
USING EMBEDDED PROCESSORS IN HARDWARE MODELS
OF ARTIFICIAL NEURAL NETWORKS

DENIS F. WOLF, ROSELI A. F. ROMERO, EDUARDO MARQUES

Universidade de São Paulo
Instituto de Ciências Matemáticas e de Computação

Av. Trabalhador São-carlense, 400
13560-970 - SÃO CARLOS – SP

BRASIL

E-mails: {denis, rafrance, emarques}@icmc.sc.usp.br

Abstract: Artificial Neural Networks are applied for solving a wide variety of problems in several areas such as: robotics, image
processing, and pattern recognition. Many applications demand a high computing power and the traditional software implemen-
tation are not sufficient. Hardware implementations of neural network algorithms are very interesting due their high perform-
ance. In this paper, an implementation that joins the software flexibility with the excellent hardware performance has been per-
formed through the use of reconfigurable computing and embedded processors technologies.

Keywords Neural Networks, MLP, FPGA, Reconfigurable Computing, Embedded Processors

1 Introduction

The Multilayer Perceptron (MLP) is a neural network
model that is being widely applied in the solving of
diverse problems. A supervised training is necessary
before the use of the neural network. A highly popu-
lar learning algorithm called back-propagation is
used to train this neural network model (Haykin,
1999). Once trained, the MLP can be used to solve
classification problems. This process involves a large
number of complex arithmetical operations but some-
times, the software implementations of the neural
networks do not have the performance desired.

An interesting method to increase the perform-
ance of the model is by using hardware implementa-
tions. The hardware can do the arithmetical opera-
tions much faster than software. Nowadays, the re-
configurable computing has been used as a very in-
teresting technique to project and prototype hardware
because it also allows a very fast design and
prototyping. But, pure hardware implementations
have some disadvantages such as synchronization in
complex implementations. Hardware implementa-
tions lack some flexibil ity and many tasks such as
training the neural network are very diff icult to be
implemented in hardware. Most hardware
implementations does not allow on-chip learning.
The presented implementation does not do it too.

To explore the software flexibility and hardware
performance, an implementation using embedded
processors is presented in this paper. Some experi-
ences have been done using the Altera Excalibur
(Altera, 2000) development kit, which includes the
Altera Nios (Altera, 2000b) softcore processor and
the APEX20k FPGA (Field Programmable Gate

Array) device. Very interesting results have been
obtained as it is shown on the Section 4.

The rest of this paper is organized as it follows.
In Section 2, a brief description about the FPGA
technology and Reconfigurable Computing is pre-
sented. A description of the MLP model that has been
implemented is presented in Section 3. In Section 4,
the hardware implementation is discussed with de-
tails. Finally, in Section 5, some conclusions and
future works are presented.

2 Reconfigurable Hardware and
FPGA Technology

The main architecture of a FPGA device consists on
an array of logic blocks (configurable cells), enclosed
within a single chip. Each one of these cells has a
computational capabil ity to implement logic func-
tions and much of these operations can occur at the
same time. The communications among the cells are
done by interconnection resources (Rose et al., 1993)
(Brown & Rose, 1996).

The FPGA technology development has been al-
lowing great performances, high-density levels of
integration, and low cost prices. This fact makes
shorter the distance between the FPGA and the chips
implemented directly on sil icon, allowing this tech-
nology to be used in the construction of more com-
plex computer architectures (Donachy, 1996).

The utilization of FPGA to realize computing
lead to a new general class of computer organization
called Reconfigurable Computing Architecture (De-
hon, 1999). This class of architecture provides a
highly custom-built machine that can attend to the
instantaneous needs of an application. Thus, it is
possible to have the application running over a spe-

cially developed architecture, bringing more eff i-
ciency than general-purpose processors. In other
words, to achieve the best performance of an algo-
rithm, it has to be executed in a specific hardware.

With this inherent speed and adaptabil ity, the re-
configurable computing can be specially exploited on
applications that need high performance like parallel
architectures, image processing and real-time
applications.

2.1 Altera’s Excalibur Development Kit

The Altera Excalibur development kit comprehends
all the hardware and the software necessaries to com-
pose a complete SOC (System On a Chip) devices
development. The SOC paradigm consists in the
development of complete systems. All the compo-
nents of a system such as: processor, memories, tim-
ers, and interfaces have been put in just one chip.
Almost all of the hardware developers have been
using this paradigm.

The Excalibur kit includes the Nios softcore (a
complete 32-bit RISC processor), the GNUPro com-
piler (a C compiler for the Nios processor), the Quar-
tus development tool (used to configure the APEX
FPGA device), and the development board, which
includes the APEX20k200E FPGA device.

The Nios is a complete processor that adds lots
of functionali ty and versatility to a hardware project.
It can be programmed using the C language through
the GNUPro compiler. The Nios and dedicated
hardware can be used together on the same chip. It
has all necessary interfaces to handle memories,
dedicated hardware, serial and parallel ports, etc… In
this work, it is proposed a dedicated hardware model
of a Neural Network that is handled by the Nios
processor. Some performance comparisons will be
presented later on this paper.

3 The MLP Neural Network Model

A hardware implementation of MLP has been built
for solving the classification problem for the iris data
set. The iris data set is a very popular data set that has
been widely used for the test of learning algorithms.

The iris set contains a database with 150 flowers,
classified into 3 different groups. Each sample (or
pattern) has 4 attributes. So, the MLP topology that
has been considered for the classification of this
particular data set is constituted by 3 layers being 4
neurons on the first layer, 4 neurons on the hidden
layer, and 3 neurons on the output layer (Figure 1).

The main purpose of the first layer is just to de-
liver the input signals for all the neurons of the hid-
den layer. As the signals are not modified by the first
layer neurons (the neurons do not have arithmetical

operations), the first layer can be represented by a
single set of busses in the hardware model.

4 Hardware Implementation

The three basic problems to implement neural net-
works in reconfigurable hardware are: floating-point
numbers representation, neuron’s transfer functions
(non-linear), and device capabilities.

 Neural Networks, in general, work with
floating-point numbers. Working with floating-point
numbers in hardware is a difficult problem because
the arithmetic operations are more complex than with
integer numbers. Further more, the dedicated circuits
for floating-point operations are more complex,
slower, and occupy a larger chip area that integer
number circuits (Schonauer, 1998) (Moerland, 1997).
A solution used to make this project easier and im-
prove its performance has been converting the float-
ing-point numbers to integer numbers. Of course it
implies in some loss of precision but in this particular
case, good results have been achieved.

 Other problem for representing the arithme-
tic operations using digital hardware is related with
the neuron's transfer functions. Some transfer func-
tions li ke the sigmoid function (frequently used in the
MLP model) need some modifications to make easy
the design of the hardware. In this case, the sigmoid
function has been substituted by a piecewise linear
function (Figure 2).

Input set
Results

Figure 1: MLP Neural Network

0

0,25

0,5

0,75

1

-8 -6 -4 -2 0 2 4 6 8

-------- Piecewise
 Linear Function

_____ Sigmoid Function

Figure 2: Sigmoid and Piecewise Linear Func-
tions

The capabil ity of the reconfigurable hardware
devices is still being a limitation. Although there are
reconfigurable chips with up to 10 millions of logic
gates, some hardware implementations need more
than this.

 The use of embedded processors also helps
in the efficient use of the FPGA devices. Only the
critical parts of the algorithms have been buil t in
dedicated hardware, the less important parts can be
implemented in software and run in the embedded
processors as it can be seen on the implementation
done in this research.

4.1 Implementation

The hardware model of the neural network has been
designed with the Altera Quartus Design Tool. To
generate a hardware model from software algorithm
some simple logic and arithmetic blocks such as:
multipliers, adders, divisors and logic gates have
been used. Basically, each neuron has four multipli-
ers to multiply each input value by the corresponding
weight. The four results of the multipliers are added
with the bias and finally, the transfer function deliv-
ers the neuron's output.

The complete diagram of the neural network can
be seen in Figure 3. The four pins on the left side of
the figure are the four input values. They are con-
nected to the set of busses (first layer of the MLP
model); these busses distribute the input signal to the
next layer (hidden layer). The results are provided to
the output layer and finally, the results are showed in
the output pin (on the right side of Figure 3). This
model needs 32ns to processing the input values and
presenting a result.

This is a very fast implementation that can proc-
ess up to 31.25 billions input sets per second. How-
ever, the neural network is only a part of some algo-
rithms and the joining of an extremely efficient dedi-

cated hardware with a flexible general-purpose proc-
essor is an interesting alternative for solving a great
number of computational problems.

In this case, the neural network’s hardware
model has been joined to the Nios processor and
some interesting results have been obtained. The
Figure 5 shows the entire project.

The software part of the algorithm has been im-
plemented using the C language. Stead dozens of
source code lines that would process the neural only
some I/O operations have been needed. In Figure 4, it
is showed an example of how the neural network
hardware can be accessed by the software, which is
running in Nios processor. Another important advan-
tage of the use of embedded processors is that the
neural network can be trained on-chip (it is part of
the future plans). The learning algorithm can be im-
plemented in the high level language that runs on the
processor and it adjusts the neuron’s weights. The
learning algorithms of the MLP model are very diffi-
cult to be implemented directly in hardware and they
are used few times in comparison to the executions of
the classify algorithm. Consequently, the overall
system performance is not affected.

4.2 Results

The Nios processor takes 4 clock cycles to execute an
“out” instruction and 8 clock cycles to execute an
“ in” instruction.

Figure 3: The Complete Neural Network Dedicated Hardware

out (#port 1, #value 1);

out (#port 2, #value 2);

out (#port 3, #value 3);

out (#port 4, #value 4);

result = in (#port5);

Figure 4: Software Algorithm that makes
access to the hardware of the neural network

Type of Execution Frequency Execution Time

Dedicated Hardware - 32 ns

Nios + Dedicated Hardware 40MHz 600 ns

Nios (only software) 40MHz 144 µs

Intel Pentium II I 550MHz 23 µs

Consequently, a complete access to the neural
network hardware needs 24 clock cycles to be con-
cluded. The processor has been tested with a
40MHz clock frequency. The Table 1 shows the
performance comparisons, where it can be noted
the excellent performance of the hardware imple-
mentations. The pure software implementations
have been compiled using the GNUPro (Nios) and
Borland C++ 5.0 (Pentium III).

The neural network dedicated hardware has
used approximately 50% of an APEX20k200E
FPGA device and the 32-bit Nios processor has
used approximately others 25% of the chip. This
device has 8320 logic elements (526.000 maximum
system gates).

5 Conclusions

The Neural Networks and the Reconfigurable
Computing are two important and promising tech-
nologies to scientific researches. There are many
applications for these two technologies, such as: the
robotics area, imaging processing and pattern rec-
ognizing.

With the performance of the reconfigurable
hardware, the use of the neural networks can be
improved and more powerful applications can be
obtained. For example, more precise images can be

processed in a shorter period of time, a faster pat-
tern recognition problem can be realized and a
faster response time robot can be obtained. And
through the use of the embedded processors, much
more flexibili ty can be added to the project. The
use of high-level languages allows that complex
algorithms to be implemented and the very high
performance of the dedicated hardware can speed
up the critical parts of these algorithms.

 As a future work, other models of neural
networks will be implemented and the sequential
processing will be explored in order to fit larger
neural network topologies in just one chip.

Acknowledgements

This work has been partially supported by FAPESP
and CNPq under the grant numbers: 2000/02959-3
and 133739/2000-7, respectively.

References

Altera Co., “ Excalibur Backgrounder” , in URL
http://www.altera.com, 2000.

Altera Co., “ Nios Embedded Processor” , in URL

http://www.altera.com, 2000b.

Figure 5: Nios processor and the neural network dedicated hardware

Table 1: Performance Comparisons

Brown, S.; Rose, J. “Architecture of FPGAs and
CPLDs” , A Tutorial, IEEE Design and Test of
Computers, vol. 13, no. 2, pp. 42-57, June
1996.

Dehon, A.; Wawrzynek, J., “ Reconfigurable

Computing: What, Why, and Design
Automation Requirements", In Proceedings of
the 1999 Design Automation Conference, pp.
610-615, June 1999.

Donachy, P., “Design and Implementation of a
High Level Image Processing Machine using
Reconfigurable Hardware”, Ph.D. Thesis,
Dept. of Computer Science, The Queen’s
University of Belfast, 1996.

Moerland P., Fiesler E., “ Neural Network
Adaptations to Hardware Implementations” ,
Handbook of Neural Computation E1.2: 1-13
Institute of Physics Publishing and Oxford
University Publishing, New York, 1997.

Haykin S., Neural Networks A comprehensive
Foundation, 2ª edition, Prentice Hall, 1999.

Rose, J.; Gamal A. E.; Vincentelli , A. S.,

“Architecture of Field-Programmable Gate
Arrays” , Proceedings of the IEEE, vol. 81, no.
7, p.1013-28, 1993.

Schonauer T., Jahnke A., Roth U. Klar H., “ Digital

Neurohardware: Principles and Perspectives” ,
In: Proc. Neuronale Netze in der Anwendung -
NN'98, Magdeburg, invited paper, pp.101-106,
February 1998.

