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Abstract The most controller design schemes were developed based on the dynamic behavior of the plant by a priori model, 
which is not always valid, because the model used for the controller design may not well represent the dynamic behavior of the 
plant in closed loop. Thus, the performance of the control system may seriously degrade. Therefore, it is need iterative controller 
design schemes, consisting of closed loop plant model identification and controller redesign based on identified model cycles. 
This paper present an adaptive weighted instrumental variable (WIV) algorithm for system identification based on the numeri-
cally robust orthogonal Householder transformations. The selection and use of chosen instruments shows acceptable results: the 
instruments present desirable statistical properties resulting in an asymptotically unbiased estimate. Simulation example and ex-
perimental results of speed DC servomechanism identification, by open loop and closed loop ( direct method and two steps 
method ), show the consistence and good accuracy of the estimate, important in identification for control. 

Keywords closed loop identification; parameter estimation; instrumental variable; adaptive algorithm; Householder orthogonal 
transformations.  

1    Introduction 

Often in the area of  identification system, a 
common concern and important problem is that the 
input and output measurements may be contaminated 
by noise. Another source of random noise in the 
measured data is that the system to be identified is 
also driven by disturbance at some point. It is a 
common problem in closed loop identification where 
many of the identification methods, that work well in 
open loop, fail when applied directly to measured 
input-output data(Hjalmarsson, Gevers and 
Bruyne,1997)(Schrama and Hof,1995). The reason is 
the nonzero correlation between the input and the 
unmeasured output noise that is inevitable in 
adaptative control schemes. For low levels of noise by 
using least squares (LS) method, for example, may 
produce excellent estimates of the system parameters. 
However, with larger levels of noise may require 
some modifications in this method to overcoming the 
inconsistency problem induced by noise acting on the 
system. Many kinds of modified least square method 
have been developed such as the generalized least 
square (GLS) method, the extended least square 
(ELS) method and prediction error (PE) method, 
where the noise model needs to be estimated at same 
time as the system parameters are being estimated. 
Thus the results of these methods are inevitably 
dependent upon the accuracy of the noise model and 
some constraint conditions on it must be satisfied in 
these methods to obtain consistent parameter 
estimates(Broman and Anderson,1996)(Zhang ett 
all,1997). In general, however, it is very difficult to 
model the noise accurately and it is also hard to know 
a priori whether the noise model satisfies these 
conditions. To overcoming the bias problem without 
modelling the noise, the instrumental variables (IV) 

method can be developed. It provides a promising 
way to obtain consistent estimates which have certain 
optimal properties by choosing proper instrument 
variables (Wilson and Carnal,1993)(Broman and 
Anderson,1996). 

This paper presents a weighted instrumental 
variable (WIV) algorithm based on orthogonal 
transformation via QR factorization to obtain the 
properties below presented. Simulation and 
experiments results show the efficiency of algorithm 
with the instrument variables proposed applied to 
direct and indirect identification of linear and 
nonlinear systems discussed in (Van den Hof and 
Schrama,1993) and its application to self-tuning 
control design, important in industrial control 

2   Problem Formulation 

Consider the ARX structure  
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where u(t) and y(t) are the system input and output, 

respectively. tξ  is an unknown noise disturbing the 

system. Denote : 
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Then the system eqn. 1 can be expressed by following 
vectorial form : 
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where 
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with p equal the dimension of the problem, i.e. 

nanb+ and n is the number of sample. 

We seek to obtain a consistent parameter estimate 
for the parameter θ  from the available observed 

data{ }n
tt uy 1,  so that the error te  between the meas-

ure output of the system yt and the output of the asso-

ciated model tŷ  is minimum in the least square 

sense, this is, the vector θ̂  that solves 
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or in normal equations form 
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3    Der ivation of the algor ithm 

When studying the performance of numerical 
algorithms, the concepts of ‘numerical stability’  and 
‘conditioning’  are of fundamental importance. The 
former is a property of the algorithm that is used for 
carrying out the computations, whereas the latter is a 
property associated with the computing problem and 
the data given for the problem. The numerical errors 
in any computation will depend on the stability of the 
algorithm used and the conditioning of the problem, 
and not the algorithm. The our algorithm uses or-
thogonal matrices to solve the least square problem in 
eqn.(9) by QR factorization. The use of orthogonal 
transformation for solving least squares problems is 
well established, as is the inadvisability of utilizing 
the normal equations (Bobrow and Murray,1993). 
The use of orthogonal transformation matrices is 
preferred because they are easy to invert, giving great 
accuracy and speed computationally, they are always 
perfectly conditioned and backward error analysis is 
simplified considerably when orthogonal transforma-
tions are used. The reason for this is that spectral and 
euclidean norms, which are the ones must commonly 
used in such analysis, are invariant under orthogonal 
transformations(Petel and Laub,1994).  

The orthogonal Householder matrix is of the 
following form 
 

2

2

2
v

vv
IH

T

−=                                                             

(10) 
 

where THH =  and 1−= HH . Householder trans-

formations are often used to annul block of elements 
in matrices or vectors by appropriately selecting the 
Householder vector v in eqn.(10). If x is a nonzero 
vector and ei is an unit vector with 1 in the i-th posi-
tion, then it can be shown that when 
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then 
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The vectors v and x are identical except for the i-
th element. In our analysis, the explicit formation of 
the Householder matrix is not required, which is also 
in most cases. 
 
3.1    Instrumental Variable Method 

The solution of the IV  method is that a Z ma-
trix is defined so that it is uncorrelated with the noise 
and correlated with the input and output. Therefore 
the following conditions must be satisfied 
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where G is a nonsingular matrix. The eqn.(13)-(14) 
guarantee asymptotically unbiased parameter esti-
mates. 

In this paper, the set of instruments is chosen 
to be the delayed measurable inputs, i.e., the t-th row 
of the Z matrix is given by 
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where p is equal the dimension of the problem, i.e. 

nanb+ . 

 
3.2    On-line Identification Algorithm ( WIV ) 

In many applications, the structure of the 
model may be known, but its parameters may be 



known and changing with time because of change in 
operation conditions, aging of equipment, etc., render-
ing off-line parameter estimation techniques ineffec-
tive. Thus, this work was motivated by developing of 
an algorithm that provide frequent estimates of the 
parameters by properly processing the I/O data on-
line and to adapt itself to possible variation of the 
parameters with time. 

The interest problem may be couched as 
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where pn×Z , pn×A , 1p×θ  and 1n×Y  are the in-

strumental variable matrix, data matrix, parameters 
vector and output vector, respectively.  

The eqn.(16) can be rewritten as 
 

WYZWAZ TT =θ                                             (17) 

 

where nn×W  and ( )1.,..,,diag 2n1n
n

−−= λλW , 

with 10 <<λ . The scalar λ  is known as the forget-

ting factor and it is used to place less weight on past 
data. 

Developing both sides in eqn.(17), as Z, W, A 
and Y are known, result 
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where WAZS T
pp =× and WYZb T

1p =× . It is 

worth emphasizing that the resulting order of the S 
matrix and of the b vector are lower than order of the 
A matrix and of the Y vector, because p is equal to 
the number of parameters that will be estimated, im-
plying less computational effort and, consequently,  
greater speed to solution of θ . 

Generically, the Z, W, A matrices and the Y 
vector are given by 
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and 
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Hence, WAZS T
pp =×  result 
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and WYZb T
1p =× is 
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From eqn.(19)-(20), we can observe that the 

elements of the S matrix and of the b vector are sum-
mations that depend of the actual and immediately 
former values, based on the dimension of the prob-
lem, of the input and output measures. This imply in 
generating, directly, i.e., in each sample, S and b, 
without need of a priori batch matricial operations, as 



in eqn.(17), with advantage that the order problem is 
lower to application of the QR factorization. 

Thus, the problem may be couched as that of 
finding the solution of 
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Applying QR factorization via House-holder 

orthogonal transformations, we have 
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and 
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where pp×Q  is an orthogonal matrix, pp×R is an 

upper triangular matrix and 1×pd  is a resulting vec-

tor. Hence, the minimizer of eqn.(21) may be found 

by solving dR =θ̂ by back substitution. The algo-

rithm receive an initial batch data to initial estimation 
and the updating is obtained for simple acquisition of 
input and output data and insert it into summations of 
the matrix S and of the vector b, this is, in the k-th 
sample, we have 
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and 
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The following is the algorithm : 
 
Step 1 : Define a number of input and output meas-
ures to automatic initial estimation. 

Step 2 : Generating the S matrix and b vector from 
eqn.(19)-(20). 
Step 3 : Applying QR factorization by House-holder 
orthogonal transformations to generate eqn.(23). 
Step 4 : Solving eqn.(23) by back substitution. 
Step 5 : Obtaining a new input and output measure. 
Step 6 : Generating the new S matrix and the new b 
vector from eqn.(24)-(25). 
Step 7 : Go to step 3 

4    Results 

In this section, we present a simulation and 
experimental results in order  to illustrate the 
advantages of the proposed method in closed loop 
identification aplications as a basis to identification 
for control. 
 
4.1    Simulation Results 

In order to illustrate the consistency and accu-
racy of the algorithm, consider the same system dis-
cussed in (Van den Hof and Schrama,1993). In our 
application, we added a nonlinear operator as shown 
the Fig. 1. The noise signal v and the reference signal 
r are independent unit variance zero mean random 
signals. The controller is designed in such a way that 
the closed loop transfer function has a denominator 

polynomial ( )230.z− . 

 
Figure 1. Closed loop identification problem. 

 
To implement the proposed algorithm, λ  is 

taken as 0.95, the 25 input and output measures were 
utilized to initial estimation and the total of points was 
2048. 

The direct and the two-step identification strat-
egy is applied with and without the nonlinear opera-
tor. The results are the following: 
 
• Direct method 
 

The Fig. 2 shows the Bode plot of the plant 
transfer function ( blue ), the estimate obtained with 
nonlinearity ( green ) and the estimate obtained with-
out nonlinearity ( red ). 



 
Figure 2. Closed loop identification by direct method. 
 

The results clearly show the good accuracy of 
the estimated models and consistency of the proposed 
algorithm which is important to identification for 
control context. 
 
• Indirect method ( two – steps ) 
 

In the first step, the sensitivity function is es-
timated. In the second step, the transfer function of 
the plant is obtained based on the sensitivity function 
[10]. The Fig. 3 show the Bode amplitude plot of the 
exact sensitivity function ( blue ) and the estimated 
sensitivity function with nonlinearity ( green ) and the 
estimated sensitivity function without nonlinearity 
(red). The Fig. 4 shows the Bode amplitude plot of the 
plant transfer function ( blue ), the estimated model 
with nonlinearity ( green ) and the estimated model 
without nonlinearity ( red ). 

The results show the accuracy of the proposed 
algorithm applied to direct and indirect closed loop 
identification of linear and non-linear systems with 
the advantage that it is don’ t need to model of the 
noise. 

 
Figure 3 Sensitivity function estimate. 

 
Figure 4. Closed loop identification by two-step 
strategy. 
 
4.2    Experimental Results 

In system identification, emphasis has long 
been on aspects of consistency and efficiency, related 
towards the reconstruction of the “ real plant”  that 
underlies the measurement data. However, in real 

situations, models that are identified from data will 
generally be contaminated with errors due to both 
aspects of bias (undermodelling) and variance (Hjal-
marsson, Gevers and Bruyne,1997)(Schrama and 
Hof,1995). The our experiment is to identify speed 
DC servomechanism of our control and automation 
laboratory. This identification process is divided in 
two steps : 
 
Step 1 :  Open loop identification as shown on Fig. 5. 
Step 2 : Closed loop identification utilizing the direct 
method, this is, we ignore the feedback and identify 
the open loop system using measurements of the input 
and the output as shown on Fig. 6. 
 

In the 2 step we use the proportional controller 
of Kp = 1, to illustrate the application of the algorithm 
to closed loop identification and we are concerned 
only with the identificated model analysis. 
 

 
Figure 5. Step 1 : Open loop identification 

 
Figure 6. Closed loop identification by direct method. 

 
To this experiment λ  is taken as 0.95, 25 

pairs of input-output data were utilized to initial esti-
mation, the sample period T is taken 10ms and the 
total of points is 600. The input and reference signals 
is taken as the voltage of 4.0V. The Tab. 2 shows the 
obtained comparative results of the estimates of pa-
rameters in open loop and by closed loop identifica-
tion methods presented. 

 
 
 
 

Table 1. Parameters using the developed algorithm to 
open loop and direct closed loop identification. 



Parameters Open loop Direct method 
a1 -0.227422 -0.165243 
a0 -0.570980 -0.579160 
b1 0.082230 0.094971 
b0 -0.017469 -0.010481 

 
Considering the open loop results as true pa-

rameters, we can note that the accuracy of the direct 
method. It is important emphasizing the effect of the 
nonlinearity from power amplifier circuit and the 
noise signals from the acquisition data system. 

The Fig. 7 shows the estimated and real curves 
of the two cases. 

 
Figure 6. Output estimation to the two cases above 

mentioned with the real curve in red and the estimated 
curve in blue. 

 
The results clearly show the accuracy of the 
estimation by direct method, this is, the real and 
estimated curves are practically equals and, thus, it 
shows the applicability of the algorithm to closed loop 
identification in the sense that the identified model 
represent the dynamic behavior of the plant in closed 
loop which is important in identification for control. 

5    Conclusion 

An adaptative instrumental variable algorithm  has 
been developed for system identification in this paper. 
A choice of instruments was presented and the QR 
factorization by Householder orthogonal transforma-
tion was implemented. The consistency of the 
developed Weighted Instrumental Variable (WIV) 
method has been established and simulation results 
show an accurate unbiased parameter estimation. The 
simulation results show the advantage of the 
algorithm to closed loop identification of linear and 
nonlinear systems and direct and indirect (two steps) 
methods showed great performances to identify the 
plant model based on closed loop data. The algorithm 
was applied to open loop and direct closed loop 
identification of the speed DC servomechanism which 
belongs to our control and automation laboratory to 
extend its applicability to control schemes where the 
controller design is done iteratively based on 
identified model, this is, it can be also applied to self-
tuning control design, which is important in industrial 
control. 
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