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Abstract— In designing controllers for complex and ill defined nonlinear dynamical systems there are needs not
sufficiently addressed by conventional control theory. These are mainly related to the problem of environmental
uncertainty and often call for human-like decision making requiring the use of heuristic reasoning, learning from
past experience and a set of input-output crisp data describing the system. In general, only one of the two
information has been used in the design phase: either a set of crisp input-output data or knowledge acquired
from experts. This research work deals with the development of a new approach for implementing combining
both information. The simulation results show that the proposal effectively solve the backing up a truck problem
from several initial conditions presenting a good robustness. The controller design and the simulation are further

presented and discussed.
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1 Introduction

In a complex control system design problem, nei-
ther a precise analytic description, nor a mathe-
matical model of the system is well known. Prac-
tical applications have showed that only a set
of crisp input-output pairs in addition to expert
knowledge about the system dynamic are known
a priori. In general, only one of the two infor-
mation has been used in the design task: either
a set of crisp input-output data (Ljung, 1983) or
knowledge acquired from experts (Adachi, 1996),
(Joo, 1995).

Although the system may be successfully con-
trolled by a human operator, when his experience
is expressed as “IF-THEN” fuzzy rules in the de-
sign process, information could be lost and the
final Fuzzy Associative Memory (FAM) bank be-
come sparse, preventing practical use.

Therefore, only a set of crisp input-output
data is not enough for guaranteing a good control
system performance, because it cannot cover all
the situations the control system may face. Usu-
ally, the training set of input-output crisp data
is related with “good trajectories”, i.e, a set of
input-output pairs whose inputs had led to suc-
cessful outputs.

Each of the two kinds of information alone is
often insufficient. In this paper, an hybrid ap-
proach that takes in account both a set of numer-
ical information from a historical database and
expert knowledge about the system behavior is
proposed, based on two design phases.

In Ferreira and Nascimento (2001) a Fuzzy
Neural Network (FNN) architecture for gener-
ating fuzzy rule database from system dynamic
sparse knowledge was proposed for the first de-
sign phase. Starting from few known rules, the

FNN was able to generalize them, filling out the
initial sparse FAM bank, namely R

In this paper, for the second design phase, a
FAM bank, R, is generated from a set of input-
output crisp data, using Wang’s algorithin (Wang
and Mendel, 1992). Finally, both banks, R and
R", are combined yielding in another one, &, and
it’s performance in solving the truck backer-upper
nonlinear control problem is analyzed.

The rest of the paper is organized as follows.
In Section 2, the h level set (a-cuts) definition
is brief reviewed and the neuro-fuzzy network ar-
chitecture is described. Section 3 presents the
FNN learning algorithm. Section 4 describes the
Wang’s algorithm. Section 5 shows the hybrid
algorithm proposed and Section 6 illustrates ex-
perimental results, using the truck backer-upper
problem and compare its performance to related
approaches (Kosko, 1992). Finally, concluding re-
marks are presented in Section 7.

2 The Neuro-fuzzy architecture

A neuro-fuzzy network for handling fuzzy informa-
tion may be designed according to Ishibuchi and
Tanaka (1995) approach considering the following
procedures:

a) fuzzy numbers are propagated through a
multi-layer feedforward neural network;

b) a single unit is used for dealing with a fuzzy
number;

¢) the extension principle (Zadeh, 1975) de-
fines the input-output relation for each unit and
the actual fuzzy output calculations are performed
using interval arithmetic for all h level sets (-
cuts);

d) the standard BP (Back Propagation) learn-
ing algorithm (Rumelhart and McClelland, 1986)



must be extended to accomplish with fuzzy
weights and biases requirements. Inputs and out-
puts are also fuzzy vectors.

2.1 Triangular fuzzy numbers and h level sets

Symmetric triangular fuzzy numbers may be used
for representing fuzzy weights, biases, input and
output variables. Let X = (2%, 2%, 2V) denotes a
triangular fuzzy number as shown in Fig.1. The
membership function X may be defined as

0,for x <zl or x > 2V
L

px(x) = fc;fzm for 2l < 2 < 2¢ (1)
fu:fc, for ¢ <z < zV
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Figure 1. Representation of the fuzzy number X

The h level set of fuzzy numbers may be de-
fined as:

[Xn ={z: px(x) = h, z € R} (2)

where px () is the membership function of X and
R is the set of all real numbers. Each h-level set
defines a closed interval on the support of X, de-
noted by [X], = [[X]£,[X]]] and it can be cal-
culated as

(X]E =2l (1=h/2)+2Y -h/2 (3)

i
(XY =2t - h/24+2Y - (1 - h/2) (4)

2.2 Architecture

A three-layer feedforward neural network with n;
input units, ngy hidden units and no output units
may be fuzzified according to the following equa-
tions, for each h-level set:

Input units:

[Opiln = [Xpiln (5)

Hidden units:

[Opjln = f([Netp;])n (6)

[Netp;]n = i Wjiln [Opiln + 051 (7)

i=1

Output units:

[Opkln = f([Netpr])n (8)

ny
[Netyeln =Y [(Wijln [Opsln + [Ok]n (9)
i=1
where Wj; and Wy are the fuzzy weights between
the input-hidden layers and hidden-output layers,
respectively. f(.) is the activation function f(z) =
1/(1+e 7).

3 The Neuro-fuzzy Learning Algorithm

Let T, = (Tp1,Tp2,..-,Tpn,) be the ng-
dimensional fuzzy target vector corresponding to
the fuzzy input vector X,. A cost function for
h-level sets of the fuzzy output Opy from the kth
output units and the corresponding fuzzy target
T, may be calculated as follows:

€pkh = e;ikh + egkh (10)
vhere (TlE = [On]})?
Torly — [Opk
eﬁkh: PElh 5 PElh (11)
Tk U 10 & U\2
egkh — h([ p ]h 2[ p ]h) (12)

The cost function for the h-level sets of the
fuzzy output vector Op, and the fuzzy target vec-
tor T}, are defined as

no

eph = Z epkh (13)

k=1

The input-output pair (X, Tp) has the cost func-
tion:
ep = Z €ph (14)
h

A backpropagation learning algorithm may be
derived using the cost function ey, without dis-
torting the fuzzy weight shapes if their h-level
sets are independently updated (Ishibuchi and
Tanaka, 1995).

The triangular fuzzy weights Wy;, Wj; and
triangular fuzzy biases Oy, ©; are denoted by:

ij = (wllc/jaw]?jaw](cjj)a Wj' = (wL wC wU)

Gir Wii Wi
(15)
Or = (05,01, 6)), ©;=(07.65,605)  (16)

The fuzzy weight Wy; = (w,fj, ng, w,(fj) be-
tween the jth hidden unit and the kth output unit
may be updated by using the cost function ey as
follows:

de h

Awg;(t) = —n apr + aAwg(t—1)  (17)
kj
de h

Awy;(t) = — awpU + aAwp(t—1)  (18)
kj

where 1 and « are learning and momentum pa-
rameters, respectively, and ¢ represents the num-
ber of epochs.



The derivatives in equations (17) and (18) are
calculated as follows:

Oepn __Oepn OWigly _Oepn  OWilj
Ow;  OWily Owy;  O[Wisly  dwy
19)
8eph _ Geph 6[Wk3]ﬁ 6eph 8[Wk]],’{
ang O[Wi;)E ang OWi;1¥ ang
(20)

Therefore, due to (3) and (4), the equations
(19) and (20) are rewritten as:

86ph 8eph ( h) 8eph h
- 1o o) g e 2 (g
owt, ~ owgle \'2) Yampa Y

8eph aeph h aeph ( h)
= —+ R 22
ang a[ij]ﬁ 2 a[Wk]]g 2 (22)

These equations show how the error signals
are back propagated through the neuro-fuzzy
network.  Similarly, the fuzzy weight Wj; =
(w,jgj, w,?j, w,[fj) is updated according to the follow-
ing rules:

w,fj (t+1) = wfj(t) + Aw,fj (t) (23)

w,gj (t+1)= w,g](t) + Ang (t) (24)

wi(t+1) + wi; (t+1)
2

After adjusting W, through equations (23)-

(25), the range limits have to be checked. In case

where the lower limit becomes larger than the up-

per limit, the following heuristics should be used:

wii(t+1) = (25)

wi;(t+ 1) = min{wg; (¢ + 1), wi; (¢ + 1)} (26)

w,[cjj t+1)= max{wﬁj(t +1), w,gj(t + 1)} (27)

The fuzzy weight Wj; and the fuzzy biases
O, ©; are updated in the same way as the fuzzy
weight W;.

4 The Wang’s Algorithm

This algorithm was proposed by Wang and
Mendel (1992) which consists of the following five
steps. Consider a set of desired input-output data
pairs given by:

(@M, 2®M W), (@, 2Py, (28

The task is to generate a set of fuzzy rules
from (28) and use them to determine a mapping

f(,22) — .

Step 1 - Divide the input and output spaces into
fuzzy regions

Assume that the domain interval of 1, z2
and y are [z], 2]], [, #3] and [y~, yT], respec-
tively. Divide each domain interval into 2N + 1
regions (N can be different for different variables,

and the lengths of these regions can be equal or
unequal), denoted by SN (Small N), ..., S1 (Small
1), CE (Center), B1 (Big 1), ..., BN (Big N), and
assign each regions a fuzzy membership function.

Step 2 - Generate Fuzzy Rules from a given data
pairs

Here, it is necessary to fuzzify x&i), mgi) and
y@ for all fuzzy membership functions. For exam-
ple, consider that :vgl) has degree 0.8 in B1, degree
0.2 in B2, and zero degree in all other sets. Simi-
larly, xf) has degree 1.0 in C'E, and zero degrees
in all others sets and y(*) has degree 0.9 in CFE,
0.3 in B1. Assign xgi), xgi) and y* to the fuzzy

set with maximum degree. Therefore, :vgl) belongs

to Bl1, xg) to CE and y to CE. Finally, one
rule from one pair of desired input-output data is
obtained, e.g.,

Rule 1 from (xgl),xgl),y(l)) is:

(@®, 20,y = 21 (0.8in B1, max)
xél) (1.0in CE, max)
y (0.9in CE, max)

IF (21 is B1) and (23 is CE) THEN (y is CE);
Step 8 - Assign a degree of confidence to each rule

This step will prevent conflicting rules, i.e.,
ones that have the same IF part (antecedents)
but different THEN part (consequents). One way
for solving this problem is to assign a degree to
each rule generated from data pairs, and accept
only the rule from a conflict group that has max-
imum degree. In this way, not only is the conflict
problem resolved, but also the number of rules is
greatly reduced. For example, in order to assign
a degree to rule 1, the following product may be
used:

D(Rulel) = mpy(z1) msi(x2) moe(y)
— 0.8 x 0.7 x 0.9 = 0.504 (29)

Step 4 - Create a Fuzzy Rule Base

Step & - Determine a Mapping based on Fuzzy
Rule Base

Given the inputs (z1, x2), the following de-
fuzzification strategy is used in order to determine
the output y:

a) combine the antecedents of the ith fuzzy
rule, using product operation to determine
the degree, mé)i, of the output correspond-
ing to (z1, x2), i.e.,

my: = myi(x1) my (22) (30)

where O? denotes the input region of Rule i,
and I} denotes the input fuzzy set of Rule i



for the jth component e.g., Rule 1 gives
meg = mpi(e1)msi(z2)  (31)

b) Use the following centroid defuzzification
formula to determine the output

K . .

y = 2ic1 Moy

2
die1 M

where 3¢ denotes the center value of region
O' and K is the number of fuzzy rules in the
FAM bank.

(32)

5 The Hybrid Identification Algorithm

In this section, the steps that show how to use
both precedent tools which were described, are re-
lated as follow:

1. Define the fuzzy input-output vectors
(Xp, Tp) available for FNN training;

2. Obtain a FAM bank, §R,, performing the
FNN algorithm;

3. Obtain a FAM bank, R, performing Wang
and Mendel’s algorithm, using the data from
the process;

4. Combine the FAM banks from steps 2. and
3. yielding the FAM bank, R,

6 Results

The performance of the proposed hybrid ap-
proach is analyzed in solving the backing up a
trucker problem, originally proposed by Nguyen
and Widrow (1993). This problem consists in
successfully driving a truck to the final position
(50,100) on the plan [0,100] x [0,100], modeled
by the following equations:

Tpy1 = T + 1 cos(Pri1) (33)
Yk+1 = Yk + 7 sin(@g+1) (34)
Grs1 = On + O (35)

where (z,y) gives the truck position; ¢ is the angle
between the car and the horizontal reference, 6 is
the control angle and r = vt (v = 1.0 m/s is the
truck speed and ¢t = 1.0s the sampling time). As
in Kosko (1992), the input variables are ¢ and «
and the output variable is 6. In Fig. 2 the fuzzy
sets defined to these variables, similarly to Kosko,
are shown.

6.1 Application of the hybrid algorithm

Step 1 - Define the fuzzy input-output vectors
(Xp, Tp) available for FNN training:

A set of known rules (scenario) was considered
as shown in Table 1. Tt corresponds to the expert

05k

Figure 2. Membership functions for fuzzy variables in the
backing up a truck problem

knowledge about the system behavior. Each fuzzy
input-output pair is a IF-THEN rule. Consider,
for example, the last cell in the first row. It corre-
sponds to (Xp, Tp) = ((RB, RI),PB) or IF (¢ IS
RB) AND (z IS RI) THEN (¢ IS PB)

Table 1. The known rules for FNN training

xT

LE LC CE RC RI

RB PB
RU
RV

¢ VE ZE PM
LV
LU

LB | NB NM NS

Step 2 - Obtain a FAM bank, §R,, performing the
FNN algorithm;

In all simulations, the net structure is com-
posed by n; = 2 input units, ng = 6 hidden units
and no = 1 output unit. The A level set is de-
fined as {0.2, 0.4, 0.6, 0.8, 1.0}. Fuzzy weights
and biases are initialized in the closed interval
[—1,1] and the condition for halting the training
is the number of training epochs (1000 iterations).
The FAM bank R generating from that scenario
is showed in Table 2

Step 8 - Obtain a FAM bank, §R”, performing
Wang’s algorithm, using the data from the pro-
cess;

In this phase, “good trajectories” are neces-
sary in order to generate R Fig.3 shows trajec-
tories, from different initial states that were used
in the Wang’s algorithm. Table 3 shows the fuzzy
rules generated from those trajectories.



Table 2. FAM bank R’ obtained from FNN
x

LE LC CE RC RI

RB PS PM | PM | PM | PB

RU | NS PS PS PM | PM

RV | NM | NS ZE PS | PM

¢ VE | NM | NS NS ZE | PM
LV | NM | NS NS ZE | PM

LU | NM | NM | NM | NS PS

LB | NB | NM | NM | NM | ZE

100

Initial States

50 (20, Yo, o)

(a) | (20, 20, 30°)
() | (30, 10, 220°
(c) | (30, 40, —20°)
(d) | (80, 10, —20°)
)
)

60

~

40

» (e) | (90, 80, —30°

# | (10, 80, —30°

Figure 3. Trajectories used to generate R’

Table 3. FAM bank R obtained from Wang’s algorithm

X

LE LC CE RC RI

RB [ PS | PM PB

RU | NS | PS PB

RV | NM | NS | PS PB

é VE ZE PM
LV | NB NS | PS | PMm

LU | NB NS | ps

LB | NB NS

Notice that bank R~ is sparse, i.e, there are
empty cells since the available trajectories cannot
cover all possible points in the state variable space.

Step 8 - Combine the FAM banks from steps 2 and
3 yielding the FAM bank, R

Those empty cells in Table 3 can be filled us-
ing expert knowledge. As an alternative, consider
the following definition:

Given (r;j), (r;;) and (r;;) cells from the FAM
banks %,, R and Rg, respectively, a cell from Ry
is defined as

’ f " ’ "
Ty, ity = 0or Tij = Tij

(rij) = (36)

1";;-, if 1";; # 0 and r;j #* T;;

The equation (36) means that if a cell is sim-
ilar in both FAM banks (R and ®") or if there
is an empty cell in 3‘%”, it is assumed that the cell
in R} is correct. Otherwise, if a cell is conflicting
(there is not an empty cell in R" and the rule has
the same antecedents, but different consequents in
both banks), then it is assumed that cell from %"

is correct. In the other words, numeric informa-
tion prevail over linguistic one (from expert knowl-
edge). Table 4 shows the resulting FAM bank de-
rived from equation (36).

Table 4. The FAM bank R obtained from eq. ( 36)
x

LE LC CE RC RI

RB PS PM | PM | PM PB

RU | NS PS PS PM | PB

RV | NM | NS PS PS PB

¢ VE | NM | NS ZE ZE | PM

LV | NB | NS NS PS | PM

LU | NB | NM | NM NS PS

LB | NM | NM | NM | NM | NS

After all FAM banks have been obtained from
linguistic information (R'), numerical information
(R"), and both of them (Ry), they were used
for solving the truck backer-upper problem and
the final result compared to those obtained by
Kosko (1992). In Table 5, the final states of
the variables (z,y,¢) for two initial conditions
(75,15, —40°) and §40, 10,200°) are shown. The
results for banks R , Ry and Kosko’s FAM bank
are shown in Fig. 4.

Table 5. FNN performance results

FINAL STATES

SETS (75,15, —40°) (40, 10, 200°)

T Y ¢ x Y [
§R, 54.50 99.95 88.56 54.76 99.17 | 89.34

Ro 50.04 | 99.96 | 90.06 | 49.95 | 99.87 | 89.87

Kosko | 50.00 | 99.96 | 90.00 | 49.99 | 99.86 | 89.99

The obtained results indicate that the FAM
bank Ry presents a performance similar to Kosko’s
and better than . Due to it’s sparsity, R could
not conducts the truck for the “docking zone” (fi-
nal state), because those initial conditions did not
belong to the set of “good trajectories”. Although
this, some cells from R were useful to correct
wrong cells from R". See the boldface cells in Ta-
ble 4 and compare them with those in Table 2.
Possible similarity degree between g and Kosko’s
FAM bank may be better analyzed using the con-
cept of “control surface” (Driankov, 1993). Hence,
consider that the state variables may be related by
some function ¢ : (¢, ) — 6. The surface de-
fined by ¢ obtained from banks Ry and Kosko’s
FAM bank are shown in Fig. 5.

7 Conclusion

An hybrid approach for generating fuzzy rule
database from both numerical and linguistic in-
formation usually available about nonlinear dy-
namic system was proposed. A fuzzy neural net-



work (FNN) that can handle linguistic informa-
tion (fuzzy input and output vectors) was used
for generating a FAM bank, from sparse expert
knowledge. The Wang’s algorithm generate other
FAM bank from crisp input-output data and, fi-
nally, another bank is obtained from combining
them. The proposed algorithm was analyzed in
solving the truck backer-upper nonlinear control
problem and the results compared with Kosko
(1992). Simulation results and comparison of re-
sults show that the proposed algorithm presents
good trajectories, driving the truck to the desired
final state.
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(a) - Trajectories with initial position (75,15, —40°)
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(b) - Trajectories with initial position (40, 10,200°)

Figure 4. Trajectories for FAM banks §R,, Rop and Kosko

(c) - Difference between the surfaces (a) and (b)

Figure 5. Control surfaces examples



