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Abstract— In this article, the control of constrained nonlinear systems is tackled using reference governors.
The classical governor is designed using a Lyapunov-like approach. It is then replaced by a new blocks which are
based on artificial intelligence techniques. The objective is to allow future embedding of neurofuzzy adaptation

features to accommodate uncertainties of the model.
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1 INTRODUCTION

The control of nonlinear systems has received
widespread attention in the last years as indi-
cated by a number of excellent textbooks such as
(Khalil, 1996), (Slotine and Li, 1991), (Sontag,
1990), (Zabczyk, 1992). Classical linearization
methods work well when the model is accurate
and the input reference signal is well conditioned
and have low amplitude. However, this may not
be the case for a general class of input commands
such as large input steps or when uncertainties are
considerable.

In order to treat the problem of constraints,
the use of the reference governor (RG) approach
is proposed (Bemporad, 1998), (Gilbert and Kol-
manovsky., 1999), (McNamee and Pachter, 1999),
(Miller et al., 2000), (Rossiter and Kouvaritakis,
1998), and a case of a large input step size is used
as an example.

The main idea is to guarantee the constraint
satisfaction for a general class of input commands
while stability is assured by a local controller. An
inner loop controller (ILC) is required so that it
provides an adequate performance around the de-
sired set-points but without considering the con-
straints. Thus, this controller is responsible for
the system performance (e.g. stability or asymp-
totic stability) in the regions where the system is
free of constraints. Therefore, if the boundaries of
a specified region is not reached, then the actions
of an adequate ILC shall be sufficient to assure the
system stability and the RG action is not needed.

As the proposed system is nonlinear and the
ILC does not consider the constraints, changes
such as input steps in the reference signal r(t)
must be bounded and well conditioned. Thus, the
RG receives the desired reference R4(t) and pro-
vides to the ILC a secondary input reference r(t)
as close as possible to the desired reference Ry(t)
but taking into account the constraints satisfac-
tion while guaranteing that r(t) — Rg4(t) when
t — oo.

Because the RG theory is affected by model
uncertainties, the idea is to replace it by an intel-
ligent block using artificial intelligence techniques
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Figure 1. The Reference Governor Scheme

such as Artificial Neural Networks or Fuzzy Logic
Controllers. Adaptation features are then pro-
vided and the main idea is to conceive laws that
are able to fine tuning the proposed governors so
as to improve the control action. Therefore, the
intelligent controllers may be able to treat model
uncertainties.

In the section 2 the RG theory is revisited
and section 3 presents an specific structure of an
ILC to be applied. Section 4 provides a practi-
cal example. Intelligent governors are proposed in
section 5. Numerical results are shown in section
6 and the conclusions are presented in section 7.

2 THE REFERENCE GOVERNOR

2.1 The aim of the RG

The use of the RG requires an ILC which guar-
antees safe operation and adequate performance
around the desired equilibrium points without
considering the constraints. It means that if the
constraints are not violated, the use of an ade-
quate ILC is enough to satisfy the control objec-
tives and the use of the RG is not required.

However, for a general class of input command
such as large input step size, the ILC is unable to
avoid constraints violation. Thus, when a possi-
ble constraints violation is detected, the idea is to
enable the use of the RG. In order to avoid the
constraints violation the RG receives the desired
reference signal Ry(t) produces a reference signal
r(t) which is supplied to the ILC, as shown in
figure 1. The RG also keeps r(t) signal as close
as possible to the desired R4(t) but subject to
constraints while guaranteeing that r(t) — Rg(t)
when t — oo.

The RG design requires a function V,.(z) >0



State's space
S
)

Figure 2. Mapping a reference r to a basin of safe operation

in the sense of energy.

Consider that for each instant ¢t = ¢;, r(t)
is constant and let it be equal to r and define
g(r) > 0 to be a function which guarentees that
V,.(z) is bounded. It means that for each refer-
ence signal r, g(r) represents an upper bound that
should be computed and the constraints violation
are avoided since V,.(z) < ¢(r). Therefore, the
RG must provides to the ILC an input reference
r such that V;.(x) < ¢(r) Vt.

Also, consider that the desired set-points (i.e.
possible values for r) are restricted to a nonempty
compact and convex set S and maps the state
x according to z(t) € w(r) = {z: Vi(z) < q(r)}.
Figure 2 illustrates the main ideas.

Note that the use of an ILC is responsi-
ble to provide m(r) as a basin of attraction, i.e.
z(t) € m(r) such that: 0 < V.(2), V, (z) <0,
and V;.(z) = 0 = 2 = 24(7), i.e., V 2(0) € 7(r)
implies that

{ x(t) € m(r)Vt (1)

z(t) = xeq(r) when t — oo

where z.4(7) is an equilibrium point for the system
when using r as a constant input reference signal.

2.2 The constraints

For instance, let H(z,u) < 0 represent the non-
linear constraint which in closed loop is character-
ized by h(z,r) < 0 and suppose that z € 7(r) =
h{z,r) < 0. The objective is to find the largest
g(r) which satisfies 7(r) i.e., Vr € S implies that
q(r) >0 and z € 7(r) = h(z,r) <0.

2.8 The reference signal

Let Rg4(t) be the desired input reference, for in-
stance, consisting of a single step:

r; for t <0
Rd(t){rf for t>0 (2)

and consider |ry — r;| large enough. Also assume
that the system is initially at the equilibrium point
Zeq(rs). Note that there is no difficulty if |rp — 7|
is small enough, but the closed loop system can
not guarantee safe operation for input steps of any
size, and specially when zo(rf) = zeq(r;) ¢ w(ry)
as graphically described in figure 3.

Remark 1 It is also considered that for t = t;,
R4(t) is constant and for sake of simplicity it is

denoted Ry.
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Figure 3. Example of a maping leading to unsafe operation
for the closed loop system

Therefore, as shown in figure 1, for each in-
stant ¢t = t; the RG receives the desired reference
R, and must compute the new reference r to be
supplied to the closed-loop system such that the
constraints are satisfied, i.e., it computes r as close
as possible to R4 but satisfying zo(ry) € 7(ry).
Hence r(t) — Ra4(t) when t — oo and it guaran-
tees that h(z,7) <0,V t>0.

3 A specific ILC

Before analyzing the RG, an adequate ILC should
be designed. For a constant input reference signal
equal to 7, consider an equilibrium point z.q(r)
and an initial condition zg(r 4 §). The ILC must
guarantee that there is some § > 0 such that x(%)
is asymptotically stable, i.e., 2(t) — z¢4(r) when
t — o0o. Hence, a basin of attraction as required
in (1) is then characterized.

Since the RG simply requires a local con-
troller, simpler controllers such as the linear ones
could be used. However, the exact feedback lin-
earization theory can yield good performance in
a larger operation region (e.g. (Khalil, 1996),
(Slotine and Li, 1991), (Sontag, 1990), (Zabczyk,
1992)). Therefore, it is selected in order to design
a specific ILC to be used at this work.

Consider a nonlinear system of form:

& = f(x) + g(z).u ®3)

Using the proposed control theory, if equation (3)
can be written as

= A, + Be,ﬁfl(x) [u — a(x)] 4)

where A, is an n X n matrix, B, is an n x 1 matrix,
the pair (A, B.) is controlable, « : " — R is
defined in a domain D, C R*, 8 : R* — RN is
defined in a domain D, C %", 3(z) #0 Vz € Dy;
then one can use the following control law:

u=a(z)+ B(z)v (5)

Thus, using equations (4) and (5) it yields the
linear expression & = Ae.x + Be.v

For the linear system, a state feedback is then
used for pole placement v = r — K.z where K is a
gain vector, then # = (4, — Be.K) .2 + B..r, or,
in an equivalent form:

T = A,z + B..r (6)



where A, = A, — B.. K
The block diagram of the ILC scheme is shown
in figure 4.
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Figure 4. Inner loop controller scheme

4 APPLICATION EXAMPLE

The RG can be used with a large variety of plants
and controllers. For sake of simplicity and focus
on the intelligent approach of the governor, this
article adopts a simple plant as an example which
the nominal results basing on the nominal RG are
already published in (Miller et al., 2000).

4.1 The plant

Consider a mass-spring damper, controlled by a
current ¢(t), as shown in figure 5. Tthe differential
equation that govern the system has the form

a i)

1) = —d(t) = () + S (1)

For practical purposes, let the following val-
ues: m = 1,54 (mass), k = 38,94 (constant
of elasticity), ¢ = 0,0659 (damping coefficient),
i(t) =control variable (current), do = 0,0102 (dis-
tance d(t) for i = 0), a = 4,5 x 107%, 3 = 1,92,
v =1,99.

Note that three constraints could be consid-
ered: d,,q. as the larger displacement of the mass
m preventing the contact with the electromagnet;
the control action only pulls the mass, it cannot
push and finally the maximum current, i.e., i(t) is
bounded.

Choosing as the state variables z; = d(t) ,
x = d(t) and the control signal u(t) = i(t)?, the
equation (7) can be rewritten as

=15 e ] e ]
(®)

L@i d(t)

i) 4

Figure 5. Plant mass-spring damper

or in an equivalent form:

{:bl = :cgk . ©)

po — _ < 1
Ty = —72.T1 — 7-.22 + m do—z1)7 U

which is clearly nonlinear.

4.2 The internal loop controller

As proposed before, the first task is to design an
exact feedback linearization to some serve as the
ILC. Thus, let the control law of form:

u(t) = (do — 21)Y.(k.r — cq.x2) (10)

(0%

where ¢4 > 0 is a desired damping coefficient.
Using the control law proposed in equation
(10), the expression (8) becomes:

B[ e [m] ¢ [2]

m m m

which is linear and stable because the constants
k, m, c and ¢y are always non-negative. Compare
to equation (6) to rescue the practical values of
A. and B..

4.3 The constraints

In spite of the variety of possible constraints,
the paper focuses on the physical constraint
d(t) < dmas- Saturation problems with the elec-
tromagnet as well as with the current source
are not considered. Different applications and
detailed analysis of more complex systems are
found in (Schnitman and Yoneyama, 2001a),
(Schnitman and Yoneyama, 2001c), (Schnitman
and Yoneyama, 2001b). In this paper, the con-
straint function is simply described as h(z,r) =
d(t) — dpmaez < 0 which leads to the set S C
[Oadmam [

4.4 Design of the RG

A Lyapunov candidate function can be the energy
function, i.e.,

V@) =Bt s (12)
2 2
~ Using (11) it can be immediately verified that
V. = —(c+ ca).x3, <0, as expected.

As described in the last section, the main
objective of the RG is to maximize ¢(r) such
that m(r) = {z : Vi.(2) < ¢(r)} satisfying the con-
straint € w(r) = h(z,7) < 0. As shown in
figure 6, for a specific reference r, use the fron-
tier h(z,r) = 0 to define ¢(r), i.e. ¢(r) = min,
V.-(z) subject to h(z,r) = 0. In such case g(r) is
computed as:

4(r) = 5 (dmaz —7)? (13)
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Figure 6. Graphic to analyse constraints

Define a constraint function
C=Vr(z)—q(r) <0 (14)

in order to consider V,.(z) < ¢(r). Combining (12)
and (13) one gets:

C= k <%mg + 22 — dfmw) + ko (dmaz — 21)
(15)
From C < 0, equation (15) yields r <
p(z1, z2) where

1 _
p(w1,2) = ) (dgnam - x? - %x%) (dmaz — 21) .
(16)
Finally, the RG control algorithm simply be-
comes:

{If C<0=r=Ry (17)

If C>0=r=p(r1,z2)

4.5 Graphical analysis

Note that the numerical effort involved in RG is
basically the computation of p(z1,22). However,
it is possible to use the equation (16) to visual-
ize the desired surface as shown in figure 7. This
figure also shows the trajectories of the simula-
tion with dee = 8 x 1073 and input step size
from Ry = 1 to 7 x 1073, Figure 8 presents a
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Figure 7. Desired surface and trajectories

two-dimensional plot for the same simulations. In
both figures, the single dot means that the RG
is idle (e.g. for small input step size) and the
stronger dot means that the performance of RG
is necessary to guarantee the nonviolation of the
constraints.
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Figure 8. Phase-plane portrait under RG

Inspecting figures 7 and 8, it is possible to
note that the RG is always necessary for input step
size larger than d*’é‘””. In such cases (A=5,6,7), as
expected, the trajectory are initially the same and
differ only when the constraint boundaries become
closer.

5 INTELLIGENT GOVERNORS

5.1 Input and output domains

This paper proposes to train a first order Takagi-
Sugeno-Kang fuzzy structure and a neural struc-
ture in order to reproduce the nominal governor.
The intelligent blocks have two inputs (z1, z2) and
one output (p;). The objective is to model the de-
sired surface as described in the last section.

Therefore, before designing the fuzzy or neu-
ral governor it is important to define the in-
put and output domain. In the present case
the following data were found to be adequate:
Ty = [Oydmaz - 5] , T2 = [072-dmaz] y pf =
[iﬂzms,dmam] ; where € > 0.

Once the solution surface has already been
determined as shown in figure 7, a first proposi-
tion is simply to design intelligent systems which
are able to reproduce it. It is important to note
that the trajectories are also known. Hence, it is
not necessary to reproduce the whole surface but
simply the neighborhood of these trajectories.

5.2  Fuzzy Governor

For sake of simplicity, is assumed the uniform dis-
tribution of input membership functions (MF) as
shown in figure 9 where A = d,,q, for z; and
2.dppqg Tor To.

In order to linearize the surface, the fuzzy rule
base becomes:

If xzis JWFf and 2o is MFQi = py = fi(zy, 29)

(18)
where M F} and MFi are the MF associated to
the antecedents of the i* rule and f;(x1,z2) is a
plane defined through the a;, b; and ¢; parameters,
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Figure 9. Uniform distribution of input MF

ie.f(r1,22) = a.xq1+b.xg+c which are associated
to the consequence of the i** rule .

Rule extraction

In order to extract the fuzzy rules, use the data
pairs (x1,x2) provided in figure 7 and the respec-
tive desired output p(z1, z2) (or simply the desired
trajectory and its neighborhood) and group each
pair (x1,72) which active the same inputs M F}
and MF} to define the antecedent part of each
rule. For each group (rule) complete the equa-
tions:

p1(z1(1), z2(1))
pa(21(2), 22(2))

z1(n) z2(n) 1 pr(21(n), 22(n))

Now any standard technique to solve the sys-
tem of equation (19) can be employed. For ex-
ample, use least squares to estimate the best pa-
rameters [a;, b, ¢;]. Thereby, each rule is simply
represented by the best plane that fits the desired
surface region. (See details in (Schnitman and
Yoneyama, 2000)).

5.8 Neural governor

A simple neural network is proposed. It has a sin-
gle hidden layer with six neurons (hyperbolic tan-
gent) and one linear neuron to perform the out-
put signal. The weight and bias are initialized
randomly and trained under (€) Matlab using the
Levenberg-Marquardt procedure for 500 epochs.
The obtained network has the following data:

[ —0,7459 0,1146 (17,4235
—5,6212 —0,1268 50, 1825
| 15185 0,1011 | g | 78,0596
! 0,1572 0,0210 o —2,4893
0,3564 —0,1953 1,6330
—0,1632 —0,0253 4,2108
[ —5,7883 i )
86,6601
ws = [ o o by = [39,1439)
0, 0004
| 5,6788

(20)
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Figure 10. Fuzzy simulation results
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Figure 11. Fuzzy reference evolution

6 NUMERICAL RESULTS

For the practical values as defined in Section 4.1),
set the constraint dye, = 8 x 1073 and a single
step to 6x 1073, Figure 10 shows the simulation re-
sults using the fuzzy governor and figure 11 shows
the governor ’s output, i.e. how r(t) — Rd(t)
for conventional and fuzzy governors. Figures 12
and 13 shows the obtained results when the neu-
ral governor is used and also comparing with the
nominal governor performance.

7 CONCLUSIONS

The control of constrained nonlinear plants has
many relevant practical applications. Despite the
successful use of linearization methods to design
nonlinear controllers, they usually do not accom-
modate constraints Hence, the RG approach may
be a very useful tool to treat nonlinear constrained
systems.
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A ] ]
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i g , LN \ \
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Figure 12. Neural simulation results



=)

r(t) evolution
S 1

w

o N

0 100 200 300 400 500
Simulation Time(s)

Figure 13. Neural reference evolution

On the other hand, the original RG approach
is restricted to the cases where the models are well
known. Thus, the proposed governors may accom-
modate model uncertainties and the structure is
suited for addition of a neurofuzzy learning mech-
anism. Moreover, as described in the section 3,
the rules and MF that compose the fuzzy rulebase
as well as the data pair used to neural training
are extracted directly from the simulation of the
nominal blocks, so that the intelligent governors
are able to reproduce the nominal performance for
the ideal case.

The objective is now to propose adaptation
laws in order to improve the controller perfor-
mance. On the other hand, notice that providing
an adaptation law which simply tries to minimize
a cost function (usually based on the error) may be
easy to be obtained; however, the learning about
the constraints will probably be forgotten, unless
the constraints compose the cost function. More-
over, an intelligent governor simply reproduce a
desired solution surface. Hence, even if the adap-
tation laws be found, the mathematical formula-
tion for its convergence and the new proof of the
stability may also be hard.
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