with the difference that each
robot keeps a list with the position of the
items that it has already detected but has
not been able to retrieve because it can only
transport one item at time.

3. Communication: in this algorithm, the
robots also move randomly and maintain a
list with the detected items, but they also
exchange their lists using explicit communi-
cation. In this way, robots that are idle in
a certain moment, can go and retrieve items
detected by other robots.

4. Divide and Conquer: in the Divide and Con-
quer algorithm, the robots do not communi-
cate and, instead of moving randomly, they
divide the search space among them and
perform an exhaustive search in their area.
When a robot finishes searching its area, it
can start searching other areas.

Experiments were executed varying the num-
ber of robots (from 5 to 25) and the coordination
algorithm. Each experiment was repeated 100
times, and the average time to complete the mis-
sion was computed. In the experiments we used
holonomic robots, 50 items and a search area of
10x10 meters with the goal placed in the middle.
Each robot cannot carry more than one item each
time. Also, as mentioned, we consider that there
is no uncertainty in the localization: the robots
know their exact position and the position of the
goal. The results are shown in Figure 5.

When the number of robots is small, the Di-
vide and Conquer algorithm has the best perfor-
mance, showing that strategy is more important

140

120
" \\ (1) Rand
5 80— -
g R N | FEP (3) Comm
- ‘t\\ (4) D&C
* -~ v-.ﬁ.\..‘f_.“,?.“*
5
0 | | |
5 10 o i 25

Number of Robots

Figure 5. Execution Time X Number of Robots

than keeping a list or communicating at this point.
But the other two algorithms also have good per-
formances when compared to the completely ran-
dom approach. When the number of robots is
increased, the difference in the execution time of
all the methods decreases, showing that a larger
number of robots brings benefits independently of
the algorithm that is being used. There are two
important results to point out when 25 robots are
used: the performance of the Random algorithm
is equal to the the List algorithm, showing that
with a large number of robots, keeping a list of
the previously detected items does not contribute
much to the task . The Communication and Di-
vide and Conquer algorithms also have a very sim-
ilar performance, which demonstrates that the use
communication is as important as strategy when
a large number of robots is used.

A metric that can be used for this applica-
tion is the Speedup, a common metric used in the
parallel programming community to analyze the
benefits of using multiple processors or machines
to perform a task. In our application domain,
Speedup can be defined as:

Ezecution time using 1 robot

Speedup = Execution time using N robots’

Table 1 shows the speedup values computed for
the four algorithms varying the number of robots.
All the algorithms have large speedups, mainly
the random and communication algorithms. The
speedup shows how much the execution time is re-
duced when more than one robot is used. Speedup
values close to n (n = number of robots) are called
linear speedups and indicate that the task is ben-
efiting totally from the use of multiple robots.
This happens with the Communication Algorithm
for n < 10 and the Random for n > 10. The
communication helps orienting the idle robots
to the items that have been found by others,
bringing significant improvements over the single
robot approach. In the Random Algorithm, lin-
ear speedups were expected because the robots
act completely independent, thus, the addition of
more robots causes a proportional reduction in the
execution time. The Divide and Conquer is the al-
gorithm that has the smaller speedup results be-

5 10 15 20 25
Rand | 4.72 | 9.69 | 14.62 | 19.16 | 23.13
List 4.99 | 9.09 | 12.03 | 16.13 | 17.98
Comm | 5.00 | 9.89 | 13.38 | 17.65 | 20.55
D&C 4.50 | 7.81 | 10.41 | 13.13 | 15.16

Table 1. Speedup results for different foraging algorithms
varying the number of the robots

cause the use of strategy is effective even when
only one robot is in use. When more robots are
in use, their search areas overlap and this redun-
dancy reduces the speedup values.

All these results showed that loosely coupled
tasks benefit significatively from the use of mul-
tiple robots. Although the use of communication
and coordination brought good results, they are
not necessary for task completion. The use of
strategy or even random algorithms with a large
number of robots are sufficient for the execution
of loosely coupled tasks.

4 Tightly-Coupled Task: Manipulation

Cooperative manipulation is a typical example of
a tightly coupled task. To transport an object
in cooperation, the robots must coordinate them-
selves in order to pick up the object and carry (or
push) it from two different locations. Examples of
approaches for cooperative manipulation can be
found in (Chaimowicz et al., 2001), (Brown and
Jennings, 1995) and (Donald et al., 2000).

In this paper, our approach to the coopera-
tive manipulation uses potential field controllers
to guide the robots, and discrete mode switch-
ing and communication for coordination. This is
similar to the approach used in the loosely cou-
pled cooperation, with the main difference that
communication and strict coordination are com-
pletely necessary. The robots are attracted by the
object and the goal, and repulsed by each other.
The contacts with the object, obstacles and other
robots are computed using rigid body dynamic
models (Song et al., 2001). Figure 6 shows the
discrete modes and the transitions during the ex-
ecution of the task. The transitions marked with
a * are triggered by messages received from the
other robots.

Pos OK Dock OK* Lost Contact

Regroup*

Figure 6. Discrete state diagram for the cooperative ma-
nipulation task

Initially, the robots are in the Dock mode and
are attracted by the object. At the same time,
they are repelled by each other, being able to dis-

tribute themselves along the object and prepare
for the transportation. When one robot senses
that it is close enough to the object, it goes to
the Wait mode, and broadcasts a message com-
municating that it is ready. When all robots are
ready they change to the Transport mode, and
there is a controller switch so that each robot be-
comes attracted by the goal. If for some reason
one robot losses contact with the object, it will
change to the Lost mode, broadcast a message
and stop moving. If all robots lose contact, they
regroup and start docking again.

Figure 7 shows some snapshots of the simu-
lator during the manipulation of a round object
by ten holonomic robots in an environment with
three obstacles. The goal position is marked with
an x. Snapshot (a) shows the robots in the Dock
mode, starting to move in the direction of the ob-
ject (light gray circle). Snapshot (b) shows nine
robots in the Wait mode while the last one is still
finishing the dock phase. In (¢) eight of the robots
have lost contact with the object because of a col-
lision with an obstacle. It is important to note
that the robots lose contact when the object is
outside their sensor range, so two robots (showed
in black) are still in contact. As these two robots
move towards the goal, they will also lose con-
tact with the object. When this happens, they
regroup, grab the object again and resume the
transport finishing the task (snapshot (d)).

Figure 7. Snapshots of the manipulation task: (a) robots
(small circles) in the dock mode. (b) robots preparing to
transport the object. (c) robots lose contact with the ob-
ject after colliding with an obstacles. (d) transportation is
finished after a robot regrouping

Differently from loosely coupled tasks, com-
munication and coordination are necessary in this
task. Without strict coordination and communi-

cation the robots would not be able to transport
the object and recover from failures. Also, de-
pending on the size, shape and mass of the ob-
ject, a single robot alone or a small team cannot
be able to complete the task. Some experiments
were performed varying the mass and size of the
object and in all cases at least 3 robots were nec-
essary to transport the object. In the case of Fig-
ure 7, eight robots were necessary to complete the
task adequately. All these results showed that co-
operative approaches that rely on strict coordina-
tion and explicit or implicit communication mech-
anisms are required for the execution of tightly
coupled tasks.

5 Conclusion #

In this work, we presented MuRoS, a object ori-
ented simulator for multi-robot cooperation. We
described its basic features and how it can be used
for simulating both loosely coupled and tightly
coupled tasks. We implemented two test bed
applications: forage and cooperative manipula-
tion and studied important aspects of cooperative
robotics such as scalability and hybrid control.
The results showed that cooperative approaches
increase the performance of the tasks and allow
the execution of certain tasks that could not be
performed by a single robot. We also showed
that tightly coupled tasks require strict coordina-
tion and communication, while in loosely coupled
tasks, robots can run independently from each
other.

Our future work is directed toward studying
important aspects of cooperative robotics such as
wireless communication and dynamic role assign-
ment. For this, we are planning to implement
more cooperative applications on the simulator
and develop new features, such as a probabilistic
localization mechanism. We also want to imple-
ment some of the approaches in real platforms to
validate the results obtained with the simulator.

References

Alur, R., Grosu, R., Hur, Y., Kumar, V. and Lee, I.
(2000). Modular specification of hybrid systems
in charon, Proceedings of the 8rd International
Workshop on Hybrid Systems: Computation and
Control.

Arkin, R., Balch, T. and Nitz, E. (1993). Communi-
cation of behavioral state in multiagent retrieval
tasks, Proceedings of the 1998 IEEE Interna-
tional Conference on Robotics and Automation.

Balch, T. and Hybinette, M. (2000). Social potentials
for scalable multirobot formations, Proceedings

2Acknowledgments: Luiz Chaimowicz is supported by
CAPES Foundation and CNPq and Mario Campos by
CNPq.

of the 2001 IEEE International Conference on
Robotics and Automation, pp. 73-80.

Brown, R. G. and Jennings, J. S. (1995). A
pusher/steerer model for strongly cooperative
mobile robot manipulation, Proceedings of the
1995 IEEE/RJS International Conference on In-
telligent Robots and Systems, Vol. 3, pp. 562-568.

Cao, Y. U., Fukunaga, A. S. and Kahng, A. B. (1997).
Cooperative mobile robotics: Antecedents and
directions, Autonomous Robots 4: 1-23.

Chaimowicz, L., Sugar, T., Kumar, V. and Campos,
M. (2001). An architecture for tightly coupled
multi-robot cooperation, Proceedings of the 2001
IEEE International Conference on Robotics and
Automation, pp. 2292-2297.

Das, A., Fierro, R., Kumar, V., Southall, B., Spletzer,
J. and Taylor, C. (2001). Real-time vision-based
control of a nonholonomic mobile robot, Proceed-
ings of the 2001 IEEFE International Conference
on Robotics and Automation, pp. 1714-1719.

Donald, B. R., Gariepy, L. and Rus, D. (2000). Dis-
tributed manipulation of multiple objects using
ropes, Proceedings of the 2000 IEEE Interna-
tional Conference on Robotics and Automation,
pp. 450-456.

Drogoul, A. and Ferber, J. (1992). From tom thumb
to the dockers: Some experiments with foraging
robots, Proceedings of the 2nd Int. Conference on
Simulation of Adaptive Behavior, pp. 451-459.

Fierro, R., Das, A., Kumar, V. and Ostrowski, J.
(2001). Hybrid control of formations of robots,
Proceedings of the 2001 IEEE Int. Conference on
Robotics and Automation, pp. 3672-3677.

Gerkey, B., Vaughan, R., Stoy, K., Howard, A.,
Sukhatme, G. and Mataric, M. (2001). Most
valuable player: A robot device server for dis-
tributed control, Proceedings of the Second In-
ternational Workshop on MAS at Autonomous
Agents 2001.

Mathworks (2001). http://www.mathworks.com.

Parker, L. E. (2000). Current state of the art in dis-
tributed robot systems, Distributed Autonomous
Robotic Systems 4, Springer Verlag, pp. 3-12.

Song, P., Kraus, P., Kumar, V. and Dupont, P. (2001).
Analysis of rigid body dynamic models for simu-
lation of systems with frictional contacts, ASME
Journal of Applied Mechanics 68(1): 118-128.

Sugar, T. and Kumar, V. (1998). Design and control
of a compliant parallel manipulator for a mobile
platform, Proceedings of the 1998 ASME Design
Engineering Technical Conferences and Comput-
ers in Engineering Conference.

Ye, W., Vaughan, R., Sukhatme, G., Heidemann, J.,
Estrin, D. and Mataric, M. (2001). Evaluating
control strategies for wireless-networked robots
using an integrated robot and network simulator,
Proceedings of the 2001 IEEE Int. Conference on
Robotics and Automation, pp. 2941-2947.

