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Abstract This work is concerned with the design of low-level multivariable control loops for  Fluid Catalytic Cracking Units.
The Fluid Catalytic Cracking (FCC) Unit control problem is a challenging task due to its model complexity, nonlinear dynamics,
constrained variables and cross coupling interaction between inputs and outputs. Predictive control has been used to control
FCC units and to optimize their production cycles. However, the complex interaction among the process variables and the
constrains on the manipulated and controlled variables causes the computing cost to be high and time consuming. The proposed
control strategy targets the simplification of the global control-optimization problem by including a low-level multi-input multi-
output linear controller whose primary objective is to minimize the cross coupling between the plant inputs and outputs. Having
achieved diagonal dominance at low frequency, a multi-input multi-output PI controller is then tuned to fulfill performance and
robustness specifications. A dynamic model, based on Moro and Odloak’s model (1998) for the Kellog-Orthoflow model F
reactor/regenerator system, is used as the “plant” through the modeling and control design procedures. Multivariable techniques
in the frequency domain are used to perform analysis, to obtain system decoupling and to design and validate the closed loop
low-level multi-input multi-output linear controller. Simulation results are finally presented.

Keywords Multivariable Control. FCC Control. Chemical Industry.

Nomenclature

u1 = Air Flow Rate to Regenerator Control Signal
u2 = Fresh Catalyst Valve Control Signal
u3 = Total Feed Flow Rate Control Signal
u4 = Feed Temp at Riser Entrance Control Signal
y1 = Regenerator 1st Stage Dense Phase Temp.
y2 = Regenerator 2nd Stage Dense Phase Temp.
y3 = Estimated Cracking Reaction Severity
y4 = Riser Cracking Mixture Temperature
[A,B,C,D] = State Space Realization
[An,Bn,Cn,Dn] = S. S. R. of the Nominal Plant
[Ar,Br,Cr,Dr] = S. S. R. of the Residual Plant
[Gn] = Controller Gain Matrix
[Kn] = Observer Gain Matrix
K = Scalar Static Gain
Gij(s) = Scalar Transfer Function
Nij(s) = Numerator of a Transfer Function
Dij(s) = Denominator of a Transfer Function
Kpij = Proportional Gain of  a PID Controller
Kii j  = Integral Gain of a PID Controller
[G(s)] = MIMO Plant Matrix Transfer Function
[K(s)] = MIMO Controller M. Transfer  Function
[U(s)] = Plant Input Vector in Laplace Domain
[Y(s)] = Plant Output Vector in Laplace Domain
[R(s)] = Setpoint Vector in Laplace Domain
[E(s)] = Output Error Vector in Laplace Domain

1  Introduction

Most industrial processes are usually constituted of
a large number of low-order nonlinear sub-systems.
As a consequence of that, industrial processes are
usually described by high-order nonlinear
multivariable models. In the neighborhood of some
operating point,  the nonlinear models can be

approximated by linear models of usually very-high
order. These models, although linear ones, are not
suitable for control design purposes due to their
high dimension.

This work presents a heuristic modeling and
control design procedure that requires model
accuracy only at low frequency. It shows that
parameter identification from process data, model
linearization and output feedback control are
feasible procedures for large scale multivariable
industrial plants that usually present strong cross
interaction between their inputs and outputs.

Section 2 presents a brief review on the general
control problem of large scale systems (LSS)
control problem. Section 3 reviews some basic
ideas in multivariable control. Section 4 addresses
the modeling  problem of an FCC unit. Section 5
shows the controller design procedure. Finally,
Section 6  presents simulation results of the
proposed control strategy applied to a Fluid
Catalytic Cracking (FCC) Converter.

2  The LSS Control Problem -- A Br ief Review

The term "large scale systems" (LSS) is usually
applied to processes whose high-order
mathematical model requires some kind of model
reduction for control design purposes, such is the
case of flexible large space structures,
petrochemical processes and paper mill plants.

The fast development of the space industry has
produced new control techniques for large-scale
systems, which have not been fully tested,
particularly outside the space research environment.
New modeling and control techniques for large-
scale systems have to be tried and compared with



the classical and well -accepted control algorithms.
This is the case of the worldwide well -consolidated
petrochemical industry.

To face the control problem of FCC units,
several alternatives can be found in the technical
literature. For the sake of the argument and
considering the structure of the control algorithm as
the classifying element, the wide spread set of
control techniques for MIMO systems might be
loosely grouped in four fundamental strategies.

2.1. ROM Based State Feedback Control

The control problem of  large scale systems has
been a main issue among the control community
due to its challenging characteristics.

The diff iculty in obtaining an accurate plant
model has led to the development of several design
techniques based on some reduced-order-model
(ROM) of the plant.

In this case, the plant is partitioned as shown in
Equation 1. The nominal plant [An Bn Cn Dn]
corresponds to the plant reduced order model which
is believed to be accurate. The unknown residual
plant [Ar Br Cr Dr] represents model uncertainties
and unmodeled dynamics. Thus, the plant partition
becomes:
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The control law is designed based on the plant
reduced order model.
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In this case, the observer equation is given by
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Defining nnx xxe ˆ−= , the closed loop

state space equation will be given by
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The main drawback of this approach is that
there are no formal means to assess closed loop
stabilit y. The terms [Br Gn] and [Kn Cr]  are known
as control spill over and observation spill over,
respectively and because of them there is no
guaranty that the closed loop system will remain
stable.

This is especially important  in the case of LSS
in which the dimension of [Ar Br Cr Dr] is usually
larger than the one of [An Bn Cn Dn]. Further
discussion can be found in Balas (1982).

2.2. Model Based Predictive Control

Model-based predictive control (MBPC) is a large
family of control algorithms developed around
certain common ideas. The basic approach behind
the predictive control family is to use a simulation
model to predict the future behavior of the plant
and  to use this information to implement some
optimal control law. MBPC can be used to control
a great variety of processes, from plants with
relatively simple dynamics to those with more
complex ones.

Several predictive control algorithms have been
proposed by the control community. Some relevant
contributions were produced by Campos and
Morari (1987), Muske and Rawlings (1993), Zheng
and Morari (1995). Mile stone surveys were given
by from Richalet et al (1978), Garcia et al (1989),
Qin  and Badgwell (1997) and Mayne et al (2000).

One of the most popular MBPC strategies, in
both, industry and academia, is the Generalized
Predictive Control (GPC) method proposed by
Clarke et al (1987, 1989). It is argued that the GPC
technique can deal with unstable and non minimum
phase plants and the control law has an explicit
solution for the case of linear plants (with no
constrained variables). Considering the GPC
original idea, a diversity of control schemes have
been proposed by the scientific community and they
might be considered as subsets or limiting cases of
the GPC approach.

Predictive control has been used as a suitable
approach to solve the control problem of complex
large scale systems. Furthermore, since the basic
concepts are very intuitive, predictive control has
become a particularly attractive control strategy.

However, the computational eff iciency of the
control algorithms is frequently poor and time
consuming, especially in the case of complex
nonlinear plants. Besides that, predictive control
schemes require accurate plant models to reach
good performance. The practice has shown that the
controller performance is strongly dependent on
model accuracy that makes the model identification
and parameter estimation strenuous tasks,
particularly in an industrial environment.

2.3. Artificial Intelligence and LSS Control

Intelli gent Control is a broad term for control
strategies that basically include three aspects of the
artificial intelli gence area: Neural Network Based
Control, Fuzzy Control and Knowledge-Based
Control.

Although important results can be found in the
technical lit erature there still are no answers to
fundamental questions that come from the control
area. Disturbance compensation and measurement
noise reduction are basic objectives in the
controller design that are not easily evaluated in the
artificial intelli gence framework.



2.4. MIMO Output Feedback Control

Output feedback has been the industrial standard
for control purposes not only to shape the plant
response, fulfilli ng performance specifications, but
also to deal with output disturbances and model
uncertainties. Traditionally, the industrial control
community has relied on the intrinsic robustness of
output feedback controllers to face the control
design problem for SISO plants. A diversity of
controller tuning algorithms has been successfully
developed and applied to SISO industrial plants.
Behind this success there has always been a
property that exists for all physical system, the
dominance of the low-frequency poles in the system
time response. This fact has been the background of
nearly all robust control design techniques.
Considering this concept in the controller design,
there is no need for solving the modeling problem
as rigorously as it could be required without the
pole dominance property.

Several attempts have been made to extend the
SISO design techniques to the MIMO case. With
some exceptions, the success of MIMO control
design also depends on the pole dominance
property. In this context, the size (order) of large
scale systems becomes less important when
compared with the usually strong input-output
cross-coupling existent in MIMO systems. In recent
years, the research has been focused in new
uncoupling techniques. It is worthwhile to mention
the pioneer contributions from Bristol (1966),
Kouvaritakis (1979), Mees (1981), McAvoy,
(1983) and Grosdidier and Morari (1986). Some
characteristics of these techniques are:
a) The design procedure is usually carried out in

the frequency domain.
b) Model uncertainties are easily represented in the

frequency domain (particularly, non structural
uncertainties).

c) In general, low frequency models are accurate
enough for control design in this environment.

d) The standard PI controllers (that responds for
more de 90% of the industrial controllers) are
designed to perform in the low frequency.

e) Output disturbances are usually low frequency
signals.

3  Multivar iable Control

This section presents a brief review of the basic
concepts on multivariable control systems. The
following is based on the books from Maciejowski
(1989) and Skogestad et al (1996).

The system output, y(s), is given by a matrix
function of the form

)()()()()()()()( smsTsdsSsrsPsTsy −+=  (6)

where r(s) is the reference input, d(s) represents the
disturbances and m(s) is the measurement noise.

In this case, S s( )  is known as the output
sensitivity function and is defined as

1)]()([)( −+= sKsGIsS  (7)

the system closed loop transfer function (or
complementary sensitivity), T(s), is then given by

)()()()( sKsGsSsT = (8)

The input sensitivity function is defined as
1)]()([)( −+= sGsKIsS i                (9)

and its corresponding complementary function as
)()()()( sSsGsKsT ii =             (10)

A multiplicative model for the plant uncertainty
can be written as
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Hence, the following criteria to assess the
system performance and stabilit y can be
established:
• The criterion for nominal performance is

defined by
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∞
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 where Wp(s) is a performance weighting matrix and
has the form

 [ ]IswsW pp )()( =      (13)

 in this work, the nominal performance criterion was
specified as
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 where σ [.]  is the greatest singular value of [.]
• The criterion for robust performance (non

structured uncertainty) is given by
 ( ) ( ) 1)()()()( ≤+ sTswsSsw iiip σσγ    (15)

 where γ = min(plant condition number, controller
condition number).
• The criterion for robust stabilit y (non

structured uncertainty) is defined by
 1)()( <∞sWsT i      (16)

 where W si ( )  is an uncertainty weighting matrix and
has the form

 [ ]IswsW ii )()( =      (17)

 in this case, the criterion for robust stabilit y was
chosen as
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• The robust performance condition for
structured uncertainty (Doyle et al, 1981) is

 ( ) ωµ ∀< 1)(sQ          (19)

 where, the matrix Q s( )  is defined as
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• The robust stabilit y condition for structured
uncertainty (Doyle et al 1981) is given by

( ) ωµ ∀< 1)(22 sQ       (20)

Equations from (12) to (20) are used in Section
6 to validate the controller design.

4  The FCC Linear Model

The results presented in this section show that it is
always feasible to determine an accurate linear
model for large scale plants, particularly, for FCC
units.

The modeling of Fluid Catalytic Cracking
Converters is one of the most challenging problems
in the petrochemical industry. To be able to test and
compare new control algorithms a test bench was
established, in this case a numerical model for
simulation. In the context of this work, an FCC
nonlinear dynamic model was chosen as a
benchmark by the Chemical Processes Control
Group, created under the RECOPE Program,
sponsored by the FINEP Brazili an Agency.

The benchmark model is basically the same one
as presented by Moro and Odloak (1998) for the
FCC Kellog Orthoflow F Reactor/Regenerator
Unit. It is used here to ill ustrate the whole control
design procedure: from modeling and parameter
identification through out controller design and
closed loop simulation.

Experimental data (for the modeling and
parameter identification procedures) was generated
using the benchmark nonlinear model. Although,
the original FCC nonlinear model is a medium scale
one. The resulting linear model is excessively large
for full -order linear control design purposes, as it
will be shown in the next sections.

The model identification was performed using
the Eigenvalue Realization Algorithm (ERA)
introduced by Juang and Pappa (1985). The ERA
procedure starts with a Hankel matrix built from the
plant impulse response. Then, a minimal order
realization can be found from the Hankel matrix
through a matrix factorization based on its singular
value decomposition (SVD). The singular values of
the impulse response matrix produce a quantitative
measure to determine the model order.

In this case, the benchmark “plant” was a 4x4
MIMO nonlinear system. It was observed in
simulation and verified through analysis that y1(t)
and y2(t) are strongly correlated as well as y3(t) and
y4(t), as shown in Figure 1. Thus, only two inputs
and two outputs were considered for design.

Applying the ERA procedure to the full “plant”
a 2x2 MIMO linear model was obtained
corresponding to a Matrix Transfer Function
(MTF) of the form:
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5 The MIMO Controller Design

Recently, research has been focused in solving the
FCC control problem and the production
optimization in one single step. A fine predictive
control algorithm would include both problems and
solve them in one package (Moro and Odloak,
1998). A drawback of this approach is that the
transitory performance is not usually considered in
the control design.

Here, an alternate approach is suggested. It is
shown that the global controller structure may
include an inner loop designed to solve a linear
control problem and an outer loop (the predictive
control and optimization algorithm) placed to fulfill
economics and operational specifications.

The main objective of this work is to introduce
a design procedure for the inner loop, which
corresponds to the control of a MIMO
unconstrained linear plant. The inner loop is
designed to fulfill performance specifications, to
reduce plant disturbances and to compensate for
model uncertainties.

The proposed strategy is basically a frequency-
domain procedure. In this case, the MIMO
controller design is carried out in two steps. First a
MIMO pre-compensator, K1(s), is designed to scale
the system and reach diagonal dominance at low
frequency and then a MIMO controller, K2(s), is
designed to meet performance specifications.

Then, the control law has the form:
[ ] [ ] [ ] [ ])()()()()( 21 sYsRsKsKsU −=  (22a)

or
[ ] [ ] [ ])()()( sEsKsU =            (22b)
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In the case of a 2x2 MIMO PI controller,
Equation 23 becomes:
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Several techniques for multivariable loop
shaping can be found in the literature
(Maciejowski, 1989, Skogestad, 1996, Ho & Xu,
1998). Following a simple trail and error
procedure, an acceptable performance was achieved
using:
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6  Simulation Results

Simulation results are presented here to ill ustrate
the proposed design procedure that includes:
modeling, model validation, controller design and
finally control system analysis and validation.

Figure 1 shows the simulation results for the
4x4 MIMO FCC plant. It can be seen the strong
correlation between outputs y1(t) and y2(t) and
between y3(t) and y4(t). Figure 2 shows the results
for the 2x2 MIMO model validation. In this case,
the ERA procedure led to a 90th order model. It
can be seen that the model time response fits the
plant response almost perfectly. Figure 3 presents
the open loop plant frequency responses. It can be
observed the high values of the cross-coupling
gains. Figure 4 displays the open loop plant step
responses. Figure 5 presents the simulation results
for the closed loop system. A unit step signal was
applied to the plant inputs, u2(t) and u4(t), one at a
time. In this case, the control tuning led to a fast
time response. Figure 6 shows the weighting
functions, the controller frequency response, the
open loop principal gains and also the nominal
performance for the plant + controller open loop
system. Finally, Figure 7 presents the system
robustness characteristics for non structured and
structured uncertainties based on the criteria given
by Equations 14 and 18.

7  Final Comments and Conclusions

This work presented a frequency domain procedure
for modeling and control design of large scale
systems. The procedure was applied to the model of
a Kellog-Orthoflow Reactor/Regenerator Unit that
was adopted as the “plant” to ill ustrate the
performance of the chosen strategy.

The proposed scheme can be seen as a pre-
conditioning multivariable linear controller that
shapes the plant dynamics in order to simpli fy the
subsequent steps of the FCC global control-
optimization problem.

It was shown through a challenging example
that the control problem of high order MIMO
systems has a solution by using multivariable
output feedback control. It was also seen that
control design  in the frequency domain is a proper
technique to deal with the modeling and control
problem of nonlinear large scale systems. It has
been verified that only the low frequency part of the
linearized model requires to be accurate to satisfy
steady state specification.

Finally, the results obtained in simulation are
good enough to validate the proposed technique
and to point out toward a feasible strategy for the
solution of the FCC global control problem.
However, in the scope of this paper, no attempt was
made to solve the control problem under variable
constrains, therefore, the results are not fully
conclusive yet and further research has to be done.
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Figure 1. The 4x4 MIMO Plant Pulse Responses
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Figure 2. The Model Validation Tests.
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Figure 3. The Open Loop Plant Frequency Responses.
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Figure 4. The Open Loop Plant Step Responses.
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Figure 5. The Closed Loop Plant Step Responses.
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Figure 6. Frequency Domain Analysis.
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Figure 7. Control Robustness Validation.


