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Resumo A tarefa de operar um sistema complexo é usualmente delegada a vários agentes para, dessa forma, contornar os 
obstáculos impostos pela dimensão do problema. Os agentes, tendo habilidades limitadas e visões reduzidas do sistema, tipicamente 
competem uns com os outros e atingem decisões subótimas. Qualquer que seja o sistema complexo, o trabalho de seus agentes pode 
ser modelado por um jogo dinâmico. Este artigo ilustra como agentes altruísticos podem direcionar as decisões para atratores ótimos 
de uma família de jogos. Em particular, desenvolvemos um algoritmo para encontrar respostas altruísticas ótimas, capazes de 
melhorar a convergência e localização de atratores em jogos dinâmicos que surgem da otimização de funções quadráticas. Além 
disso, o artigo relata evidências experimentais de que os agentes podem aprender tais respostas altruísticas a partir de suas 
experiências.  

Abstract The task of controlling a complex enterprise is routinely delegated to several agents to cope with the curse of dimension-
ality. The agents, having limited abilities and views of the enterprise, typically compete with one another only to reach suboptimal de-
cisions. Whatever the enterprise, the work of its agents can be modeled by a dynamic game. This paper illustrates how altruistic 
agents can drive the decisions to optimal attractors for a family of games. Specifically, it develops an algorithm to find optimal altruis-
tic responses to improve convergence to, and location of, attractors in games arising from the optimization of quadratic functions. Fur-
ther, the paper provides evidence that the agents can learn altruistic responses from past experience 

Keywords game theory; distributed control; optimization; automatic learning; linear matrix inequali ties. 

1    Distr ibuted Decision M aking and Control 

The degree of distributed decision-making and 
control of today’s systems, networks, and 
organizations is unprecedented. More than ever 
before, the decisions are entrusted to sizeable 
numbers of agents spread over vast areas, which 
compete and collaborate in using the resources to 
achieve their goals. The Internet, for instance, 
provides many services to the end-user through the 
aggregate effort of mill ions of agents, each with a 
share of the decisions and resources. Two forces that 
are driving the distribution of decision-making and 
control are: 
 
• M arket pressure.  
 

The break up of monopolies into open markets, 
such as telecommunications and transportation 
conglomerates, has resulted into lower prices 
and improved quali ty of services to customers 
around the globe. The benefits of competition 
are now demanded in segments as diverse as 
electric power networks and governmental 
agencies. 

 

• Technological constraints. 
 

As systems are integrated within and across 
countries, the need of distribution of decision-
making and control becomes more pronounced. 
The centralized control approach is l imited in 
the size of the systems it can handle, even with 
the best of the foreseeable technology of 
hardware and software.  

Regardless of the system, its operation by dis-
tributed agents can be modeled as a dynamic game 
(Talukdar and Camponogara, 2001). Consider the 
task of operating a system or enterprise. In the stan-
dard approach to the distribution of decision-making 
and control, the overall task is divided into a set of 
coupled subtasks, each consisting of an optimization 
problem that is assigned to a distributed agent 
(Camponogara, 2000; Camponogara et al., 2001). 
The dynamic game arises from the iterative, com-
petitive effort of each agent at doing the best for 
itself, that is, affecting its variables to solve its prob-
lem whose outcome depends on the decisions of the 
other agents. As the agents react to one another’s 
decisions, they trace a path in decision space that, if 
convergent, reaches an equilibrium point (Nash) that 
can be far off the best solutions, the so-called Pareto 
solutions (Basar and Olsder, 1999). (An ideal and 
central ized agent, one with unlimited computational 
power and ful l authority, has the capacity of finding 



Pareto solutions.) Thus, two issues in the distributed 
operation of an enterprise are the convergence of i ts 
agents’ decisions to attractors and their relative 
location. To this end, this paper delivers ways to 
improve convergence to and location of attractors by 
implementing altruistic behavior in the agents, 
whereby they account for the goals of the others and, 
from their interactions, learn the best altruistic re-
sponses. Even though the focus is on games 
originating from unconstrained quadratic problems, 
the results shed l ight on the issues of concern and 
seem extendable to more general games. 

2    Quadratic Games 

The potential benefits of altruism, in terms of 
improved convergence to Nash equil ibria and their 
locations, will be confined to games whose agents 
optimize quadratic functions, hereafter denoted by 
quadratic games. More specifically, each of M 
agents solves a problem of the following form: 
 

Pm:  Min fm(x) = ½xTAmx + bm
Tx + cm 

         xm 
where: 

• x ∈ RN is the vector with the decision variables 
of al l agents, 

• xm is the vector with the decision variables over 
which agent-m has exclusive authority, 

• fm is the agent’s objective function with the 
assumption that Am is positive definite and, 
without loss of generali ty, symmetric. 

After breaking up Am into submatrices, the problem 
of the m-th agent becomes: 

                               M     M                  M 

Pm:   Min fm(x) = ½ Σ   Σ xi
TAmijxj + Σ bmi

Txi + cm 
          xm                 i=1   j=1                i=1 

 

A competitive agent does the best for itself: 
given the values of the other agents’ variables, it 
chooses values for its variables that solve its 
problem. These optimal values constitute the agent’s 
reaction and the set of al l reactions is its reaction set 
(Basar and Olsder, 1999). The concept of reaction 
set is of principal importance—it spells out the 
agent’ s decision-making process. For the m-th agent, 
these concepts can be formalized as fol lows. 

• The exogenous variables, ym = [xn | n ≠ m], are 
the decision variables of the other agents. 

• Agent-m’s reaction, Rm(ym), is defined as: 

Rm(ym) = Argmin { fm(xm,ym)} , more specifically, 
                           xm 

Rm(ym) = − (Ammm)−1[  Σ Ammnxn + bmm]. 

                                                         
n≠m 

• The agent’s reaction set is Rm = { Rm(ym) | for all 
ym} . 

 

In reacting to one another’s decisions, the 
agents iteratively update their variables tracing a 
trajectory in decision space that, i f convergent, 
arrives at a fixed point referred to as Nash point, 

�
. 

At a Nash point, the competitive agent does not 
deviate from its decision so long as the others retain 
their decisions. 

The agents can iterate in different ways. They 
can enforce precedence to work serial ly, synchronize 
the decisions to work in lock-step parallel, or simply 
iterate asynchronously. Although we concentrate on 
synchronous parallel iterations, some of the results 
are readily applicable to asynchronous iterations and 
the others are probably extendable. Putting all the 
reactions together, and letting x(t) be the vector of 
decisions at iteration t, results in the fol lowing 
system of equations: 
 

xm(t+1) = Rm(ym(t))     for m = 1, …, M   or,  
 

more compactly,  x(t+1) = G(x(t)). 
 

The operator G, referred to as iteration function, 
describes the synchronous parallel work of the 
agents. A Nash point x* is precisely a fixed point of 
G, i.e., x* = G(x* ). In the li terature, i t is well known 
that G has a unique fixed point and that convergence 
to it is guaranteed if G induces a contraction 
mapping for any norm ||•||—more formally, if ||G(y) 
– G(x)|| ≤ γ||y – x|| for al l x, y and 0 ≤ γ < 1 (Ortega 
and Rheinboldt, 1970). Asynchronous convergence 
is assured if G is a contraction mapping for the ∞-
norm, ||•||∞ (Bertsekas, 1983; Pyo, 1985). 

To better understand the issues of operating an 
enterprise with a network of agents, let P be the 
operating problem and { Pm} , i ts decomposition into 
a set of coupled problems, with the m-th agent 
assigned to Pm. For the iterative work of these agents 
to be meaningful, their decisions should converge to 
attractors and, for it to be satisfactory, the attractors 
should come close to Pareto solutions. A solution xP 
is Pareto if it is not dominated by any other 
solution—i.e., if it does not exist a solution x such 
that fm(x) ≤ fm(xP) for all m and fm(x) < fm(xP) for 
some m (Miettinen, 1999). In general, a centralized 
agent with full authority is in a position to find 
Pareto solutions, provided that it has enough 
computational power. The indiscriminate use of 
competitive agents to solve { Pm} invariably results 
in suboptimal solutions, potential ly fall ing far from 
the Pareto set, � . Altruistic agents, those 
sympathetic to the goals of the others, however, hold 
the potential of drawing the attractors close to � .  
The ultimately altruistic agent discards its own goal 
to take on the goals of the others. 

In the work reported here, an agent implements 
altruism by assigning weights to the terms appearing 



in both its objective function and those of the other 
agents. More specifical ly, in the context of quadratic 
games, the m-th agent can become altruistic by 
augmenting its problem as fol lows: 

                                    M 

Pm:  Min fm =  Σ {αmkx
TAkx/2 + βmk bk

Tx + γmkck }  
         xm          k=1       

 

In a refined form, agent-m’s problem is 
expressed as: 

                M         M M                M 

Pm: Min  Σ { αmkΣ Σ xi
TAki jxj + Σ βmk bki

Txi + γmkck}  
        xm  k=1        i=1 j=1              i=1 

Carrying the altruistic factors over the reactions, 
results in the fol lowing reaction function for this 
agent: 

                  M                   M                              
Rm(ym) = −(Σ αmkAkmm)−1 Σ [ ΣαmkAkmnxn + βmk bkm] 

                           
k=1

                         
k=1

   
n≠m 

 

In what fol lows, we identify the influence of the 
altruistic factors on both convergence to attractors 
and their locations. Before doing so, we group these 
factors in sets as follows: 

• the factors of the m-th agent are αm = {αmk} , 
βm = { βmk} , and γm = { γmk} , and 

• the factors of the entire game are α = { αm} , 
β = { βm} , and γ = { γm} .  

Lemma 1. Only the factors from α influence the 
contraction property of the iteration function G. 

Proof. Aggregate the reaction functions of the M 
altruistic agents to obtain the iteration function, G. 
Notice that G can be expressed as G(x) = A(α)x + 
b(α,β). For any vector-norm, ||•||, ||G(y) – G(x)|| = 
||A(α)y + b(α,β) − A(α)x − b(α,β)|| = ||A(α)y − A(α)x||. 

�  

Lemma 2. The factors from β influence the location 
of the fixed point of G, without interfering with its 
contraction properties. 

Proof. From Lemma 1, it follows that the factors in 
β do not affect contraction. The fixed point x* can 
be determined by solving the equation x* = 
G(α,β,x* ) = A(α)x*+b(α,β), resulting in x* (α,β) = 
(I−A(α))−1b(α,β). Therefore, β can be util ized to 
relocate the attractor. �
 

The upshot is that the altruistic agents can draw 
the decisions to attractors (by tweaking the values of 
α) and place these attractors at locations that are 
best for the agents as a whole (by tweaking the 
values of β). 

3    Improving Convergence to Att ractors 

This section is concerned with the computation of 
values for α that ensure parallel convergence to 
attractors.  To this end, it delivers a convex optimi-
zation problem with LMIs (linear matrix inequali-
ties) (Boyd et al., 1994) that, if feasible, yields an 
iteration function inducing a contraction mapping 
for the 2-norm, ||•||.  

Disregarding the altruistic factors in β, the 
iteration function becomes G(α) = A(α)x + b(α). By 
breaking A(α), it can be rewritten as G(α) = 
B(α)−1[C(α)x + d]. With this notation, a problem for 
finding contracting, altruistic factors can be posed as 
follows. 
 

PA:   Maximize   λB − λC 

           α, λB, λC 

         Subject to: 
λBI – B(α) < 0 
λB > λC 
λB > 1 
λCI,   C(α)T   
 C(α),    I        ≥ 0  

Notice that λB ≤ λmin(B(α)) and λC ≥ ||C(α)||2, where: 
||A|| = sqrt(λmax(A

TA)); λmax(A) is the maximum ei-
genvalue of A; and λmin(A) is its minimum. 

Lemma 3. If (α,λB,λC) is a feasible solution to PA, 
then G(α) induces a contraction mapping for the 2-
norm, ||•||. 

Proof. By the symmetry of B(α), λB < λmin(B(α)). 
This fact, together with λB > 1, leads to the fol low-
ing inequalities λmin(B(α)2) = λmin(B(α))2 > 
λmin(B(α)) > λB. By Schur’s complement, λCI – 
C(α)TC(α) > 0 which implies that λC > 
λmax{C(α)TC(α)} . Thus, λC > ||C(α)||2.  

Putting everything together, results in ||A(α)||2 = 
||B(α)−1C(α)||2 ≤ ||B(α)−1||2.||C(α)||2 ≤ ||B(α)−1||2λC = 
λmax(B(α)−2)λC = λC/λmin(B(α)2) < λC/λB < 1. Thus, 
||A(α)||2 < 1 for A(α) = B(α)−1C(α). It is a simple 
exercise to verify that ||A(α)|| < 1 defines an iteration 
function G(α) which induces a contraction mapping 
under the 2-norm. �  

4   Improving Location of Attractors 

This sections il lustrates how altruistic agents can 
converge to attractors located in the Pareto set of the 
game given in Fig. 1 by, first, applying the 
procedure of the preceding section to compute values 
for α and, second, developing and applying a 
procedure to compute values for β.  

The optimization package sdpsol (Wu and 
Boyd, 2000) was used to solve the PA arising from 



the game of Fig. 1. It outputs the fol lowing values 
for α: α11 = 0.004834; α12 = 0.015966; α21 = 
0.021461; α22 = 0.0. This α, with standard β, 
generates a G(x) = A(α)x + b(α,β) inducing a 
contraction mapping with the fixed point x* at 
(15.6668, 25.9597). 

Finding optimal values for β is a two-stage 
procedure. First, compute a point xp inside the 
Pareto. Second, solve the following convex 
optimization problem: 
 

PP:   Minimize  ||x* − xP||2 

              β 
         Subject to: 

            x* = (I−A(α))−1b(α,β) 
 

The optimal values of β for PP are: β11 = 78.80; β12 
= −4.27; β21 = −3.927; β22 = 36.45. Fig. 2 shows the 
resulting reaction curves of the agents, with the 
computed values of α and β. The new reaction 
curves intercept each other at the Pareto point xP. 

 

5    Learning Altruistic Responses 

The algorithms presented for calculating altruistic 
factors serve only the purpose of designing testing 
scenarios. If the agents rel inquished their autonomy 
to a central agency, the need of altruism would 
vanish—the central agency would solve the overall 
problem to find a Pareto solution and pass the 
decisions down to the agents that, in turn, would 
implement them without contesting. It is imperative 
that the decisions remain shared among the 
distributed agents for, otherwise, the problems will 
be limited in size by the computational power of the 
central agency. Thus, we seek means by which the 
agents figure out altruistic responses, while working 
autonomously and sharing the burden of decision-
making. Automatic learning techniques stand as 
promising ways of harnessing the agents’ abili ties. 
Not infrequently, these techniques are conceived 
from natural behavior or intuitive responses and 
util ize probabil istic or optimization frameworks, 
such as reinforcement learning, Bayesian nets, and 
maximum likelihood estimation to name a few 
(Mitchell, 1997).  

Herein, we develop a search-based learning 
algorithm, akin to steepest descent (Nocedal and 
Wright, 1999), to empower altruistic agents to draw 
the decisions towards the Pareto set. The focus is on 
the location of the attractors, with the assumption 
that the games are convergent. This proposal is 
tested in a simple 2-player game and the results are 
reported thereafter. 
 
Agent-m’s Learning Algor ithm 
 
• Let t be the iteration number and set t to 0. 
• Let βm(t) = {βmk(t)} be the initial values of the 

altruistic factors, possibly disregarding the other 
agents’ objectives. 

• Let { γmk(t)} contain bounds for changes on the 
values of the elements of βm. 

• δ is a decay factor, 0 < δ < 1. 
• Iterate until the agents arrive at an attractor 

x* (t). 
• Let xbest be the best attractor reached thus far, 

and set xbest = x* (t). 
• Loop for ever 

o Set βmk(t+1) = βmk(t) + rand(−γmk(t),γmk(t)) 
∀ k. 

o Iterate using altruistic factors from βm(t+1) 
to reach the attractor x* (t+1). 

o If { Σ fm(x(t+1)) < Σ fm(xbest)} or {x* (t+1) 
dominates xbest} , then let x(t+1) become 
the new xbest, 

otherwise let βmk(t) become βmk(t+1) ∀ k 
o γmk(t+1) = δ.γmk(t)   ∀ k 

 

 

 

Figure 1. The objective landscape and reaction sets of a divergent 2-
player game. (The game consists of the following problems: 

      P1: Min f1 = 9.11215x1
2 – 22.5402x1x2 + 35.88785x2

2  
              x1                            – 11.9718x1 – 301.258x2 

 
      P2: Min f2 = 47.0034x1

2 – 22.428x1x2  + 7.99655x2
2  

                x2                          – 219.8309x1  – 32.6516x2) 

 

Figure 2. The reaction sets of altruistic agents for the divergent 2-
player game. (The decisions of these altruistic agents are drawn to an 
attractor belonging to the Pareto set, xP = (4.5179, 6.1197).). 
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The sequence of attractors obtained by two 
altruistic agents is reported in Table 1. The final 
attractor dominates the initial one, thereby making 
both agents better off. Fig. 3 depicts the test game, 
il lustrating the contour lines and specifying the 
objective functions of the agents. Further, it shows 
the initial reaction sets and the ones the agents reach 
if they behave altruistically. 

Tables 2 and 3 report the sequence of attractors 
reached by the agents when, respectively, agent-1 
and agent-2 behave altruistically. In either case, and 
in all subsequent attractors, the altruistic agent is 
worse off while the competitive one is better off. 
Collectively, however, the agents operate at lower 
cost—the degradation experienced by the altruistic 
agent translates into higher benefits to the 
competitive agent. 

 

 

 

 

6 Concluding Remarks 

The operation of an enterprise with a network of 
distributed agents can be viewed as a dynamic 
game—the competitive agents, each with a share of 
the decision variables and an optimization task, 
iteratively react to each other’s decisions until they 
arrive at an attractor, which typically induces a 
suboptimal solution. This paper has proposed the 
embedding of altruistic behavior in the agents to, 
first, improve convergence of their decision 
processes to attractors and, second, pull these 
attractors closer to optimal Pareto solutions. Even 
though the approach has been somewhat abstract, 
and confined to simple quadratic games, it sheds 
light on relevant issues and serves as a baseline 
along which improvements can be crafted for real-
world enterprises. 
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Table 1. The series of best attractors reached by two altruistic agents. 

Agents’ objectives Overall Nash 
Sequence f1 f2 f1 + f2 

1  −212.8966 −221.0169 −433.9135 
2  −194.4710  −337.6601 −532.1310 
3  −177.9596  −368.4986 −546.4582 
4  −238.1919  −320.7309 −558.9227 
5  −244.7565  −328.8900 −573.6464 

 

Table 2. The series of best attractors reached by the agents, with an 
altruistic agent-1 and a competitive agent-2. 

Agents’ objectives Overall Nash 
Sequence f1 f2 f1 + f2 

1 −212.9293 −221.1606 −434.0899 
2 −220.9213 −246.2498 −467.1711 
3 −153.1794 −369.1648 −522.3442 
4 −189.7412 −342.2410 −531.9823 
5 −194.8311 −337.2270 −532.0581 

 

Table 3. The series of best attractors reached by the agents, with a 
competitive agent-1 and an altruistic agent-2. 

Agents’ objectives Overall Nash 
Sequence f1 f2 f1 + f2 

1 −212.9376 −221.1657 −434.1032 
2 −259.0347 −232.6204 −491.6550 
3 −288.6574 −218.3329 −506.9903 
4 −288.6436 −218.3467 −506.9903 
5 −289.9235 −217.0724 −506.9959 
6 −289.3253 −217.6967 −507.0220 

 

 

Figure 3. The objective landscape and reaction sets of competitive 
agents of a 2-player game, together with the reaction sets reached by 
altruistic agents. (The game consists of the following problems: 

      P1: Min f1 = 44.76x1
2 –28.87x1x2 +10.24x2

2 –150x1 
              x1                            –20x2 

      P2: Min f2 = 19.49x1
2 – 34.48x1x2 +25.51x2

2 –120x1 
              x2                ). 
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