ROBOT NAVIGATION METHODOLOGY FROM AERIAL IMAGERY
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Abstract— This work presents a mathematical morphology-based three-level framework for ground robot
navigation based on images acquired by the aerial vehicle of an air-ground robotic ensemble. The three lev-
els correspond to image processing, path planning, and path following subsystems. Experimental results with
different robots and an overhead camera illustrate the validity of the proposed method.
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1 Introduction

Robotic systems can be conceptually combined
in many ways. To address complex tasks effi-
ciently, the highlighted capabilities of each indi-
vidual robot should be readily emphasized; we
suggest that air-ground robotic ensembles specifi-
cally are of substantial interest for a large class of
field applications such as surveillance tasks (Elfes
et al., 1999). In particular, hazardous material
inspection and handling can benefit from the par-
tition of responsibilities, where one of the robots
provides broad visual coverage while the other
executes close-up inspection and manipulation.

Practical applications of mobile robots require
the analysis of dynamic and kinematic modeling,
sensing, spatial representation of the robot and its
environment, control, navigation and path plan-
ning (Silveira et al., 2001). One of problems that
have to be addressed in air-ground robotic en-
sembles is navigation of the ground robot based
on imagery acquired onboard the aerial vehicle.
This problem is of significance when the sensors
and cameras of the ground vehicle cannot pro-
vide enough information to locate a target which
can be spotted from the air, such as when one is
searching for missing people or buried land mines.

This article considers the mathematical mor-
phology (MM) framework developed to address
this problem (Carvalho et al., 1999). It consists
of a three-level structure formed by an image pro-
cessing level (Level 1), a path planning (Level 2),
and a path following level (Level 3). This work
focuses on the first and second levels. A very
interesting solution for the closed-loop control of
mobile robots is based on the well known Model-
Based Predictive Controller (MBPC) (Oliveira
and Carvalho, 1999). Experimental results using
ground mobile robots (Khepera and XR4000) and
an overhead camera illustrate the validity of the
proposed method.

Table 1. Description of the used MM operators

[ Operator
mmeclose(X,SE)

Description |

morphological closing of the
image X by the structuring
element SE

remove any pore with area
less than A of the image X
according to SE

remove any grain with area
less than A of the image X
according to SE

adaptive threshold of image
X according to min and max
boundaries

erosion of image X by the SE
pixel-wise union of the im-
ages X and Y

pixel-wise sum of the images
Xand Y

pixel-wise subtraction of the
images X and Y

geodesic  distance transf.
from image X relative to Y
according to connectivity C
and metric M

skeleton of image X by the
SE

mmareaclose(X,A,SE)

mmareaopen(X,A,SE)

mmthreshad(X,min,max)

mmero(X,SE)
mmunion(X,Y)

mmaddm(X,Y)

mmsubm(X,Y)

mmgdist(X,Y,C,M)

mmskelm(X,SE)

This paper is organized as follows: Section 2
briefly presents the concepts and MM operators.
In Section 3 the three-level framework is presented
while its implementation details are discussed in
Section 4. In Section 5 experimental results are
shown. The article is concluded in Section 6.

2 Mathematical morphology

In this section we summarize the MM concepts
and operators utilized throughout the article.
General concepts regarding digital images, such
as connectivity, and image coordinates are be-
yond the scope of this article. See, for example,
(Barrera et al., 1994) for a review on these sub-
jects.

Mathematical morphology is a powerful tool
for digital image processing. Opposite to the
classical definition of an image as an amplitude



function of its coordinates, MM treats the image
as a set of pixels. Therefore, MM operators
are defined in the context of set theory. The
fundamental operations associated with a set are
the standard operations: union (U), intersection
(N), and complement (°). The MM operators
utilized here are available commercially from the
SDC Mathematical Morphology Matlab Tool-
box (SDC Morphology Toolbox for MATLAB 5,
2000), and listed in the table 1.

3 MM-Based robot navigation

We are interested in navigating a mobile robot
utilizing aerial images of its environment. In the
case of indoor navigation, cameras positioned un-
der the roof map the robot’s working space. In
the case of outdoor navigation, an UAV equipped
with a camera sends images of the ground to the
robot. In both cases, a 640x480 maximum resolu-
tion 2D mapping with 16 bits grey-scaled is used
in the representation of pixel intensity.

The three-level MM-based robot navigation
method is presented in this section. Figure 1 sum-
marizes the basic framework. In the upper level,
image processing locates the robot and its target,
while building a map of the available free space.
The intermediate level uses this information to
plan a 2D path in the robot’s environment. Fi-
nally, the lower level navigates the robot along the
path taking into account kinematic and dynamic
constraints.

Data Processing Level

Image Processing
(mathematical morphology)

mapping of the(robot environment

Camera

e l
_—

Path Planning
(mathematical morphology)

reference path robot configuration
computed offline computed online
control signal
Control Level Robot
sensory data

Figure 1. Three-level structure of the visual-based naviga-
tion framework.

3.1 Upper level: Image Processing

The image processing level is responsible for:

e locating the ground robot in the aerial i-
mages, returning the set of pixels that best
represents it. For cylindrical robots, with
center of rotation located in the center of

their circular section, it is sufficient to re-
turn the pixel that contains the center of the
robot. The same is valid for squared-section
robots;

e building a map of the robot’s environment,
providing information about location of obs-
tacles and free space. This may be either a
binary image (pixel occupied/pixel empty)
or a gray-scale image with pixel intensities
defining the probability of pixel occupation;

e locating the target, if necessary, returning
the set of pixels that best represents it. In
some problems, the target is a predefined
position (or configuration) in the environ-
ment. In this case, this level will only have
to return the corresponding pixel. On the
other hand, the target may be an object to
be found. In this case the upper lever con-
siders the target as one more feature to be
detected in the image.

For most real cases, it is not trivial to detect
obstacles using pure visual information. The lack
of knowledge of objects’ characteristics like shape,
color, and texture, makes the distinction from
shadows and reflections on the ground a hard task
to be performed. In some specific problems, it is
easier and more reliable to work over binary infor-
mation. In the robotic soccer game (FIRA, 2001),
for example, shapes and colors of the robots and
of the ball, and the shape, color, and dimension of
the field are previously known and the luminosity
is controlled. This is a problem where the image
features can be easily detected.

The framework presented here, however, per-
mits the utilization of information from local sen-
sors in order to improve the mapping. More-
over, the lattice characteristics of an image and
its intensity information make the gray-scale im-
age information very suitable to be used with
other mapping techniques, such as occupancy
grids (Elfes, 1987).

3.2 Intermediate level: Path Planning

Given the images returned by the image proces-
sing level, in this intermediate level MM tools are
used to:

e find a set of pixels in the free space that
connects robot and target positions using
a minimum distance criterion. This set of
pixels (if it exists) will be called a channel.
The level has to return an image with the
channel or a blank image if no connection is
found;

e extract either a particular pixel-wise se-
quence in the channel linking robot and tar-
get positions (called path) or just a collec-
tion of control pixels (called way points).



3.8 Lower level: Path Following

Given the information returned by the interme-
diate level, MM tools are used to provide an on-
line updating of the current robot position to be
included in a closed-loop control algorithm. For
many applications, an updating of the robot po-
sition is sufficient.

The most popular methods for giving robot
on-line position estimates are based on dead
reckoning, which lead to accumulative errors
(Borestein et al., 1996). In this case, MM tools
are used to correct the robot position, augmenting
the life-time of robot navigation. An interesting
issue, not addressed in this work, is the fusion of
visual information with others sensorial data to
provide the best possible estimation of the robot
position and orientation in real-time.

This level is also responsible for tasks which
are not computed by MM operators:

e suitably map the Cartesian coordinate sys-
tem metrics and the pixel coordinate in the
image coordinate system;

e deal with robot dynamic and kinematic
constraints during the motion along the
path, in the case of non-holonomic robots
(e.g., cart-type robots);

e deal with local obstacle avoidance. In this
case, when the robot local sensors detect
a collision route to an unexpected obstacle,
it enters in an alternative navigation mode,
until the upper level recomputes the path
considering this new information;

e compute the real-time control signals to be
sent to the robot platform and process robot
local sensor data.

4 Implementation

This section presents the implementation details
of the framework discussed above for the first and
second levels.

4.1 Image processing

To implement the image processing level, the fol-
lowing MM-based algorithm is utilized.

Step 1. Locate the robot on the scene S. This is
done by applying the following MM opera-
tors:

S_closed = mmclose(S, S Epoy);

ac_S_closed = mmareaclose(S_closed, A1 Y1)

sub = mmsubm(ac_S_closed, S_closed);

and finally obtain the robot through:

Robot = mmareaopen(mmthreshad(sub,

th), A2);  (2)

where th is the threshold level, A; is the area
of the largest blob in the image, As is the
maximum area of present noise and SFEjp,;
is the 3x3 square centered at the origin.

The sequence of filters above is better un-
derstood by the illustration in the Fig. 2.

Figure 2. Sequence of transformations utilized to imple-
ment (1) and (2). From up to down and left to right one
has the initial image, the image after the closing operation,
after removing the robot and the robot itself.

To locate the best approximation of the cen-
ter of the robot, we compute:

Robot. = mmlastero(Robot, SEp.;); (3)

Step 2. Extract the obstacles.

I = mmthreshad(ac-S_closed,th); (4)

The figure of the extracted obstacles is de-
picted in Fig. 3.

Figure 3. Detection of the obstacles by the image process-
ing level, extracted directly from Fig. 2-c.

Step 3. Send the binary image I and Robot. to
the path planning level.



4.2 Intermediate level implementation

Given a binary representation of free space, obsta-
cles and the robot’s initial and desired configura-
tions, the following MM-based algorithm is used
to extract a feasible 2D path.

Let I be the binary mapping of the robot en-
vironment.

Step 1. Compute the erosion of image I with a
disk structuring element S E with radius cor-
responding to the minimum allowed distance
in pixels from the center of the robot and an
obstacle.

Iy = mmero(I, SE); (5)

Step 2. Compute the gray-scale distance image
from the starting pixel P; and all valid (non-
obstacle) pixels:

D;y = mmgdist(Ig, P;, connectivity, M)
(6)

where connectivity = 4 or 8 and M may be
the
EUCLIDEAN metric.

Step 3. Repeat Step 2 for the final pixel Py:

Dy¢; = mmgdist(Ig, Py, connectivity, M)
(7)

Step 4. Compute the pixel-wise sum of D;; and
Dy;

D = mmaddm(D;ys, Dy;) (8)

Step 5. Compute the binary image

Minp = mmtreshad(D, D(P;), D(Py))
(9)

where D(FP;) is the intensity of image D at
pixel F;, to obtain an image channel con-
necting initial and final pixels.

Step 6. Compute

MINp = mmskeleton(Minp) (10)

to extract a path linking initial and final
pixels.

Some remarks about this implementation are
necessary.

e Step 1 transfers to the environment the
robot dimensions, reducing it to a pixel, at
the same time that extracts the free space;

e Step 2 and 3 generate two gray-scale images
where pixel intensities represent the distance
in pixels from initial and final pixels. When
computed the sum (Step 4), the resulting
gray-scale image has the characteristic that,
if a path does not exist, all pixels have the
maximum value (an white image).

o If a path exists, the intensity of initial and
final pixels in D are equal to the minimum
distance between them and are the darker
pixels of the image.

The next result will be presented without
proof. They can be derived from the connecti-
vity and metric definitions in digital images, see
(Barrera et al., 1994).

Lemma 1 Let p; and py be any two connected
pizels in a binary image I according to some con-
nectivity. Let also Dy (resp. Dy;) be a grayscale
image obtained by the distance transform from p;
(resp. pg) to every connected pizel in I. Then,
the distance from p; to py is equal to D(r;,¢;) =
D(rg,cf), where D = D;z+ Dy¢; and (r;, ¢;) (resp.
(rf,cg)) are the coordinates of p; (resp. py).

Corollary 1 Let Pp be any minimum path in
Minp. Then, for metrics based on 4-connectivity
and 8-connectivity, all inner elements of Pp have
the same value, equal to dy; = d;y.

Corollary 2 For the Fuclidean metric, all inner
elements of Minp with value equal to dy; = d;y
are sufficient to navigate the robot. These are po-
tential candidates for control points.

For any cylindrical robot (omnidirectional or
not) with center of rotation located in the center
of its circular section, this planner, together with
the controller described in the sequel, provides the
complete solution. O

4.3 Lower level implementation

Most research robots are non-holonomic plat-
forms. Therefore, the 2D planner provided by
the intermediate level is not sufficient to move the
robot among obstacles safely, what makes neces-
sary to consider robot maneuvers.

To overcome this problem, the responsibility
in controlling the robot is divided. While the plan-
ner provides a reference 2D path, which is suffi-
cient for omnidirectional platforms, the path fol-
lowing (control) level considers the robot’s parti-
cular dynamic and kinematic constraints.

The current implementation is based on the
well known Model-Based Predictive Controller



(MBPC) approach. MBPC methods are based
on the prediction of the future behavior of the
process by using a model. Then, based on the
well known kinematic model of the unicycle-type
robot, a discrete-time model is obtained in or-
der to compute the j-step ahead prediction equa-
tion. The reader may refer to (Oliveira and Car-
valho, 1999) for further information since the con-
trol aspects are not the main issue of this paper.
The framework, however, allows for the
inclusion of any other control method, such
as (Serdalen, 1993) and (Samson and Ait-
Abderrahim, 1990). Indeed, in the future the au-
thors will create a library of control algorithms so
as to deal with any type of mobile robot (omnidi-
rectional, cart or car) and control scheme.

5 Experimental results

This section presents the experimental results ob-
tained with the implementation of the proposed
framework. The experimental setup consists of a
mobile robot Khepera (K-Team S/A, 1997) con-
nected to a Sun UltraSparc 1 workstation. The
image is captured by an off-the-shelf camcorder.
The communication with the robot is imple-
mented in C and encapsulated by mex-functions
called inside MATLAB.

The robot’s environment is a flat table popu-
lated by obstacles. Figure 2-a shows the actual
scene image. The robot’s initial and final orienta-
tions were arbitrarily assigned. the target location
is set according to the task to be performed by the
ensemble.

Figure 4 shows the output of the image pro-
cessing level, with the initial and goal positions
(the two small circles). Observe that the Khepera
could reach the final position through several dif-
ferent manners. However, it has found the path,
see Fig. 5, that corresponds to the minimum dis-
tance way to goal, achieved by using our MM-
based methodology. The sequence of pixels of the
minimum path is then sent to the MBPC con-
troller, shown in the Fig. 6.

Figure 4. Output of the image processing level overlapped
with the initial and final position markers.

An example with the XR4000 navigating in

Figure 5. Path planning results.

an outdoor environment is shown in Fig. 7 (Elfes
et al., 1999), achieved through the use of the
framework described here. Note that the thin
line is not the robot’s actual path, but simply the
planned path. Experiments with this scenario are
currently under way.

Figure 6. Original scene and the planned trajectory sent
to the third level.

Figure 7. Path planning for a mobile robot in an outdoor
environment.

6 Discussion

In this paper, a practical implementation of a
framework for vision-guided mobile robot naviga-
tion is discussed. It is conceived as a very general
and flexible three-level hierarchical structure. The
two upper levels are entirely computed by MM
tools. The framework integrates image processing,
path planning, and closed-loop path following for
mobile robots.



The responsibility for moving the robot is di-
vided between the planning and the controller.
This permits the use of the same methodology for
omnidirectional and non-holonomic robots.

The framework may be implemented with
many setups and conditions. It also permits the
use of MM tools along with others robotic tech-
niques, including probabilistic maps and local obs-
tacle avoidance methods, which constitute the
next topic to be investigated.

In the example presented, we mimic the air-
ground robotic ensemble concept with a labora-
tory setup consisting of a Khepera robot and an
overhead camera. Experimental results with the
actual ground robot and air vehicle will be shown
in future works.
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