MOBILE ROBOT LOCALIZATION BASED ON KALMAN FILTERING

Huco L. GOSMANN®

Depto. de Eng. FElétrica - ENE
Universidade de Brasilia - UnB
C.P. 04591, 70.910-900 Brasilia

hugo.gosmannQieee.org

SJUR J. VESTLI

Institute of Robotics - IfR
Swiss Federal Institute of Technology - ETHZ
ETH-Center, CLA, CH-8092 Zurich

s.vestliQieee.org

Abstract— This paper describes a method for mobile robot localization in a known environment. The tech-
nique combines position estimation from odometry with observations of the environment from a CCD camera.
Fixed lamps in the environment provide landmarks. The position of these landmarks is known a priori by the
robot. At each localization cycle an image of the environment is captured and processed by the vision system.
The information obtained is then used by a Kalman filter to correct the position and orientation of the robot.
The system was implemented using the SmartROB, a mobile robot platform developed at the ETHZ. Results

from experiments in a real environment are presented.

Key Words— Autonomous mobile robots; Position estimation; Kalman filters.

1 Introduction and Motivation

(Leonard and Durrant-Whyte, 1992) summarized
the general problem of mobile robotics by the fol-
lowing three questions: “Where am I?”, “Where
am I going?” and “How should I get there?”.

The first question corresponds to localization,
one of the major tasks of autonomous robot navi-
gation. How can I work out where I am in a given
environment, based on what I can see and what I
have previously been told?

In a typical indoor environment with a flat
floor, the task of localization becomes a matter of
determining the Cartesian coordinates (z,y) and
the orientation 6 of the robot on a two dimensional
plan. For a wheeled robot, odometry is one of the
most important means of achieving this task.

However, with time, odometric localization
unboundedly accumulates errors due to problems
like surface roughness and undulation, wheel slip-
page and variations in load.

Although good approaches have already been
investigated, all these problems make it rather dif-
ficult to perform really accurate navigation using
only odometry. Therefore, some other kind of po-
sition updating method must be used. To reach
its destination with reasonable accuracy, the robot
requires external sensors and sensor fusion algo-
rithms to relate knowledge about its environment
to the information obtained from its sensors.

For a vision sensor, fixed objects in the known
environment provide landmarks which are listed
in a database. In general, landmarks have a fixed
and known position, relative to which a robot can
localize itself. The main task is then to recognize
the landmarks reliably and to calculate the robot’s
position (Murata and Hirose, 1993).

The basic tool to approach navigation and
sensor fusion is the Kalman filter. It combines

2Master Degree Student at UnB and Professor at IESB -
Instituto de Educagdo Superior de Brasilia.

all measurement data to get an optimal estimate
of the system state in a statistical sense. Inputs
to a Kalman filter are the system measurements.
The a priori information are the system dynam-
ics and the noise properties of the system and
sensors. Qutputs of the Kalman filter are the
estimated system state and the innovation, i.e.,
the difference between the predicted and observed
measurement (Abidi and Gonzalez, 1992; Grewal
and Andrews, 1993).

1.1 Specification of our Problem

In the recent years the ETHZ (Swiss Federal Insti-
tute of Technology), through the IfR (Institute of
Robotics), has developed a mobile robot platform
called SmartROB, which is a versatile, easy to use,
mobile robot kit, suitable for the realization of a
wide variety of tasks.

This work has been motivated by the interest
of embedding a vision system in the SmartROB
using a frame grabber developed at the ETHZ.

Our goal is to implement a localization sys-
tem for the robot using vision and odometry. The
chosen environment was part of the Laboratory
room at the ETHZ. In this area, three fluorescent
lamps were vertically placed in predetermined po-
sitions to be used as landmarks. The SmartROB,
equipped with a CCD camera and the frame grab-
ber, should be able to localize itself and navigate
using information from odometry (encoders) and
the vision system (position of landmarks extracted
from images).

2 Localization

Localization is the process of determining the po-
sition of the robot with respect to a global ref-
erence frame (i.e. a coordinate system). It is a
cyclic process that should continuously keep the
robot on track.

In our case, a combination of information
from odometry and from the vision system is used
to update the robot’s position. The tool used to
fuse this information is the Kalman filter, which
is described in the following sections.

2.1 Modeling Odometry

In the SmartROB, the odometry calculation is
based on two optical encoders mounted on the
front wheels. We assume that As; is the distance
traveled by the left wheel, and As, is the distance
traveled by the right wheel in the time cycle At.

Let the origin of the robot’s coordinate system
be the middle point of the front axle, as shown in
Fig. 1. Then, the position and orientation changes
of the robot are calculated using;:

1 1
As = E(AST + AS[), Af = E(AST - Asl)

where H is the distance between the two front
wheels. In other words, the robot’s location
changes by a translation forward through the dis-
tance As followed by a rotation counterclockwise
through the angle A#.

LR

4
wilk) !

Figure 1. Global and Local Coordinate Systems

2.2 The Kalman Filter

We denote the position and orientation of the ve-
hicle at time step k by the state vector x(k) =
[2(k),y(k),0(k)]" comprising a Cartesian location
and an angle defined with respect to a global co-
ordinate system, as shown in Fig. 1. At initial-
ization, the robot starts at a known position (e.g.
the origin), and has an a priori map of ng land-
marks, whose locations are specified by the set of
known vectors {p; = (pz,py) | 1 <i <ng}.

At each time step, observations z;(k + 1) of
these landmarks are taken. The Kalman filter is
then used to associate measurements z;(k + 1)
with the correct landmarks p; to compute %(k +

1|k +1), the updated estimate of the vehicle’s po-
sition. It consists of two models: a plant model
and a measurement model.

The Plant Model. The plant model describes
how the vehicle’s position x(k) changes with time
in response to a control input u(k) and a noise
disturbance v(k), and has the form

x(k +1) = £(x(k), u(k)) + v(k),

where f(x(k),u(k)) is the non-linear state transi-
tion function and v(k) is a noise source assumed
to be zero-mean Gaussian with covariance Q(k).

The control input u(k) = [As(k), AG(k)]"
comes from the odometry model discussed in the
previous section, and leads us to the following
state transition function:

z(k) + As(k) cos (k)

y(k) + As(k) sin 6(k)
0(k) + A(k)

£(x(k), u(k)) =

The Measurement Model. The robot is
equipped with a CCD camera and a frame grab-
ber. For our convenience the camera was installed
in the origin of the robot’s coordinate system. The
information we have a priori is the position of our
ng landmarks with respect to the global coordi-
nate system. Our vision system will provide us
with angles corresponding to the extracted land-
marks (i.e. observations). Then we can define the
set of observations

Z(k) = {z;(k) | 1 <j <no}

where np is the number of observed landmarks.
We have already seen that ng is the total number
of known landmarks, which will also be referred
to as the number of ezpected landmarks.

The measurement model relates a sensor ob-
servation to the vehicle position and has the form:

zj(k) = h(x(k), p) + w;(k),

The measurement function h(x(k),p) expresses
an observation z(k) from the sensor as a function
of the vehicle position x(k). It has the form:

h(x(k),p) = arctan (%) —0(k).

Each observation is assumed corrupted by a zero-
mean, Gaussian disturbance w;(k) with covari-
ance R; (k).

2.8 The Localization Cycle

Given the a posteriori vehicle position estimate
%X(k|k) and its covariance P(k|k) for time k, the
current control input u(k), the current set of ob-
servations Z(k+1) and the a priori map, compute
the new a posteriori estimate X(k+1|k+1) and its

covariance P(k + 1|k +1). The algorithm consists
of the following steps:

Vehicle Position Prediction. First, using the
plant model and the knowledge of the control in-
put u(k), we predict the robot’s new location at
time step k + 1:

%(k + 1|k) = £(&(k|k), u(k)).

Next we compute P(k + 1|k), the variance associ-
ated with this prediction:

P(k + 1|k) = Vf P(k|k) VT + Q(k) (1)
where Vf is the Jacobian of the state transition
function f(x(k|k),u(k)) obtained by linearizing
about the updated state estimate x(k + 1|k):

10 —As(k)sin(0(k))

01 As(k)cos(8(k))
00 1

Vf =

Observation. The next step is to obtain the
observation set Z(k + 1) from the vehicle’s sensor
system on the new vehicle location, that is, cap-
ture an image and apply an algorithm to identify
the landmarks, converting them into angles.

Measurement Prediction. Now we use the pre-
dicted robot location %X(k + 1|k) and the a priori
map to generate predicted observations for each
landmark p;:

z;(k +1) = hy(X(k + 1[k), pi)

Piy — y(k)>
= arctan | —————— | — (k), (2
(Be=tis) - 6. @
fori =1,...,ng to yield the set of predictions:

Z(k+1) ={#(k+1) |1 <i<ng}

which contains ng predicted landmarks.
The predicted state estimate X(k+1|k) is used

to compute the measurement Jacobian
pi, —y (k) T
(Pio—(k))2+(pi, —y(k))?
—Pig —z(k) (3)
(Pi, —z(k)2+(piy—y(k))?
-1

Vh; =

for each prediction.

Matching. The goal of the matching proce-
dure is to produce an assigment from measure-
ments z; (k) to landmarks p;. For each prediction
and observation we compute the innovation v;;.

= [2(k + 1) = hi(&(k + 1[K), p)-

The innovation covariance is then calcultated by
Sij(k+1) = Vh;P(k+1|k)VhI +R;(k+1). (5)

A walidation gate is used to determine the cor-
respondece between predictions and observations:

vij(k+1) <G. (6)

This equation is used to test each sensor observa-
tion z;(k + 1) with each predicted measurement
Z;(k + 1). When a single observation falls in the
validation gate, we get a successfull match. Mea-
surements which do not fall in this gate are ig-
nored for localization. The same occurs if a mea-
surement, falls in the gate for more then one pre-
diction, or vice-versa.

Estimation. The final step is to use suc-
cessfully matched predictions and observations to
compute %X(k + 1|k + 1), the updated vehicle po-
sition estimate. First we build a new vector
z(k + 1) containing all the matched observations
for time k + 1 and calculate the composite inno-
vation v(k + 1). Then we build another vector
Vh with all the validated predictions. Using the
composite noise vector R(k + 1) we compute the
composite innovation covariance S(k+1) as in Eq.
(5). We then calculate the Kalman filter gain

W(k+1) =Pk + 1|k)AhTS1(k + 1)
to compute the updated vehicle position estimate
x(k+1k+1) =%k +1]k) + Wk +Dv(k+1)

with associated variance

P(k+1|k+1) = P(k+1|k)—W (k+1)S(k+1)W7 (k+1).

2.4 System Implementation

We implemented our Kalman filter algorithm for
localization using XOberon (a real-time operating
system that runs in the SmartROB). Our system
was consisted of two modules. The first one, called
SRLocalization.Mod implements the Kalman filter
algorithm. The second module, called Extract-
Landmarks.Mod implements the vision procedures
to capture images and identify the angles corre-
sponding to the extracted landmarks.

The first a priori information defined in SR-
Localization is the position of our landmarks with
respect to our global coordinate system:

p1 = (1.203m, 3.880m);
p2 = (2.100m, 3.880m);
p3 = (2.733m,2.870m);

Map =

With respect to the Vehicle Position Predic-
tion, X(k+1|k) is obtained directly from the odom-
etry calculation. This value is accessible in the
SmartROB by means of software.

With %(k + 1|k) we can obtain dz =
Ascosf(k), dy = Assin (k) and Af by just sub-
tracting from x(k|k). We can then update Vf.

Q(k) for each time step k is defined by:

K,.dx 0 0
Q(k) = 0 K,dy 0
0 0 K 9As + KggAf

where K5, Kg9 and Kyy are drifting coefficients
presented in (Chenavier and Crowley, 1992).
These coefficients were empirically set to be:

K, =0.01; Ky =0.005; Ky =0.01. (7)
We then calculate P(k + 1|k) using Eq. (1).
The next step is the Observation. Now we call

the module ExtractLandmarks which performs all
the image manipulation. For the time being, what
we need to know is that it will return a set Z(k+1)
of np observed angles z;(k + 1) corresponding to
the extracted landmarks.

Now comes the Measurement Prediction step.
First, with %(k + 1|k) and the map, we calculate
the ng expected angles using Eq. (2) and also
Vh; for 1 <i < ng from Eq. (3).

In the Matching step we calculate all the in-
novations v;; using Eq. (4) and apply Eq. (6) to
match the right angles. The validation gate G was
empirically set to G = 0.02rad.

In the Estimation step, we update the posi-
tion. If no angles are matched in the previous step
then the updated vehicle position X(k+1|k+1) is
set to be X(k+1|k) and P(k+1|k+1) = P(k+1|k).
This means that the position was updated only
using information from odometry.

To calculate S;(k + 1) we use Eq. (5) with

Rz(k + 1) = [""ii]

where r;; is the covariance associated with the
landmark 7.

Then for a matched angle we can calculate the
Kalman filter by

i 1)=P 1|k)AhT ———
Wik +1) (k+ 1|k) CSht 1)

and also
x(k+1|k+1) = %(k+1|k)+W;(k+1)v;(k+1) (8)

In case of more than one matched angle this pro-
cedure is repeated for each one of them separately.

Now we just have to update the robot’s posi-
tion. To do that we just change the attributes of
the object odometry for new values.

We start the algorithm with a P(0]0), whose
elements correspond to the initial uncertainty in
the robot’s position.

3 Vision System

3.1 Identifying Landmarks

The first task of our system is to capture an image
from the environment. Fig. 2 shows an example
of a raw image captured by the camera.

Now that we have the image, we identify in
pixel level where the lamps are located. Lamps
are sources of light and provide regions of high

Figure 2. Raw Image from Camera

brightness that characterize them. All we have to
do is detect these regions and find the peaks of
brightness, using a predefined pizel threshold.

The algorithm we developed condenses the
image information in a single vector with dimen-
sion equal to the number of columns of the im-
age. We initialize this vector with zeros. Then
for each column of our image, we test the level of
brightness of each element. If it is greater than
the threshold we add 1 to the corresponding el-
ement in our vector. In the end of this process
our vector contains all the information we need to
detect the peaks of brightness.

Now we “walk” through this vector and ana-
lyze each set of 5 subsequent elements, summing
their values. If the result is greater than a sum
threshold then we define the middle element to be
an extracted landmark as in Fig. 3.

peak peak

l Threshold L

NN

Yector Elements

Brightness

Figure 3. Extracted Peaks in Vectorized Image

The process of tuning the threshold values de-
pends on many factors such as the reflection of
light on objects, the amount of artificial or natu-
ral light in the environment and image distortion.

Ideally, we would want to have some dynamic
procedure that could perform this task in real-
time taking into account the instantaneous condi-
tions of the environment. This is not a trivial task,
so we have decided to define these values once in
the beginning of the process. To be able to do
that we assumed that the environmental condi-
tions wouldn’t change too much.

This fact brings some drawbacks. In Fig. 3,

for example, an inadequate choice of threshold
could lead us to false observations, caused by the
reflection of light on the wall that generates two
regions of high brightness around the lamp.

Because of these problems we need a good
Matching procedure to be able to distinguish cor-
rect from false landmarks.

Finished the image processing procedures, we
still need to convert our eventual extracted land-
marks from positions in a vector into angles with
respect to the robot’s coordinate system. This
process is done after a calibration of the camera,
where we build a conversion table that associates
an angle to each position in our vector.

3.2 The Matching Procedure

In our algorithm, after the Measurement Predic-
tion and Observation steps, we have a set Z(k+1)
of ng predicted angles and also a set Z(k + 1) of
no observed landmarks.

The number of elements in these two sets (ng
and no) is not necessarily the same, e.g. the case
we described before where reflection areas on the
wall could be identified as landmarks. The follow-
ing question arises: How do we distinguish correct
observations from false ones?

Many authors have already discussed this
problem and solutions point to the use of fil-
ters that separate false observations from cor-
rect ones (Abidi and Gonzalez, 1992; Leonard
and Durrant-Whyte, 1992; Grewal and Andrews,
1993). We chose a simple approach based on just
applying Eq. (6).

The choice of G depends on the accuracy of
our odometry and also our vision system, and tells
us how far, at most, an extracted landmark can be
from a predicted one. If the odometry is precise
enough we can make G small, otherwise we have
to relax it. This assumption is quite reasonable
because if we set G to a small value we are assum-
ing that an observation has to be close enough
to a prediction to be matched. If our odometry
is not so precise, we can loose important infor-
mation just because of this strict choice of G. On
the other hand, if we relax G we allow the observa-
tions to be in a wider range around our prediction,
consequently we have a greater chance of detect-
ing a false observation. Clearly there’s always a
trade-off between these two things.

4 Experiment Results

4.1 Evaluating our Odometry

The first step toward testing our system is to eval-
uate the accuracy in our odometry. We used the
UMBmark (University of Michigan Benchmark)
test proposed in (Borenstein et al., 1996) to illus-
trate qualitatively the characteristics of the odom-
etry in the SmartROB.

Our measurements showed that for a 10-meter
run the error in the position was approximately 10
centimeters (1% error).

Our intention in running this test was just to
have some feeling about our odometry, not to im-
prove its characteristics. The reason for that is
the fact that our ultimate goal is to make a com-
parison between the use of odometry alone and
its combination with vision. If our odometry were
too precise, it would be more difficult to illustrate
the improvements added by a vision system or any
other sensor.

4.2 Localization using only Odometry

When we perform localization using only odome-
try, at each time step we estimate the robot’s po-
sition based on information from the encoders and
than associate a correspondent uncertainty to it.
With this approach each estimated position is sur-
rounded by a characteristic “error ellipse” which
indicates a region of uncertainty for the robot’s ac-
tual position. Typically, these ellipses grow with
travel distance, due to odometry errors. To con-
struct them we used P (k|k).

Fig. 4 shows the result obtained with the
SmartROB when only odometry is used for local-
ization. The crosses represent the position given
by the SmartROB’s odometry. The balls indicate
the real position of the SmartROB. The theory
is confirmed and the robot looses precision with
travel distance. In the long-term it will surely get
lost. Another sensor is then required to overcome
this problem.

Figure 4. Localization using only Odometry

4.8 Localization using Odometry and Vision

In the second run of experiments our vision system
was used. To better illustrate the improvements
achieved in localization we defined a sequence of
steps for each run. The robot starts at the ori-
gin with an initial uncertainty defined by P(0/0).
In each subsequent step we move the robot to a
new position and than run the localization cycle
to update the position. Fig. 5 shows the result.

Figure 5. Localization using Odometry and Vision

In the first five steps of this path the
SmartROB was intentionally placed with such ori-
entation that no landmarks were seen. The result
is that only the odometry is used to update the
robot’s position, therefore the associated uncer-
tainty starts growing.

When the robot first sees a landmark in the
sixth step we notice that the position is corrected
and the uncertainty is reduced. The same occurs
in the next two steps. It means that every time the
robot sees a landmark we have more confidence in
our position. This confidence is determined by
the state covariance matrix P (k|k) that is used to
construct the error ellipses. Our task is to keep
P(k|k) as small as possible. In a real situation
the localization algorithm has to be executed con-
tinuously and the idea is that the robot be able
to see at least one landmark at a time to keep his
position accurate.

In a system where we have a precise odom-
etry and also a precise vision system, the uncer-
tainty associated to the actual position should be
reduced to very small values. This allows very
precise navigation. In our case we can notice that
when the robot sees a landmark the uncertainty
does not grow and is even a little bit reduced, but
not completely.

Many reasons led us to these results. The
first one was related to the backslash in the fix-
ation of our camera, that introduces inaccuracies
in the measurements. It means that we have to
reduce our confidence with respect to our vision
system. Besides that, our Kalman filter used a
simple Matching procedure. As we discussed pre-
viously, when we relax the value of G we have a
greater chance of detecting false landmarks. If we
just use Eq. (6) without any other criterion of
selection, when more then one observation fall in
the validation gate we loose precious information.

Besides all these problems in our implementa-
tion we were able to navigate the SmartROB quite
precisely keeping bounded the uncertainty around
the position. The results were satisfactory if we
take into account the simplifications we made. It
follows that it’s possible to perform accurate nav-

igation of mobile robots with a simple approach.

5 Conclusion and Future Work

In this work we have developed a localization algo-
rithm for mobile robot navigation. This algorithm
was based on odometry and vision. Fluorescent
lamps were used as landmarks. A Kalman filter
was used to update the robot’s position.

The results showed that when we use only
odometry for localization, the uncertainty corre-
spondent to the robot’s position grows with dis-
tance travel. On the other hand when we com-
bine odometry with vision we can keep the uncer-
tainty bounded, allowing precise navigation. Due
to some problems already described our results
were not optimal, however we were able to achieve
our ultimate goals.

Improvements in our system could be ad-
dressed in the following directions: 1) Use a more
stable fixation for the camera to increase preci-
sion; 2) Develop a more sophisticated matching
procedure in the localization cycle; 3) Develop al-
gorithms to dynamically calculate the threshold
values; and 4) Optimize the code.

Suggestions of new approaches include the use
of landmarks that naturally occur in the environ-
ment, such as edges of a table, corners of the room,
doors, etc. The main idea is that we don’t need
to change the environment just to be able to have
precise localization.

References

Abidi, M. A. and Gonzalez, R. C. (1992). Data
Fusion in Robotics and Machine Intelligence,
Academic Press.

Borenstein, J., Everett, H. R. and Feng, L. (1996).
Navigating Mobile Robots, Wellesley, Mas-
sachusetts.

Chenavier, F. and Crowley, J. L. (1992). Posi-
tion estimation for a mobile robot using vi-
sion and odometry, IEEE International Con-
ference on Robotics and Automation, Nice,
France, pp. 2588-2593.

Grewal, M. S. and Andrews, A. P. (1993). Kalman
Filtering: Theory and Practice, Prentice-
Hall.

Leonard, J. J. and Durrant-Whyte, H. F. (1992).
Directed Sonar Sensing for Mobile Robot
Navigation, Kluwer Academic Publishers,
London.

Murata, S. and Hirose, T. (1993). Onboard lo-
cating system using real-time image process-
ing for a self-navigating vehicle, IEEE Trans-
actions on Industrial Electronics 40(1): 145—
154.

