USING LINEAR ARX TERMS IN RBF NETWORK MODELS:
A CASE STUDY EMPLOYING A THERMAL PROCESS
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Abstract— This paper considers two different types of radial basis function (RBF) model structures, namely
the traditional topology and an augmented topology that includes linear polynomial terms of the ARX (autore-
gressive with ezogenous inputs) type. In particular, the aim is to investigate the potential advantages in the
use of linear terms in nonlinear system identification problems using real data collected from a simple thermal
process. The inclusion of linear terms in RBF network models in the example discussed had two main advantages:
(1) the resulting model structures were more parsimonious, and (2) such models, in general, presented better

steady-state performance.

Key Words— Nonlinear system identification, RBF networks, Model structure selection

1 Introduction

One of the most challenging issues in nonlinear
system identification is the choice of an adequate
model structure for a given problem. Although
this question has recently attracted some atten-
tion (Kadtke et al., 1993; Mao and Billings, 1997;
Aguirre et al., 2000; Henrique et al., 2000) it seems
far from having a definitive answer.

It is known that if the model structure is over-
parameterized it may show spurious dynamical
regimes and even become unstable (Aguirre and
Billings, 1995). One of the possible reasons for the
difficulty to adequately select the structure of a
nonlinear model is that decisions are usually made
based on criteria that do not cater for the over-
all performance of the model. In this sense, such
models could present poor generalization on data
not used in the estimation phase. Some recent
contributions to the structure selection problem
has been made using concepts of term cluster and
cluster coefficients for nonlinear polynomial and
rational models (Mendes, 1995; Aguirre, 1997).
Such concepts may provide useful information
concerning fixed points, symmetry and nonlinear
static relationships within the systems. In this
sense, some results suggest that is possible to im-
prove model global stability through the use of
a priori information about the system under in-
vestigation in the structure selection of nonlinear
models (Aguirre et al., 2000).

Artificial neural networks (ANNs) have been
used in recent years in some system identification

problems. However, the application of ANNs to
modeling and analyzing nonlinear systems present
even stronger drawbacks concerning structure se-
lection. In order to reach better mapping accu-
racy it is a common procedure to increase net-
work complexity allocating multiple hidden lay-
ers or simply increasing the number of nodes in
a single hidden layer. This approach usually re-
sults in network over-fitting, poor generalization
performance and slowness of parameter estima-
tion, especially when using nonlinear optimization
techniques. A methodology for network structure
determination particularly helpful in system iden-
tification performs the pruning of large trained
ANNs (Reed, 1993). More recently proposed
pruning algorithms demonstrate the advantages
of obtain parsimonious network models (Henrique
et al., 2000).

A promising network model representation
is the radial basis function networks (RBFNs).
RBFNs are very attractive because of the sim-
plicity of the structure that is linear in the pa-
rameters, unlike other types of ANNs. Therefore,
RBFN models are compact and very easy to deal
with, since standard linear estimation techniques
can be applied. Moreover, some locality proper-
ties make RBFNs preferable to multilayered net-
works when issues such as online adaptability are
concerned. A common practice in some appli-
cations of RBFNs is to add a linear polynomial
to the conventional network topology, in order to
improve approximation performance and to en-
hance the rate of convergence in network learn-



ing (Poggio and Girosi, 1990). Other researchers
suggest other reasons for the use of the linear
polynomial. (Knohl and Unbehauen, 1998) as-
sure that the use of linear polynomial terms in
RBFN models could avoid unwanted oscillations
between the nodes in adaptive control applica-
tions. (Mees, 1993) suggests that augmented basis
functions behave much better in the presence of
the linear polynomial terms. However, apparently
there is no comprehensive study about the inde-
pendent effect of the linear terms in system iden-
tification applications. In this respect, this paper
focuses on the comparative performance of RBFN
models augmented with linear polynomial terms,
in the light of real data generated from a thermal
process.

This paper is organized as follows. Section
2 introduces RBFNs and the two types of model
structures considered in this work: traditional
network and topology with added linear polyno-
mial terms. Section 3 briefly describes the ther-
mal process that generated the data used in this
comparative study. In Section 4 the performances
of models obtained from real data are compared.
Models with the different structures are also com-
pared concerning the ability to approximate the
system nonlinear static relationship between in-
put and output. The correct fit to the static
curve is very important for control purposes, espe-
cially for applications such as the control of chem-
ical processes, since information about changes in
steady-state gain can be obtained from this curve
(Henrique et al., 2000). Moreover, it is believed
that the quality of fit to the static function is an
important tool of validation since it reflects in the
generalization of the model. Finally, Section 5
summarizes the main points of the paper.

2 Radial Basis Function Networks

The Radial Basis Function (RBF) approximation
method was traditionally used for strict interpola-
tion in a multidimensional space. There are many
possible RBFs, generally divided into functions
with global or local properties. Local RBF's inter-
polate only in a region of input space around its
center, whereas global RBFs extrapolate globally.
Examples of local and global RBFs are, respec-
tively:

e Gaussian: ¢(r) = e~/

e Thin-plate spline: ¢(r) = r2log(r),

where ¢ is the receptive width of the locally-
tuned Gaussian basis function which describes the
sharpness of the hyperbolic cone used in the RBF,
and r is the function argument.

Some results have demonstrated that the
choice of the basis function is not particularly
crucial for the performance of the approximation

scheme although reasonable advantages can be
derived in the use of a specific RBF (Jackson,
1988a). Relative performance of different types of
RBFs have been surveyed in (Jackson, 1988b; Car-
lin, 1992).

Given a set of samples (x;,y;,7 =1,...,N), a
single-output RBF network, implementing a map-
ping f : " — R, can be represented as (Zhu and
Billings, 1996):

f®) =wo+zwi¢(llx—cz~ll)), (1)

where w, € R is a constant offset, x € R™ is the in-
put vector, ¢(-) is an RBF from Rt — R, ||-|| de-
notes an Euclidean norm, ¢; € R (i = 1,...,m)
are the RBF centers and w; € ® (i = 1,...,m)
are the output weights. In order to capture sys-
tem dynamics the RBF input vector x must be
represented as a set of lagged input and output
signals

S T

where x(k) is a vector with dimension n = ny+mn,,
and n,, and ny are lags of input and output signals,
respectively. In this context, an excitation x(k)
produces a network output y(k).

In system identification it is a common pro-
cedure to add linear AR (Autoregressive) terms,
as well as input terms, on the right-hand side of
Equation (1) (Sze, 1995), which leads to an RBF
model structure of the form (for the SISO case)

Nug

y(k) = wo + Y_wju(k — j) +
j=1
Nye

anu£+jy(k _J) + (3)

j=1

> WnyprngrilIx(k) — ;) +
j=1

e(k),

where 1, and n, are lags of linear input and AR
terms respectively, x(k) is the RBF input vector,
defined as Equation (2), and e(k) is the noise.

The aim of this work is to compare the differ-
ent RBF model structures represented by Equa-
tions (1) and (3), which means to give some in-
sight about the independent effect of the linear
polynomial terms in nonlinear system identifica-
tion problems. Figures 1(a) and 1(b) shows dia-
grams of these types of RBF model structures. In
particular, special emphasis will be given to the
problem of recovering the nonlinear static func-
tion of the system.

Consolidated methods used to perform struc-
ture selection and parameter estimation for other



Figure 1. RBF model structures compared in this study. (a) Traditional structure, from Equation (1). (b) RBF structure
with added ARX terms, from Equation (3). In this case, it was considered that n,; > 1. and ny; > ny.

linear-in-the-parameter representations (Aguirre,
2000) can be readily extended to the RBF model
representation. This is one of the main justi-
fications for the use of the RBF model repre-
sentation in nonlinear system identification prob-
lems. A commonly used procedure is selecting
the RBF centers (structure selection) from the
input data and determining the output weights
(parameter estimation) simultaneously, by means
of the Error Reduction Ratio (ERR) criterion
(Zhu and Billings, 1996). To avoid an exces-
sive number of RBF terms in the model (Equa-
tion (3)), a subset selection procedure can be per-
formed, based on the Orthogonal Least Squares
(OLS) method (Chen et al., 1991; Mees, 1993).
However, throughout this paper the centers are
determined by a k-means clustering algorithm
(Spath, 1980), and the weights estimated by stan-
dard least squares. The RBF's chosen for the hid-
den layer nodes, ¢(-), are Gaussian functions, with
an appropriate width value determined by trial
and error procedure.

3 Thermal Process and Data Description

This study considers real data measured from a
simple thermal process. This process consists of a
small electrical furnace without thermal isolation.
The inner temperature is measured by an NTC
resistor connected with an Wheatstone bridge,
which is balanced at room temperature. The pro-

cess is sensitive to external disturbances, such as
fluctuations in the outdoor temperature and air
currents (Abreu, 1993). Four independent data
sets were collected in different days, with different
input (electrical power) excitations, namely quan-
tified noise and step functions. Figure 2 shows
a plot of the data set used in the identification -
frq2 - which contains 83 samples. The other three
data sets - frql, fdl and fd2 - were used in the
dynamic validation of the models. The sampling
time used was T = 210s. For further descriptions
of the experiment design see (Rodrigues, 1996).
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Figure 2. Identification data from the thermal process:
(---) random-like input (electrical power) and (—) output
temperature (normalised values from data set frqg2 ). z-
axis are samples in both cases.

Since only four static points of Process I were
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Figure 3. Free-run predictions of thermal process models. (a) Compared performances over data set frql. (b) Compared
performances over data set fdl. (eee) Input, (—) Process I output, (- ) rbfltp1 output, and (—-—) rbfntpl output. x-axis

is samples and y-axis is output in both cases.

obtained, from step tests realized during data col-
lection, RBF models derived in this paper are
compared with a first-order rational NARMAX
model developed in (Corréa, 2001), that performs
well over all data sets. This rational model has
the following static equation (Corréa, 2001):

0.618u
0.0878 + 5.5353 x 1031

y= (4)

4 Experimental Results

In this section the effects of the use of linear poly-
nomial terms in RBF network models are illus-
trated for the thermal process described above.
The identified models, derived from the structures
of Equations (1) and (3), are compared according
to their ability to make long-term predictions and
to represent fully or partially known steady-state
characteristics of the system.
Two RBF models are compared in this case:

e rbfltpl, based in the structure of Equation
(3), with ny, = nye = 3, ny = ny = 1 and
m = 1 (number of estimated parameters=
6),

e rbfntpl, based in the structure of Equation
(1), with n,, = 3 and ny = 1 for the input
vector, and m = 12 (13 parameters),

The model order was selected as suggested in
(Corréa, 2001). This information can be very use-
ful since for a fixed network structure the perfor-
mance clearly deteriorates when the input dimen-
sion is over-specified (Sze, 1995). Otherwise, the
determination of the optimal n, and n, values
could require a tedious iterative process.

The static nonlinear function of each RBF
model was obtained by solving their steady-state
equations numerically?. In this paper, this static

aMaking y(k) = y(k — 1) = ... = y(k —ny) = ¥ and
uk)=uk—-1)=...=ulk —n,) =7.

characteristic is not retrieved by simulation of the
RBF network since it would prove to be a long and
inefficient process. Furthermore, unstable operat-
ing points could not be obtained through network
simulation (Hernandez and Arkun, 1991).

Models rbfitpl and rbfntpl performances as
free-run predictors are shown in Figure 3, which
only presents data sets frql and fdl. Perfor-
mances over the other data sets are summarized
in Table 1. Figure 4 shows the steady-state re-
lationship between input and output for the RBF
models, and also for the NARMAX rational model
of Equation (4).

Table 1. Results of thermal process identification (dynam-
ical data)

Random-like signal - frql data set

Model max mean std SSE

rhfitp1 2.84 x10 3.91 6.98 3.28 x102

rhfntpl 7.88 X 10 8.52 1.55 x10 7.16 x102

Tdentification data - Frg2 data set

Model max mean std SSE

roftpl 2.45 1.13 1.24 9.54 X10

Thfntpl 5.57 1.08 155 8.62 x10
Step response - fd1 data set

Model max mean std SSE

rbfltp1 3.17 x10 3.62 5.69 3.04 x102

rbfntpl 9.61 x102 2.51 x102 2.43 x102 2.11 x10%
Step response - fd2 data set

Model max mean std SSE

rbfitp1 5.34 x10 1.14 x10 7.80 7.62 x102

rhfntpl 4.29 x10 8.64 6.98 5.79 x102

Convention: all the criteria based on squared errors;
std: standard deviation; SSE: sum of squared errors

An inspection of Figure 3 and Table 1 shows
that rbflitp! is dynamically competitive over all
the data sets, including for input regions not
present in the identification set. Moreover, the
steady-state curve presented in Figure 4 reveals
that for certain input regions, the RBF network
seems to be more adequate than the rational
model, such as the step amplitudes of data set
fd1 (see the asterisks in Figure 4 that shows the
real stationary response of Process I, according
step tests).

Also in Figure 4 it is possible to see that for
input values under the identification data range,
the static curves of the RBF and rational models
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Figure 4. Static curves retrieved from thermal process
models. (---) rbfitp! , (—-—) rbfnipl , (x) is real response
of Process I, determined from step tests and (—) NAR-
MAX rational model of Equation (4). z -axis is uw (static
electrical power in %) and y -axis is ¥ (static temperature

in %).

diverge from each other. However, after a more
careful examination one can conclude that rbfltp1
performance is more representative of the static
characteristic for the range 3 < w < 15. The
performance of rbfntpl is significantly worse for
inputs outside the identification data range.

An important issue in the identification of the
thermal process is training sample size. Some
published results suggest that for a given training
sample size, there is an optimal network structure
for which a good generalization can be achieved
(Sze, 1995). In general, complex network struc-
tures require an increased training sample. Hence,
for the relatively short training sample length used
in this work (83 data points) a small model struc-
ture seems to be a good choice. Moreover, train-
ing sample size also affects input dimension selec-
tion since the number of training data required
to reach a good performance grows at an expo-
nential rate with the dimension of the input vec-
tor (Sze, 1995). In this respect, the choice for
low-order input vectors in the identification of the
thermal proces could be justified again.

5 Discussion and Conclusions

The results presented in this paper show that
there has been significant gain in both dynami-
cal and steady-state performance of RBFN when
linear ARX terms are included in the network
topology. Improvement in the dynamical part
can be easily understood by considering that the
linear ARX terms form a well-known and well-
established basis for dynamical systems. On the
other hand, it is not so clear why the inclusion
of the linear ARX terms would improve the non-
linear steady-state performance given that this
model feature depends only on the nonlinear part
of the model. At present, it is conjectured that
the improved performance comes as a consequence
of the addition of ARX terms because when such

terms are added they start to account for the dy-
namics in the data thus leaving the nonlinear part
of the RBFN “free” to fit the steady-state nonlin-
earity of the system. It seems that this scenario is
somewhat analogous to the problem of parameter
bias (in ARX models) induced by colored noise
in the regression equation. Such bias is solved by
adding moving average (MA) terms to the model,
that explain the correlation present in the noise,
thus enabling the ARX terms to correctly account
for the linear dynamics (Aguirre, 2000). Similarly,
it seems that the lack of ARX terms in RBFN
models results in “bias” (revealed by a poor fit
to the steady-state behavior of the system) being
induced by linear dynamics in the data.

It has been shown that RBFN models with
added linear polynomial terms can be used for
modeling nonlinear systems, with some advan-
tages in comparison to the traditional network
topology. Based on the thermal process identi-
fication it is possible to say that the use of linear
terms 1) enables the RBFN capable to perform
well even with a short data set, and 2) enhances
the performance in approximating the static curve
especially for input regions not present in the iden-
tification set. This feature was not observed for
the traditional network structure. Moreover, the
inclusion of linear terms usually results in parsi-
monious model structures that exhibit adequate
behavior.
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