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Abstract— The main subject of this work is robust control via u-Synthesis applied to one manipulator robot
with 3-degrees of freedom. A set of controllers were tested in a simulator constructed to reproduce the underac-
tuated robot dynamics and the controllers robustness was verified in one experimental underactuated robot.
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1 Introduction

This paper focuses on robust control via a com-
bined controller applied to one manipulator robot.
The controller is designed in two steps. The first
step is designed via computed torque method and
the second step is a controller designed via u-
Synthesis (Zhou et al., 1996; Zhou and Doyle,
1998; Balas et al., 1998; Doyle et al., 1992). Con-
trol of underactuated manipulator (UArm) robot
has been considered by several authors, see (Arai
and Tachi, 1991; Arai et al., 1993; Bergerman
and Xu, 1994; Terra et al., 1999) and references
therein. Taking into account the uncertainties
of the UArm robots, multiplicative uncertainty
in the input, output disturbance, output perfor-
mance, and measurement noise, the UArm con-
trollers given in the literature, unfortunately, do
not consider these points on the control designs.
We have observed that performance of that con-
trollers, considering the distance between the con-
trol design and the implementation, is not good.
The procedure developed here models the uncer-
tainties and increases the performance of the ro-
bust control. This paper is organized as follows:
in the section 2 a brief presentation of underactu-
ated dynamics is given; in the section 3 the control
schema, is given via feedback linearization; in the
section 4 an overview on p-synthesis is presented;
in the section 5 a technique to realize p-synthesis,
known as D-K procedure, is given; in the section 6
the design procedure is summarized; in the sec-
tion 7 the results are presented and finally the
conclusions are displayed in the section 8.

2 Underactuated Manipulator Robot

In this topic will be describe an n-link, open chain,
underactuated manipulator with rigid links, for
more details see (Bergerman, 1996). Let ¢ rep-
resent its joint vector and 7 represent its torque
vector. The dynamics equations of the manip-
ulator are found in closed-form via the classical
Lagrangian approach, as in (Craig, 1989):

T=M(q)j+C(g,9)i+G(@) + Flg,9)- (1)

In equation (1), M is the n x n symmetric,
positive-definite inertia matrix, C' is the n x n
matrix of Coriolis and centrifugal terms, G is the
n X 1 vector of gravitational torques, and F' is
the n x 1 vector of frictional torques. For conve-
nience, are combined the vectors in the right-hand
side of (1), except for M(q)g, in the vector of non-
inertial torques b:

7= M(q)§ + b(g, q)- (2)
It is assumed that n, degrees of freedom of the
manipulator are active joints with actuators and
displacement sensors, which is a typical structure
of manipulators joints. The remaining n,(n —n,)
degrees of freedom are passive joints that have
holding brakes instead of actuators. We will de-
scribe three different control strategies: the first
is known as control strategy A, because only ac-
tive joints are being controlled, and the dynamic
equation (2) reduces to:

Ta = Maaq‘a + ba (3)

the second is known as control strategy P, because
only passive joints are being controlled, and the
equation (2) can be rewritten as:

Ta = (Maw = Maa M¥, Muu ) G + (—Maa M7 bu + ba ) (4)

the subscripts a and u mean active and under-
actuated, the third is known as an AP control
strategy, because both active and passive joints
are being controlled. In this case, the controlled
joint vector ¢, will contain all elements from g,
(underactuated joints) and some elements from g,
(active joints), while ¢, will contain the remaining
elements from ¢, not in ¢.. An open-loop relation-
ship similar to (4) can be obtained as:

Ta = (Mac = Mar M#, Muc) e + (= Map M7 by +ba) - (5)

All three control strategies above lead to
open-loop relationships between §. and 7, of the
form:



Table 1. Relationship between controlled joints’ accelera-
tion and active torques for all three possible control strate-
gies

Strategy Mge Ea

A Maa ba
P Mau - MaaM';alMuu _MaaM';albu + ba

AP Mac - Maqu;rl Muc _MarM';rlbu + ba

Table 2. Condition existence of Mg, according to the
control strategy utilized

Strategy | Existence of M}
A always
P M, is invertible

AP M, is invertible

Ta = Macdc + Ea,- (6)

We assume that dynamic coupling exists be-
tween the active and the controled joints every-
where inside the manipulator’s workspace, regard-
less of the control strategy utilized. Consequently,
controllabity is guaranteed and M__! is invertible.

3 Control Methodologies

3.1 Feedback Linearization Controller

Feedback linearization controllers have been ex-
tensively used in the control of robot manipu-
lators, see (Lewis et al., 1993; Bergerman and
Xu, 1994). The resemblance of the dynamic equa-
tion (6) with that of a fully actuated manipulator
led Arai and Tachi (1991) to choose a feedback
linearization controller to control the joints in g..
The method consists in defining an auxiliary input
u with:

Ta = Macu + Ba (7)

such that, when M, is invertible,

gc = u. (8)

The feedback linearization controller (7) is to
decouple and to linearize the nonlinear system (6).
If the trajectory error vector, z, is defined as:

-]

with e = g4 — ¢, where g4 is the reference trajec-
tory, we obtain the linearized error system:
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Figure 1. Underactuated Robot Control Strategy

d |e 0I]]e 0
o] = 5o [e] < [7]+ 0o
This is a linear state-space system of the form:

& = Az + Bu (11)

driven by the control input u(¢). The feedback lin-
earization provides a powerful control design tech-
nique. In fact, if we select u(t) so that (10) is sta-
ble, the control input torque 7(t) defined by (7)
makes the robot arm move in such way that g,
will follow a desired trajectory ¢%(t). More de-
tails of this control input can be found in the
next subsection. The control law consists of an
inner loop feedback linearization controller, and
an outer loop robust controller. A block diagram
of the feedback linearization technique is present
in Figure 1.

3.2  Computed Torque Controller

The problem of controlling a nonlinear system
like (1) can be handled by the computed torque
method (Craig, 1989). The controller can be de-
composed into a model-based part and a servo
part. The model-based part of the controller ap-
pears in a control law of the form:

7= M(g)r +C(q,9)d + G(q) (12)

where M is an estimated model of the robot iner-
tia, M. Likewise C' and  are estimated models of
the velocity terms and gravity terms of the actual
robot.

The control torque = G is computed by the
servo part as:

T =@+ K@ - @)+ Kp(g®—q)  (13)

where {q?,4?%,{%} represents the desired trajec-
tory and K, and K, are n x n diagonal matrices
with each element on the diagonal being a posi-
tive gain. The closed-loop equation for the whole
system is derived from Egs. (1), (12) and (13) as:

€+ Kyée+ Kpe =
M7 (M~ M)j+(C-C)q+ (G -G (14)



where e = ¢? — q.

In a real robot, external disturbances such as
friction, torque ripple of actuators, and perturba-
tions of the payload may be a problem. If the sum
of these disturbances is defined as 1 and added
to (14), we have:

é+ Kyé+ Kpe=n. (15)

This equation shows that in a real situation,
model imperfections and external disturbances
will introduce error and will degrade the control
performance of the computed torque method.

3.3 Combined Controller

A combined controller will be utilized to com-
pensate the undesirable effects described in the
section above. The design of this controller con-
sists of two steps. In the first step the com-
puted torque method is used to precompensate
for dynamics of the modeled plant. In the second
step the p-controller is used to postcompensate
for the residual error which is not completely re-
moved by the computed torque method. Thus,
the combined controller is capable of performing
robust tracking control. A schematic diagram of
the combined controller is presented in the Fig-
ure 2. The linearization provided by the computed
torque method is useful in the design procedure.
A state-space realization is derived from the equa-
tion (15) and can be written as:

-1 el []+[e o

This is a linear state-space system that repre-
sents the nominal plant model of the system.

4 Overview on p-Synthesis

4.1 System Description

Consider the system displayed in the Figure 3.
The system labeled P is the open-loop intercon-
nection and contains all of the known elements
including the nominal plant model, performance

Figure 2. Mixed u-Synthesis and Computed Torque Con-
trol Strategy

and uncertainty weighting functions. The A block
is the uncertain element, which parametrizes all
of the assumed model uncertainty in the prob-
lem. The controller is K. Three sets of inputs
enter P: perturbation inputs w, disturbances d,
and controls u. Three sets of outputs are gener-
ated: peturbation outputs z, errors e, and mea-
surements y.

4.2  The p-Problem

Given the system, for a robust performance, G is
chosen as:

Py Pio| Pis

G =P = | Py1 Py| P

P31 Psy| P33

and a simple linear fractional transformation may
be written involving the controller and the plant:

M= ‘7:1(G7K) =
= Gll + G12K(I - GQQK)_1021. (17)

For some transfer matrix M we have the fol-
lowing synthesis problem:

ming [|F(G, K)||, (18)

which is subject to the internal stability of the
nominal model control. Synthesis p may be ob-
tained by scaling and applying ||.||cc- A reason-
able approach is to solve:

in __inf  ||DF(G,K)D™" 1
ménDiDl_qean Fi(G,K) lloo (19)

by iteratively solving for K and D. This proce-
dure is called D-K iteration. The scaling matrix
D(s) can be stable and minimum phase. It is cho-

sen such that D(s)A(s) = A(s)D(s). For a fixed
scaling transfer matrix D,

ming|| DF(G, K)D™"[|s (20)

is a standard H,-optimization problem. For a
given stabilizing controller K,

infp,p-1en..IDFI(G, K)D ™ || (21)
W ] =
ee— P |J——d

Figure 3. LFT Description of Control Problem



is a standard convex optimization problem and it
can be solved pointwise in the frequency domain:

sup inf 7[DyFi(G, K) (jw)Dy']- (22)

Indeed,

infp,p-1en.. IDFI(G, K)D 7 |oo =
= sup,, infp, ep 0[DywFi (G, K)(jw) D 1]. (23)

There is always a rational function D(s) uniformly
approximating the magnitude frequency response
D,,. Considering the subset of C**™:

P=|"p,eCi* D;=D: >0,d; € Rd; >0

when S = 0,

D, = diag(d}'1,...,d¥_,I,I) € D (24)

which is a block-diagonal scaling matrix applied
pointwise across frequency to the frequency re-
sponse F;(G, K)(jw). For more details see (Zhou
et al., 1996).

5 D-K Procedure

The D-K Iterations may be summarized in the
following steps:

(i) Fix an initial estimate of the scaling matrix
D,, € D pointwise across frequency;

(if) Find scalar transfer functions
di(s),d; ' (s) € RHoo for i = 1,2,...,(F — 1)
such that |d;(jw)| = di. This step can be
done using the interpolation theory (Youla
and Saito, 1967).

(iii) Let,
D(s) = diag(di(s)I,...,dr_1(s)I, I).

Construct a state space model for system in
the Figure 4:

(iv) Solve an H,-optimization problem to min-
imize:

171G, K) oo

over all stabilizing K 's. Note that this opti-
mization problem uses the scaled version of
G. Let its minimizing controller be denoted
by K;

_ diag[Dl, veey Ds, dllml, reey dpflfmpfl, ImF] :

el

Figure 4. u-Synthesis via Scaling

(v) Minimize o[D,F;(G,K)D;'] over D,
pointwise across frequency. Note that this
evaluation uses the minimizing K from the
last step, but that G is unscaled. The mini-
mization itself produces a new scaling func-

tion. Let this new function be denoted by
Dy;

(vi) Compare D, with the previous estimate
D,,. Stop if they are close, but, otherwise
replace D,, with D,, and return to step (4%).

6 Design Procedure

Mutools MATLAB toolbox was utilized to design
the controllers. The interconnection structure
presented in the Figure 5, including the nominal
plant model, performance and uncertainty weight-
ing functions, must be defined to a corrrect de-
sign procedure. The state-space realization for the
nominal plant was presented in the section 3 and
the procedure to determine the weighting func-
tions can be found in (Balas et al., 1998; Doyle
et al., 1992; Zhou and Doyle, 1998). The per-
formance objectives are related to the frequency
response of the sensitivity function (5). Calculat-
ing the natural frequency w,, the damping ratio
€, the bandwith w, and the peak sensitivity Mj,
the following performance weighting function can
be determined:

Wy, = diag{F,, F,, Fp}

T+ wp
Fy="— 25
P T (25)

Calculating the maximum gain M,, of K'S and
the controller bandwith wy,, the following control
weighting function Wy, can be selected:

Waer = diag{Fge, Faer, Faer}

§ 4 Le
Fgq=—Mu 26
del €15 + Whe ( )

7 Results

The controllers were tested in a simulator con-
structed to reproduce the underactuated robot dy-
namics and in the experimental robot UArmlII,



Table 3. Weighting Functions Parameters

M,=1 M, =15
wp = lrad/s | wp. = 10000rad/s
e = 0.0001 €1 = 0.0001
dy
dy
d

Mom

Figure 5. Open Loop Interconnection Structure

see (Terra et al., 1999) for more details. The pa-
rameters utilized for determination of M and b
are displayed in Table 4. The validity of the con-
trol method proposed and the controller’s robust-
ness can be verified in the experimental results,
see Figures 6, 7 and 8 for AAA configuration and
Figures 12, 13 and 14 for AP A configuration.

8 Conclusions

In this paper was available the underactuated
robot control via p-Synthesis. The computed
torque technique provides a good tool to deter-
mine state-space realizations for a underactuated
manipulator, required in the design procedure.
The experimental results presented in the item 7
show the robustness of this controller with an in-
teresting performance in the presence of paramet-
ric uncertainties.
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Table 4. Robot Parameters

Link | my(Kg) | L;(Kgm?) | I;(m) | l.i(m)
1 0.850 0.0075 0.203 | 0.096
2 0.850 0.0075 0.203 | 0.096
3 0.625 0.0060 0.203 | 0.077
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