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Resumol A tarefa de operar um sistema complexo é usualmente delegada a vérios agentes para, dessa forma, contornar os
obstéculos impastos pela dimensio doproblema. Os agentes, tendo habilidades limitadas e visdes reduzidas do sistema, tipicamente
competem uns com 0s outros e aingem decisdes sibétimas. Qualquer que sgja o sSistema amplexo, o trabalho e seus agentes pode
ser modelado pa um jogo dnamico. Este artigoilustra como agentes altruisticos podem diredonar as dedsdes para aratores 6timos
de uma familia de jogos. Em particular, desenvavemos um algoritmo para encontrar respostas altruigticas étimas, capazes de
melhorar a convergéncia elocdizagdio de aratores em jogacs dindmicos que surgem da otimizagdo de fungdes quadréticas. Além
dis®, o artigo relata evidéncias experimentais de que os agentes podem aprender tais respogtas dtruigticas a partir de suas
experiéncias.

Abstractd The task of controlling a complex enterpriseis routinely del egated to several agents to cope with the arse of dimension-
ality. The agents, having limited abilitiesand views of the enterprise, typically compete with ore ancther only to reach subogtimal de-
cisons. Whatever the enterprise, the work of its agents can be modeled by a dynamic game. This paper illustrates how altruistic
agents can drive the decisonsto opimal attractorsfor a family of games. Spedfically, it develops an algorithm to find ogimal altruis-
tic resporses to improve mnvergenceto, and locaion d, attractorsin gamesarising from the optimization o quadratic functions. Fur-

ther, the paper provides evidence that the agents can learn altruistic resporses from past experience

Keywords game theory; distributed control; optimization; automatic learning; linear matrix inequalities.

1 Disributed Dedsion Making and Control

The degree of distributed decision-making and
control of today's systems, networks, and
organizaions is unprecelented. More than ever
before, the decisons are atrusted to sizeable
numbers of agents greal over vast aress, which
compete and collaborate in using the resources to
achieve their goals. The Internet, for instance,
provides many services to the end-user through the
aggregate dfort of millions of agents, each with a
share of the dedsions and resources. Two forces that
are driving the distribution of dedsion-making and
control are:

* Market presare.

The break up of monopolies into open markets,
such as telecommunications and transportation
conglomerates, has resulted into lower prices
and improved quality of services to customers
around the globe. The benefits of competition
are now demanded in segments as diverse as
eledric power networks and governmental
agencies.

* Tednological constraints.

As gstems are integrated within and across
countries, the neal of distribution of dedsion-
making and control becomes more pronounced.
The @ntralized control approach is limited in
the size of the systems it can handle, even with
the best of the foreseedble technology of
hardware and software.

Regardless of the system, its operation by dis-
tributed agents can be modeled as a dynamic game
(Talukdar and Camponogara, 2001). Consider the
task of operating a system or enterprise. In the stan-
dard approach to the distribution of decision-making
and control, the overall task is divided into a set of
coupled subtasks, each consisting of an optimization
problem that is asdgned to a distributed agent
(Camponogara, 2000; Camponogara et al., 2001).
The dynamic game aises from the iterative, com-
petitive dfort of each agent at doing the best for
itself, that is, affedingits variables to solveits prob-
lem whose outcome depends on the dedsions of the
other agents. As the agents read to one ancther’s
dedsions, they trace a path in dedsion spacethat, if
convergent, reaches an equilibrium point (Nash) that
can be far off the best solutions, the so-called Pareto
solutions (Basar and Olsder, 1999). (An ideal and
centralized agent, one with unlimited computational
power and full authority, has the capacity of finding



Pareto solutions.) Thus, two issues in the distributed
operation of an enterprise are the mnvergence of its
agents' dedsions to attractors and their relative
location. To this end, this paper delivers ways to
improve mnvergenceto and location of attractors by
implementing altruistic behavior in the agents,
whereby they account for the goals of the others and,
from their interadions, learn the best altruistic re-
sponses. Even though the focus is on games
originating from unconstrained quadratic problems,
the results sed light on the issues of concern and
seam extendable to more general games.

2 Quadratic Games

The potential benefits of altruism, in terms of
improved convergence to Nash equilibria and ther
locations, will be @nfined to games whose agents
optimize quadratic functions, heredter denoted by
quadratic games. More spedfically, each of M
agents solves a problem of the following form:

Pa: Min fy(X) = ¥X"AX + by X + Cy

Xm
where:

« x O RVisthe vedor with the dedsion variables
of all agents,

*  Xnpisthevedor with the dedsion variables over
which agent-m has exclusive authority,

 f, is the agent’s obedive function with the
assumption that A, is postive definite and,
without lossof generality, symmetric.

After breaking upA,, into submatrices, the problem
of the m-th agent becomes:

M M M
Po Minfu(X) =%2 % % ApijX + Z by % + Cn
Xm i=1 j=1 i=1

A competitive aent does the best for itsalf:
given the values of the other agents variables, it
chooses values for its variables that solve its
problem. These optimal values constitute the agent’s
reaction and the set of all reactionsisits reaction set
(Basar and Olsder, 1999). The concept of reaction
set is of principal importance—it spells out the
agent’ sdedsion-making process For the m-th agent,
these mncepts can be formalized as follows.

e The exogenous variables, y, = [x, | n # m|, are
the dedsion variables of the other agents.

« Agent-m’sreadion, R, (Y, is defined as:
R(Ym) = Argmin {f(Xm,Ym)}, More specifically,

Xm
Rm(ym) == (Ammn)_l[ ¢z Amran + bmm]

e Theagent'sreaction set is R, = { Ru(ym) | for al
Yinb -

In reacting to one another’s dedsions, the
agents iteratively update their variables tracing a
trajectory in dedsion space that, if convergent,
arrives at a fixed point referred to as Nash point, N
At a Nash point, the mmpetitive agent does not
deviate from its dedsion so long as the others retain
their dedsions.

The agents can iterate in different ways. They
can enforce precedence to work serialy, synchronize
the dedsions to work in lock-step parallel, or simply
iterate asynchronoudly. Although we ncentrate on
synchronous parallel iterations, some of the results
are readily appli cable to asynchronous iterations and
the others are probably extendable. Putting all the
reactions together, and letting x(t) be the vector of
dedsions at iteration t, results in the following
system of equations:

Xm(t+1) = Ri(Ym(t))
more ompactly, x(t+1) = G(x(t)).

form=1,...,M or,

The operator G, referred to as iteration function,
describes the synchronous paralld work of the
agents. A Nash point x* is predsdy a fixed point of
G, i.e, x* = G(x*). In theliterature, it iswell known
that G has a unique fixed point and that convergence
to it is guarantead if G induces a contraction
mapping for any norm ||.|—more formally, if |G(y)
— G(X)|| < ylly — x| for al x, yand 0 < y< 1 (Ortega
and Rheinbddt, 1970). Asynchronous convergence
is asared if G is a contraction mapping for the oo-
norm, ||+|l.. (Bertsekas, 1983; Pyo, 1985).

To better understand the issues of operating an
enterprise with a network of agents, let P be the
operating problem and {P,,}, its decomposition into
a set of coupled problems, with the m-th agent
assgned to P,,. For theiterative work of these agents
to be meaningful, their dedsions sould converge to
attractors and, for it to be satisfactory, the attractors
should come dose to Pareto solutions. A solution x”
is Pareto if it is not dominated by any other
solution—i.e,, if it does not exist a solution x such
that f(x) < f.(x") for al m and f(x) < f..(x) for
some m (Miettinen, 1999). In general, a centralized
agent with full authority is in a position to find
Pareto solutions, provided that it has enough
computational power. The indiscriminate use of
competitive agents to solve {P,} invariably results
in suboptimal solutions, potentially falling far from
the Pareto set, 7P. Altruistic agents, those
sympathetic to the goals of the others, however, hold
the paential of drawing the dtractors close to 2.
The ultimately altruistic agent discards its own goal
to take on the gaals of the others.

In the work reported here, an agent implements
altruism by assgning weights to the terms appearing



in bath its ohedive function and those of the other
agents. More spedfically, in the context of quadratic
games, the m-th agent can bewmme altruistic by
augmenting its problem as follows:

M
Put Minfy= Z {0mX AX/2 + B B X + VG }
X k=1

In a refined form, agent-m's probem is
expressed as.
] M M M T M T
P Min 2 {om 2 X AgX + Z B b X + YmiCid
Xm k=1 i=1j=1 i=1
Carrying the altruistic factors over the reacions,
results in the following reaction function for this
agent:

M M
Rm(ym) = —(Z amkAkmm)_l 2 [ zamkAkman + Bmk bkm]
k=1 k=1 n#zm

In what follows, we identify the influence of the
atruigtic factors on bath convergence to attractors
and their locations. Before doing so, we group these
factorsin sets as follows:

+ the factors of the mth agent are o, ={0md,
Bm ={Bmd» and ym = {ymd , and

« the factors of the entire game are o ={a,},

B={Bm} andy={yn}.

Lemma 1. Only the fadors from o influence the
contraction property of the iteration function G.

Proof. Aggregate the reaction functions of the M
atruistic agents to obtain the iteration function, G.
Notice that G can be epressd as G(x) = A(a)x +
b(a,B). For any vedor-norm, |||, IG(y) — G(X)|| =
lIA(a)y +b(a,B) = A(a)x —b(a,B)I| = [IA(a)y = A(a)x].

Lemma 2. The factors from  influence the location
of the fixed point of G, without interfering with its
contraction properties.

Proof. From Lemma 1, it follows that the factorsin
B do not affed contradion. The fixed point x* can
be determined by solving the euation x* =
G(a,B,x*) = A(a)x*+b(a,B), resulting in x*(a,B) =
(1-A(a)) *b(a,B). Therefore, B can be utilized to
relocate the attractor. m

The upshot is that the altruistic agents can draw
the dedsions to attractors (by tweeking the values of
o) and pace these attradors at locations that are
best for the agents as a whole (by twe&ing the
values of B).

3 Improving Convergence to Attractors

This sdion is concerned with the wmputation of
values for a that ensure paralle convergence to
attradors. To thisend, it delivers a convex optimi-
zdion problem with LMIs (linear matrix inequali-
ties) (Boyd et al., 199) that, if feasible, yields an
iteration function inducing a contraction mapping
for the 2-norm, ||s||.

Disregarding the altruistic factors in B, the
iteration function beames G(a) = A(a)x + b(a). By
breaking A(a), it can be rewritten as G(a) =
B(a)[C(a)x + d]. With this notation, a problem for
finding contracting, altruistic factors cen be posed as
follows.

PA: Maximize Ag—Ac
o, Ags Ac
Subject to:
Agl —B(a) <0
Ag>1
A, Cla)" O
OC(a), | 0O=0

Notice that Ag < Amin(B(ar)) and A¢ = [|C(a)|P, where:
Al = sart(Amx(ATA)); AmadA) is the maximum ei-
genvalue of A; and A pn(A) isits minimum.

Lemma 3. If (a,Ag,A¢) is a feasible solution to PA,
then G(a) induces a contraction mapping for the 2-
norm, [l|.

Proof. By the symmetry of B(a), Ag < Amin(B(0t)).
This fact, together with Az > 1, leads to the follow-
ing inequalities Ann(B(@)®) = Amn(B(a))? >
Amin(B(a)) > Ag. By Schur’s complement, Aql —
C(a@)'C(a) > 0 which implies tha A >
Amad C(0)"C(a)} - Thus, Ac > [IC(a)]F*.

Putting everything together, resultsin [JA(Q)|F =
lIB(a) " C(a)IF < [1B(e) P NIC()IP < [1B(o) PAc =
Arax(B(@) PAc = AfAmin(B(@)?) < Ac/Ag < 1. Thus,
IA@)IF <1 for A(a) = B(a)™*C(a). It is a simple
exercise to verify that [|[A(a)|| < 1 defines an iteration
function G(a) which induces a contraction mapping
under the 2-norm. m

4 Improving Location of Attractors

This =dions illustrates how altruistic agents can
converge to attractors located in the Pareto set of the
game given in Fig. 1 by, first, applying the
procedure of the preceding sedion to compute values
for a and, sewnd, developing and applying a
procedure to compute values for (3.

The optimization package sdpsol (Wu and
Boyd, 2000) was used to solve the PA arising from



the game of Fig. 1. It outputs the following values
for a: ai; = 0.004834; a,, = 0.015966; a,; =
0.021461, a,, = 0.0. This a, with standard 3,
generates a G(x) = A(a)x + b(a,B) inducing a
contraction mapping with the fixed point x* at
(15.6668, 25.9597).

Finding optimal values for B is a two-stage
procedure. First, compute a point x° inside the
Pareto. Sewmnd, solve the following convex
optimization problem:

PP. Minimize |jx* — x°|F
B
Subject to:
x* = (1-A(a)) *b(a,B)

The optimal values of B for PP are: 31, = 78.80; B1,
= -4.27; B,; = -3.927; B,, = 36.45. Fig. 2 showsthe
resulting readion curves of the agents, with the
computed values of a and . The new reaction
curves intercept each other at the Pareto point x°.

15+

X2

Figure 1. The objective landscape and readion sets of a divergent 2-
player game. (The game ®nsists of thefollowing problems:

Py Minf, = 9.11215,2 — 22.5402x, + 35.887852
Xt —11.9718 — 301.258%,

P,: Minf, = 47.0034,% — 22.428¢x, + 7.9965%,7
X —219.8309%; —32.6516¢)

Figure 2. The reaction sets of altruistic agents for the divergent 2-
player game. (The dedsions of these dtruistic agents are drawn to an
attrador belongng to the Pareto st, X = (4.5179 6.1197).).

5 Learning Altruistic Responses

The agorithms presented for cdculating altruistic
factors srve only the purpose of designing testing
scenarios. If the agents relinquished their autonomy
to a central agency, the need of altruism would
vanish—the central agency would solve the overall
problem to find a Pareto solution and pass the
dedsions down to the agents that, in turn, would
implement them without contesting. It is imperative
that the dedsions remain shared among the
distributed agents for, otherwise, the problems will
be limited in size by the ommputational power of the
central agency. Thus, we seek means by which the
agents figure out altruistic responses, while working
autonomously and sharing the burden of dedsion-
making. Automatic learning techniques dand as
promising ways of harnessng the agents abilities.
Not infrequently, these techniques are mnceved
from natural behavior or intuitive responses and
utilize probabilistic or optimization frameworks,
such as reinforcement learning, Bayesian nets, and
maximum likelihood estimation to name a few
(Mitchell, 1997).

Herein, we develop a search-based learning
algorithm, akin to stegoest descent (Nocedal and
Wright, 1999), to empower altruistic agents to draw
the dedsions towards the Pareto set. The focusis on
the location of the attradors, with the assumption
that the games are @nvergent. This propcsa is
tested in a ssimple 2-player game and the results are
reported thereafter.

Agent-m’s Learning Algorithm

» Lettbetheiteration number and set t to 0.

o Let Bu(t) = {Bm(t)} betheinitia values of the
atruigtic fadors, posshly disregarding the other
agents' objedives.

o Let {yn(t)} contain bounds for changes on the
values of the d ements of 3.

» Jdisadeayfactor,0<d< 1.

» |terate until the aents arrive at an attractor
X*(1).

o Let xp be the best attractor reached thus far,
and set Xpeq = X* ().

e Loopfor ever
0 Set Bru(t+1) = Brk(t) + rand(=ym(t).ym(t))

Ok

o lIterate using atruigtic fadors from B.,(t+1)

to reach the attractor x* (t+1).

o If {Z f(x(t+1)) < T f(Xpex)} OF {X*(t+1)
dominates X,eqt, then let x(t+1) bemme
the new Xpes,

otherwise let B (t) become B(t+1) O k

0 ymk(t+1) = 5-mG(t) Ok




The sequence of attractors obtained by two
atruistic agents is reported in Table 1. The fina
attrador dominates the initial one, thereby making
bath agents better off. Fig. 3 depicts the test game,
illustrating the contour lines and specifying the
objedive functions of the agents. Further, it shows
theinitial reaction sets and the ones the agents reach
if they behave altruigtically.

Tables 2 and 3 report the sequence of attractors
reached by the agents when, respedively, agent-1
and agent-2 behave altruistically. In either case, and
in all subsequent attractors, the altruistic agent is
worse off while the competitive one is better off.
Calledively, however, the agents operate at lower
cost—the degradation experienced by the altruistic
agent trandates into higher benefits to the
competitive gyent.

Table 1. The series of best attractors reached by two altruistic agents.

Nash Agents' objectives Overdll
Sequence f1 fa fi+f2
1 -212.896 | -221.01® | -433.91%
2 -194.47D | -337.66Q | -532.13D
3 -177.95% | -368.49% | -546.452
4 -238.199 | -320.73® | -558.927
5 -244.756 | -328.89@ | -573.646

Table 2. The series of best attractorsreached bythe agents, with an
altruigtic agent-1 and a competitive agent-2.

Nash Agents' objectives Overdll
Sequence f1 fa fi+f
1 -212.928 | -221.16G | —434.089
2 -220.92B | -246.248 | -467.171
3 -153.179 | -369.1648 | -522.3442
4 -189.742 | -342.24D | -531.983
5 -194.8311 | -337.22D | -532.058

Table 3. The series of best attradors reached bythe agents, with a
competitive agent-1 and an altruistic agent-2.

Nash Agents' objectives Overall
Sequence f1 fa fi+fa

1 -212.936 | -221.165 | -434.102

2 -259.034 | -232.62@ | -491.659

3 -288.654 | -218.33® | -506.993

4 -288.64% | -218.346 | -506.993

5 -289.92% | -217.072 | -506.99%

6 -289.328 | -217.696 | -507.02D

Figure 3. The objedive landscape and readion sets of competitive
agents of a 2-player game, together with the reaction setsreached by
atruigtic agents. (The game ®nsists of the following problems:

Py Minfy = 44.76x,% —28.87x%, +10.24x,2 —150%,
X1 —20x,
P,: Minf, = 19.49x,? — 34.48%.%, +25.51%,2 —120x,
Xz ).

6 Concluding Remarks

The operation of an enterprise with a network of
distributed agents can be viewed as a dynamic
game—the @mmpetitive agents, each with a share of
the dedsion variables and an optimization task,
iteratively react to each other’s dedsions until they
arrive & an attractor, which typically induces a
suboptimal solution. This paper has propcsed the
embedding of altruistic behavior in the aents to,
first, improve nvergence of their dedsion
processes to attractors and, sewmnd, pull these
attractors closer to gotimal Pareto solutions. Even
though the approach has been somewhat abstract,
and confined to simple quadratic games, it sheds
light on relevant issues and serves as a baseline
along which improvements can be aafted for real-
world enterprises.
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