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Abstract— In this paper we provide guidelines for the comissioning of induction motor drives based on indirect
field oriented control. We rely on robust stability results for IFOC drives to provide such guidelines. In doing so,
we aim at a comissioning that is robust against practical rotor time constant mismatches and practical operating
conditions. The guidelines are valid for both speed control with a PI regulator and position control with a PD

regulator.
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1 Introduction

Indirect Field Oriented Control (IFOC) is a well
established and widely applied control technique
when dealing with high performance induction
motor drives (Novotny and Lorenz, 1986; Leon-
hard, 1985; Bose, 1987). The commissioning of
an IFOC requires the knowledge of the rotor
time constant, a parameter that can vary widely
in practice (Krishnan and Doran, 1987; Marino
et al., 1993) and is known to cause performance
and stability problems. Most results in the lit-
erature address this problem from the applica-
tion point of view focusing on the performance
issue without providing stability guarantees. Only
the recent works (Bazanella and Reginatto, 2000;
Bazanella et al., 1999; Ortega et al., 1996; De Wit
et al., 1996) have aimed at filling in this gap by
providing IFOC with a firm theoretical founda-
tion.

It has been shown that the speed control of in-
duction motors through IFOC is globally asymp-
totically stable for any constant load torque if the
rotor time constant is perfectly known or the er-
ror in its estimation is sufficiently small (De Wit
et al., 1996; Bazanella and Reginatto, 2000). In
a previous paper (Bazanella and Reginatto, 2000)
we also showed that saddle-node bifurcations oc-
cur for certain values of the mismatch in this esti-
mation and certain load conditions. Another pos-
sible mechanism for loss of stability, namely, the
occurrence of Hopf bifurcations, has been consid-
ered in (Bazanella and Reginatto, 2001; Bazanella
et al., 1999; De Wit et al., 1996; Espinosa-Perez
et al., 1998). Contrary to saddle-node bifurca-
tions, this mechanism of loss of stability depends
on the settings of the speed control loop (De Wit
et al., 1996; Espinosa-Perez et al., 1998; Bazanella
et al., 1999). In the recent works (Reginatto and
Bazanella, 2000; Bazanella et al., 2000), effective
results have been provided to analyze the global
asymptotic stability property of IFOC drives.
Also in this case, the setting of the PI speed loop
controller plays a fundamental role on the size of

the region on the parameter space where the IFOC
drives exhibits this important property.

This set of results elucidate the influence of
all relevant tunable parameters in an IFOC drive
on its stability properties. On the base of these
results, we will provide useful guidelines for the
setting of such parameters in the commissioning
of any IFOC drive. The guidelines are intended for
a design that keeps all possible instability mecha-
nisms far enough from a practical operating region
in the parameter space.

The paper is organizes as follows. In Section 2
the system modeling and the control equations
are given and some additional convenient nota-
tion and concepts are introduced. The mecha-
nisms of loss of local stability are clarified in Sec-
tion 3. Based on these results, in Section 4 we
derive guidelines for setting the estimate of the
rotor time constant and the parameters of the PI
speed controller in order to guarantee stability of
the system for practical parameter mismatches. A
case study is presented in Section 5.

2 Modeling

We consider the indirect field oriented control
(IFOC) of induction motor drives. Field ori-
ented control is usually employed as a means to
achieve high performance transient response in
speed, position, or torque control. The imple-
mentation of IFOC employs stator current control,
i.e., the induction machine is current fed, and al-
lows three control inputs, namely: 445, the direct
axis stator current component; i45, the quadra-
ture axis stator current component; and wg, the
slip frequency (Novotny and Lorenz, 1986; Leon-
hard, 1985).

IFOC consists in setting wg and a specific ini-
tialization procedure in the attempt to achieve a
control decoupling between ig; and %4, the first
acting on the rotor flux level, while the later
acting on the developed torque. More specifi-
cally, we have (Novotny and Lorenz, 1986; De Wit



et al., 1996):
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where ¢; is an estimate for the inverse rotor time
constant ¢; = é—:, L, being the rotor inductance
and R, the rotor resistance, and uj is some con-
stant which defines the rotor flux level.

In speed regulation applications, usually a PI
regulator is used to act on the remaining control
input 44,
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where k, and k; are the gains of the PI speed con-
troller and e,, = wyey —w is the rotor speed error
- the difference between the constant reference ve-
locity the actual rotor speed.

The rotor time constant is a critical param-
eter for IFOC. If é; = ¢, that is, if we have a
perfect estimate of the rotor time constant, we
say that the control is tuned, otherwise it is said
to be detuned. Accordingly, we define
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as the degree of tuning. It is clear that x > 0 and
the control is tuned if and only if kK = 1.

By choosing state variables [z1, z2, 3, T4] =
[Agr) Adrs €w, iqs], We obtain the induction motor
model under field oriented control (1)-(2) and PI
speed regulation (3) described as:
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where A, and Mg, stand for the quadrature and
direct axis components of the rotor flux; T,, is
the load torque, which is assumed constant; ¢; to
cg are machine parameters; and we have defined
ke £ ki — kpes and T, 2 Ty + Dy,

It is easy to show that for position regulation
with a proportional-derivative controller the same
model is obtained after a change of variables, so
that all the results derived for speed regulation
are also valid for position regulation.

2.1 The tuned system

A constant rotor flux must be established inside
the motor before the systems can be operated.
This is called the fluxification phase of IFOC, and
is achieved by setting igzs = u3 and wy.; = 0 with

the motor in stand-still condition. The steady-
state reached under these conditions is given by
z =1°=[0, 2uj, 0, 0], which is considered the
initial state for IFOC operation.

In the tuned case, kK = 1, the model (5)-(8)
simplifies considerably. First, notice that starting
from z(0) = z°, the fluxes z; and x» remain con-
stant for all times, regardless of the behavior of
z4. Now, taking this into account, the remaining

equations (7)-(8) can be rearranged as
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which is a second-order linear system. We shall
refer to the dynamic system (9) as the tuned sys-
tem, which is usually taken as a base for setting
the PI gains. A block-diagram of the tuned system
is given in Figure 1, where the plant is the induc-
tion motor under perfect field-orientation (tuned).
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Figure 1. Block diagram of the tuned system.

The tuned system just defined represents an
ideal situation, in which perfect field-orientation
is achieved. Under this condition optimal perfor-
mance can be achieved, and the PI speed con-
troller is set for the desired performance. Since
in this case the controlled system is linear and of
order two, the tuning of the PI controller under
the assumption of perfect field-orientation is sim-
ple, and in theory arbitrary performance can be
achieved.

From (9), the closed-loop eigenvalues are the
roots of the characteristic polynomial

pr(A) = A% + (c3 + b, K)A + kK (10)

where K 2 % Then the PI parameters
kp, and k; can be chosen to arbitrarily assign
the closed-loop eigenvalues of the tuned system.
Indeed, let the desired closed-loop characteristic
(Hurwitz) polynomial be written as

)\2+a1)\+a0, ap>0,a; >0 (11)

Then, equating the coefficients in (10) and (11)

yields
a1 —C3 ag
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Once the closed-loop poles are chosen the pa-
rameters k, and k; can be calculated from (12).

kyp = ki = (12)



3 Mechanisms of loss of stability

Let us define the dimensionless variables r = z—%
TeC1
csea(ug)?
the system loading, since it is proportional to the
electrical torque developed in steady-state. The
parameter r can be shown to satisfy the third-
order polynomial equation (Bazanella and Regi-

natto, 2000)
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and the equilibria can be written as
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The equilibrium is then parameterized in
terms of a single dimensionless quantity r, which
satisfies equation (13). This is a third order poly-
nomial equation whose coefficients are also dimen-
sionless and depend only on the degree of tuning
k and the normalized load as denoted by r*.

The complete characterization of the equilib-
ria is illustrated in Figure 2 (Bazanella and Regi-
natto, 2000). The two curves, on the (k,r*) pa-
rameter space, delimit the region where equation
(13) has 3 real solutions (3 equilibrium points).
For any point outside the region we have a unique
equilibrium point. The point where the two curves
intersect is Kk = 3, r* = ? Thus, we have a
unique equilibrium point for any load condition if
and only if kK < 3.
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Figure 2. Locus of the points in the parameter space where
the number of equilibria changes.

It has also been shown (Bazanella and Regi-
natto, 2000; De Wit et al., 1996) that the equi-
librium is globally asymptotically stable in the
tuned condition. Hence, for the tuned condition
the Jacobian of (5)-(8) has all its eigenvalues in
the open left half plane. As the parameters k and

r* vary, loss of stability can be detected by look-
ing at the eigenvalues of the Jacobian, as either a
pair of complex eigenvalues or a single real eigen-
value cross the imaginary axis towards the right
half plane. If a real eigenvalue crosses the imagi-
nary axis through zero then a saddle-node bifurca-
tion takes place. It has been shown in (Bazanella
and Reginatto, 2000) that a saddle-node bifurca-
tion occurs at the points the number of equilibria
changes. Then, in the region inside the two curves
in Figure 2 the systems has one unstable equilib-
rium point, regardless of the PI setting.

3.1 Hopf bifurcations

A Hopf bifurcation characterizes an equilibrium
becoming unstable by the crossing of the jw axis
by two complex conjugate eigenvalues of the jaco-
bian. In the important case of zero load operation,
a closed form condition for existence of Hopf bifur-
cations can be derived from as follows (Bazanella
et al., 1999; Bazanella and Reginatto, 2001).
Lemma 1 Let ¢c3 = 0 and T,, = 0. Then, no
Hopf bifurcation takes place for any k > 0 pro-
vided that ag, a1 satisfy the relation

ag < a1(01 + al) (15)

If condition 15 is not satisfied, then a Hopf bifur-
cation takes place at

A ao(c1 + a1)
c1(ap — ai(cy + ay))

K= Kp (16)
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Condition (15) is satisfied whenever the
closed-loop eigenvalues for the tuned system are
chosen to be real. If complex closed-loop eigen-
values are desired, then the imaginary part has to
be chosen sufficiently small in order to satisfy (15).
Figure 3 illustrates the situation for the complex
eigenvalues case, i.e., A\j 2 = —o + jw. The value
of Ky, is plotted as a function of /¢y and jw/ey,
the normalized real and imaginary part of the cho-
sen eigenvalues for the tuned system, respectively.
The figure also shows the region, in the (o, jw)
plane, where no Hopf bifurcation takes place for
any k. We can see that k;, approaches co at the
boundary of that region and rapidly decreases to
practical values as the damping is decreased.

In order to obtain a better insight into the oc-
currence of Hopf bifurcation and its relation to the
PI setting, we choose to parameterize the PI gains
in terms of the eigenvalues of the tuned system,
normalized to the inverse of the rotor time con-
stant. From the zero-load case we can see a major
influence of the eigenvalues being chosen real or
complex. We will then consider two cases:

1. The eigenvalues of the tuned system are
both real and equal to —ncy, where 7 is a
new dimensionless parameter. Then a; =
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Figure 3. Parameter chart for the zero load case. Tuned
system eigenvalues A\; 2 = —o & jw. The dashed region
in the (o,jw) plane illustrates the region where no Hopf
bifurcation takes place for any k.

2nc; and ap = n?.c2. This case is of ma-
jor interest since even for the zero-load case,
complex eigenvalues lead to the occurrence
of Hopf bifurcation for certain values of x.

Moreover, oscillatory responses are usually
not desirable for the IFOC drive.

2. The eigenvalues of the tuned system are cho-
sen for a critically damped response, i.e.,
equal to —ncy (1 = 7). Then a; = 2nc¢; and
ag = 2n?.c2. Besides completing the identi-
fication of the effect of complex eigenvalues
on the Hopf bifurcation in the presence of
load, this case might be of interest in ap-
plication for which a lower rise-time is more
important than no overshoot.

With the PI gains parameterized in terms
of the dimensionless parameter 7, we can pro-
ceed to study the occurrence of Hopf bifurcations
with respect to three parameters (k, r*, ). We
have the following result (Bazanella and Regi-
natto, 2001; Bazanella et al., 1999)

Proposition 1 Let \;, A2 denote the eigenvalues
of the tuned system (9) with cs = 0 and choose
the PI settings such that \y = A2 = —n.c1. Under
these conditions the equilibrium of the system (5)-
(8) is locally asymptotically stable for all (K, r*) €
D* 2 {(0,3] x [0,2]} if n < 23. 0
Then robust stability of the IFOC out of the
tuning condition is guaranteed by proper assign-
ment of the dynamics of the tuned system. Robust
stability is guaranteed if the tuned system is de-
signed to be non oscillatory and not faster than
23 times the inverse of the rotor time constant.
Figure 4 shows the bifurcation curves for the
three different choices of the closed-loop eigenval-
ues: n = 15, 7 = 23 and n = 30. Each curve rep-
resents the locus of the points at which a Hopf bi-
furcation occurs for each different PI setting. For
each setting, the system is locally stable outside

the corresponding curve and unstable inside it. If
the eigenvalues are moved too far away towards
the left, the bifurcation tends to occur for lower
values of k.
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Figure 4. Hopf bifurcation for: A;2 = —15¢; (1), Ad1,2 =
—23c1 (2), A1 = A2 = —30c1 (3).

Figure 5 shows the bifurcation curves for three
choices of critically damped closed-loop eigenval-
ues. By comparing it with Figure 4, we can see
that the Hopf bifurcation occurs at lower values
of k in this case. Moreover, the instability domain
(region inside the curves) is considerably larger.
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Figure 5. Hopf bifurcation for: A1 o = —15¢1(1 £ j) (1),
A2 = *2301(1 :t]) (2), A1 = Ao = *3061(1 :t]) (3)

4 Discussion on guidelines for
commissioning

4.1 Setting of ¢

The parameter ¢; stands for the inverse of the ro-
tor time constant, i.e., ¢c; = f—:. Thus, considering
that L, is constant, we obtain
R,
K= — 17
7 an)

where R, is the estimated value of the actual rotor
resistance R,.



The rotor resistance is known to vary widely
according to the rotor temperature. In most cases,
temperature variations inside the rotor can cause
the rotor time constant to vary more than 50% but
not more than 100% (Krishnan and Doran, 1987).
Hence, 0.5 < k < 2 in most practical cases.

The setting of R, smaller than R, leads to
k < 1. In this case, local stability is guaranteed,
since neither saddle-node bifurcation nor Hopf bi-
furcations take place for reasonable designs of the
PI controller. On the other hand, this region is
also characterized by an increasing of the rotor
flux with respect to its value in the tuned condi-
tion. Thus k¥ < 1 tends to cause flux saturation
inside the motor, thus increasing core losses.

On the other hand, by setting R, larger than
R, we cause the motor to operate with x > 1.
We know that in this region either saddle-node or
Hopf bifurcation may occur. Saddle-node bifurca-
tions occur for k > 3, regardless of the PI setting.
Hopf bifurcation, on the other hand, depend on
the PI setting and may occur even for values of
k < 3. Thus, the operation in this region is not
advisable for an IFOC drive.

Based on this discussion we can propose the
following procedure to set the parameter R,.

1. Obtain a measure of R,, say Rﬁ, with the
motor cold;

2. Obtain R" = 2R¢, an estimate of the value
of R, with the motor hot;

~ Dc Hh
3. Set R, = Fithl,

With this procedure, the values of k are ex-
pected to be in the interval 0.75 < k < 1.5, in
which local stability is guaranteed for reasonable
PI settings. The procedure can also be started by
measuring R and then estimating RS = R/2.

4.2 Setting of the PI gains

The design of the PI controller is usually based
on the tuned system only, thereby disregarding
uncertainties in the rotor time constant. We have
seen that, in most cases temperature variations
inside the rotor can cause the rotor time constant
from 50% to 100% (Krishnan and Doran, 1987).
Moreover, in section 4.1 we provided a procedure
to set ¢; so that to keep k close to the interval
[0.75, 1.5].

Although stability is only lost through the oc-
currence of a bifurcation, a nearby bifurcation is
enough to cause unsatisfactory transient behavior.
Thus, considering that the procedure for setting
¢1 has been applied, it is reasonable to think of
a PI setting that would avoid Hopf bifurcations
to take place for k € (0, 3]. We cannot pursue
anything larger than that, since for ¥ > 3 there
always exist a range for r* for which an unsta-
ble equilibrium point exists, regardless of the PI

settings (Bazanella and Reginatto, 2000) (see Fig-
ure 2).

In analyzing the occurrence of Hopf bifurca-
tion, we also have to consider the effect of the
normalized load r*. It is simple to verify that
r* coincides with the ratio x§/u for tuned op-
eration. In general, this ratio is no larger than
2, so we concentrate on a range for r* given by
0<r*<2.

Taking these considerations into account, we
choose to search for PI settings that will avoid

Hopf bifurcations in the domain (k, r*) € D* 2
{(0,3] x [0, 2]}.

Poor PI setting can cause Hopf bifurcations
basically in two different ways. One is to make the
closed-loop response oscillatory by assigning com-
plex conjugate eigenvalues with low damping. The
second one is to force the closed-loop response to
be very fast by choosing the closed-loop eigenval-
ues too far away to the left in the complex plane.

Following the statement of Proposition 1,
Hopf bifurcations can be avoided for all param-
eters in the region D* by setting the PI gains so
that the closed-loop poles of the tuned system are
A1 = A2 = —n.c; with 0 < n < 23. This setting
of the tuned system allows enough freedom to ac-
commodate for the desired transient performance.
Most of the IFOC drives exhibit satisfactory tran-
sient performance for i no larger than 10.

The choice of complex eigenvalues for the
tuned system, although possibly of interest for
some application, is a bad choice from the robust-
ness point of view. We can verify in Figure 4 and 5
that the lower the damping, the lower the value of
k for which a Hopf bifurcation occurs. Thus, when
commissioning an IFOC drive with this property,
one has to be aware of its implications on the ro-
bustness of the drive.

The choice of real eigenvalues with small 75
for the tuned system is also adequate for global
asymptotic stability. This fact has been observed
in (Reginatto and Bazanella, 2000), where it was
shown that the region in the parameter space
(k, r*) for which global asymptotic stability can
be guaranteed shrinks when 7 is increased.

Based on this analysis we can propose as a
guideline for setting the PI gains the following:
chose real closed-loop poles for the tuned system
with the smallest possible 7 that yields the desired
transient performance. Avoid using 7 larger than
10 in order to keep the bifurcation far away, thus
improving robustness.

5 Transient performance

In order to illustrate the effects of Hopf bifur-
cations on the system’s performance, we present
some simulations for a real 1 HP squirrel-cage
induction motor with the following parameters:



¢ = 13.67 571, ¢z = 1.56 H.s7!, ¢3 = 0.59s7 1,
cs = 1,176kg™'m=2, c5 = 2.86 and uJ = 4 A.

Figure 6 shows the system response to several
steps of load torque, starting from no load until
the system reaches a Hopf bifurcation. The load
torque variation is chosen in accordance with the
r* step variation in Figure 6. The eigenvalues of
the tuned system were chosen A\ o = (—1.2+57)c;.
It is clear that the dynamic performance of the
system is deteriorated as it approaches the bifur-
cation, becoming very poor much before reaching
it. After the bifurcation occurs, a sustained oscil-
lation is observed.
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Figure 6. Speed and quadrature axis current for load
torque variations; Kk = 2.7, A1 2 = (—1.2 £ j7)c3.
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