MECHANISMS: A NEW APPROACH TO ROBOTS TEAMS COOPERATION
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Abstract— In this paper we propose a new contribution to treat a class of cooperative issues in the multi-robot
context. These issues are associated with the common use of some entities, called mechanisms. A mechanism
can be seen as a generalization of the notion of resource. The robots can modify its state directly or through
requests. The robots can also share its utilization. Multi-robot cooperation will be expressed as a distributed
decisional process that tends to solve detect and treat resource conflict situations as well as sources of inefficiency.
We discuss these issues and illustrate them through a simulated system, which allows a number of autonomous
robots to plan and perform cooperatively a set of servicing tasks in a hospital environment.
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1 Introduction

Starting from the Plan-Merging Paradigm
(Alami et al., 1995) for coordinated resource utili-
zation - and the M+ Negotiation for Task Al-
location - M+NTA (Botelho and Alami, 1999)
for distributed task allocation, we have developed
a generic architecture for multi-robot cooperati-
on (Botelho and Alami, 2000). This architectu-
re is based on a combination of local individual
planning and coordinated decision for incremen-
tal plan adaptation to the multi-robot context.
In this paper we present the mechanism concept,
which allows a set of autonomous agents not only
to perform their tasks in a coherent and non-
conflict manner but also to cooperatively enhan-
ce their task achievement performance. After a
brief analysis of related work, we present a gene-
ral architecture for multi-robot cooperation. We
introduce the mechanisms and focus on the co-
operative plan enhancement issues. Finally, we
present an implemented system which illustrates,
in simulation, the key aspects of our contribution.

1.1 Related work

The field of multi-robot systems covers today
a large spectrum of topics (Parker, 2000). We
restrict our analysis here to contributions pro-
posing cooperative schemes at the architectural
and/or decisional level. In such stream, behavior-
based and similar approaches (Mackenzie and Ar-
kin, 1997; Parker, 1998), propose to build sophis-
ticated multi-robot cooperation through the com-
bination of simple (but robust) interaction beha-
viors.

Al-based cooperative systems have propo-
sed domain independent models for agents inte-
raction. For example, Brafman (Boutilier and
R., 1997) enriches the STRIPS formalism, aiming
to build centralized conflict-free plans. Several

generic approaches have been proposed concer-
ning goal decomposition, task allocation and ne-
gotiation (DesJardins et al., 1999). PGP (Decker
and Lesser, 1992)) is a specialized mission repre-
sentation that allows exchanges of plans among
the agents. Cooperation has also been treated
through negotiation strategies (Rosenschein and
Zlotkin, 1994) like CNP-based protocols (Smith,
1980), or BDI approaches where agents interacti-
on is based on their commitment to achieve in-
dividual/collective goals (Jennings, 1995; Tam-
be, 1998). Cooperation for achieving indepen-
dent goals has been mostly addressed in the fra-
mework of application-specific techniques such
as multi-robot cooperative navigation (Brumitt,
1996; Azarm and Schmidt, 1997).

1.2 Cooperation for Plan Enhancement

In the context of autonomous multi-robot sys-
tems, we identify three main steps that can often
be treated separately: the decomposition of a mis-
sion into tasks (mission planning), the allocation
of tasks among the available robots and the tasks
achievement in a multi-robot context (Fig. 1). In
this paper, we limit ourselves to this last aspect
i.e. the concurrent achievement of a set of tasks.
Indeed, we assume a set of autonomous robots
which have been given a set of partially ordered
tasks. This could be the output of a central plan-
ner, or the result of a collaborative planning and
task allocation process (Botelho and Alami, 1999).
One can consider this plan elaboration process is
finished when the obtained tasks have a sufficient
range and are sufficiently independent to allow a
substantial “selfish” robot activity.

However, and this is a key aspect in robotics,
the allocated tasks cannot be directly “executed”
but require further refinement taking into account
the execution context. Since each robot synthesi-
zes its own detailed plan, we identify two classes
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Figura 1. Our architecture for multi-robot cooperation

of problems related to the distributed nature of
the system: 1. coordination to avoid and/or solve
conflicts and 2. cooperation to enhance the effici-
ency of the system. The first class has been often
treated in the literature. The second class is newer
and raises some interesting cooperative issues lin-
ked to the improvement of the global performance
by detecting possible enhancements. We have de-
veloped a distributed cooperative scheme (Botelho
and Alami, 2000) called M+ cooperative task achi-
evement - M+CTA. It is based on the mechanism
concept and provides a framework for dealing with
issues such as opportunistic action re-allocation,
detection and suppression of redundancy and in-
cremental /additive actions accomplished by seve-
ral robots.

2 M+CTA & mechanism

In M+CTA the task achievement level is based on
an incremental plan validation process. Starting
from a task that has been allocated to it, a ro-
bot, R, plans its own sequence of actions, called
individual plan. This plan is produced without
taking into account the other robots’ plan. After
this planning step, R, negotiates with the other
robots in order to incrementally adapt its plan in
the multi-robot context.

A number of conflict/cooperative situation
problems are raised when a group of agents sha-
re the common use of some entities or devices in
the environment. The mechanisms provide a sui-
table framework for robot cooperation. Indeed,
there are numerous applications and particularly
for servicing tasks, where the robots often need
to operate or to interact with automatic machines
or passive devices in order to reach their goals or
to satisfy some intermediate sub-goals that allow
them to finally reach their main goals. For exam-
ple, a robot has to open a door in order to enter
a room, or heat the oven to a given temperature
before cooking a cake, etc.. The mechanism can
be seen as an extension of the concept of resource
token: a robot not only allocates and frees a me-

chanism, it not only consumes or produces it, it
can also explicitly manipulate it or act on it, di-
rectly or through requests to a controller attached
to the mechanism.

The mechanisms will allow: 1. to identify the
entities of common use, 2. to fix rules to guaran-
tee correct and coherent cooperative utilization of
such entities and 3. to negotiate their common
use among the agents.

2.1 A scenario of cooperation

A mechanism is a data structure that defines how
to use a device or a machine (the possible sequen-
ces of operations, in what conditions it can be sha-
red or used simultaneously by several users, etc).
In the current version of our system, this knowled-
ge is represented by (see figure 2): 1. known initial
and final states, 2. a set of alternative paths (ea-
ch path is partially instantiated and represents a
valid sequence of actions and state changes of the
associated entity) and 3. a set of social rules.

name-mechanism(?entity)

Begin-state=
{att, |att, =ATT(?0bject): ?value
Path;
Path ‘s ¢ List-Event; =
. {Event, |Eveny =Event(AJT (?object):?value,?new-vglue, ,?e )}
- L L

i i LISI*EVEH[L‘ =
{Event, |[Evenf, =Event(ATT (?object):?new_value ,?new-yvalye ,?
X X

End-State=
{att, |att, =ATT, (?object):?value }

Rulesflis't:{EvfruIel |Evfrulg =rulg, |
rule, =Rule(?type,state-violation,u,proposed-state)}}

Figura 2. A generic mechanism M

Social Rules impose constraints that must be
taken into account during the mechanisms use.
They have been introduced in order to allow the
robots produce easily merge-able plans. Social ru-
les are always associated with some mechanism
states, which, in particular situations, are not al-
lowed. Social rules specify forbidden or undesira-
ble states and propose states that satisfy the rules.
This field is used by the planner in order to avoid
the violation of the rule. Social rules are domain
dependent; the current version of our system deals
with three types of constraints:

where the “resource”
violation_state = (att(?object) v) re-
presented by an attribute att and a value
v is limited to a maximum number of
s agents. Note that such rules allow to
describe the resource constraints of the
system. For instance a limitation of 2
robots at desk D1 can be represented by
RULE(amount,pos—Tobot(?T),2,D1,0PEN_AREA),
where it is proposed to send the robot to an
OPEN_AREA, in order to satisfy the rule.

1. amount:



2. end: where proposed_state must be satisfi-
ed at the end of each robot utilization of
the resource. This class guarantees a known
final state, allowing the planner to predict
the state of an attribute (initial state for the
next plan).

3. time: where violated_state can be maintai-
ned true only during a given amount of time
s.

The use of social rules in the planning pha-
se: We associate to the social rules a scalar value
called obligation level. Whenever a robot plans, it
considers the proposed states of the rules as man-
datory goals that will be added to its current list of
goals. However, depending on the obligation level,
goals will be posted 1. as a conjunction with the
current robot goals or 2. as additional goals that
the robot will try to satisfy in subsequent plan-
ning steps. In such case, the planner will produce
additional plans that will achieve each low-level
obligation social rule.

During the execution of a plan, the robot may
or may not execute these additional plans, thus
neglecting temporarily the proposed state. Note
that if another agent asks the robot to fulfill the
rule proposed state, it will then (and only then)
perform the associated additional plan. The obli-
gation level may also change depending on the
context?.

2.2 Mechanisms € Jobs

Whenever a robot R, detects that its plan uses an
entity associated with a mechanism M, it builds
a job MJ’-J . A job is a dynamic structure, which
results from the instantiation of a path of a given
mechanism by the current robot plan. A job is
composed of steps. Each step has a set of infor-
mation associated with it: for instance, the agent
that effectively executes the action, the other plan
actions that depend on it (successors), etc. Jobs
are used as structure and language of negotiation
allowing R, and other agents to decide about the
common utilization of an entity. Figure 3 shows a
plan produced the robot R, that uses a furnace.
Ry, builds a job M? and that will be negotiated.
This job ends when the final state of the associa-
ted mechanism is reached.

3 Cooperation with mechanisms

The M+CTA level involves three activities that cor-
respond to different temporal horizons and may

#Note that this notion of social rules is different, or even
complementary, from the social behaviors proposed by
(Shoham and Tennenholtz, 1995). While social behaviors
are explicitly coded in its reactive task execution, the soci-
al rules are used at the robot decision level as constraints
in its planning, negotiation and execution activities.

Rp plan
ell el2 el3 el4 el5 elé el7 el8 el¢

Use-furnace(S1-FURNACE,2)

open

go to furnace
put object
turn-on furnace
go to cellA
manipulate

go to furnace
pick object
turn—off furnace

door-state:DOOR-FS1,CLOSED
furnace-state(S1-FURNACE).OFF

close

Event (door-state(DOOR-FS1):(Closed,Opened),e12),Rp,Suc={e13}

Event (furnace-state(S1-FURNACE):(OFF,0ON),e14),Rp,Suc={e18}

{ furnace-state(S1-FURNACE):ON J

1 Event (door-state(DOOR-FS1):(opened,closed),e19),Rp,Suc={}

{ furnace-state(DOOR-FS1):CLOSED J

executor agent
Event (furnace-state(S1-FURNACE):(ON,OFF),e20)(Rp,guc={}

transitions which successor
} utilize this step actions

door-state(DOOR-FS1).CLOSED
furnace-state(S1-FURNACE):OFF

Figura 3. A job corresponding to the use of a furnace by
Rp

run in parallel: 1. task planning which produces
an individual robot plan; 2. the plan negotiation
activity which adapts the plan to the multi-robot
context; and 3. the effective plan execution.

From time to time, depending on higher le-
vel requirements, the robot invokes its own plan-
ner and it incrementally appends new sequences
of actions to its current individual plan. This is
a standard task planning activity; however, the
obtained plan satisfies the social rules and is con-
sequently easily merge-able.

Incremental plan negotiation Let us assu-
me that R, has an individual plan composed of a
set of actions AY which manipulate mechanisms.
It performs an incremental negotiation process in
order to introduce each action AY in the multi-
robots context. This operation is “protected” by
a mutual exclusion mechanismP. The result is a
coherent plan which includes all the necessary co-
ordinations and some cooperative actions.

The negotiation process comprises the an-
nouncement and the deliberation. During the
announcement process, whenever a robot,[2, ne-
eds to validate an action A7 (belonging to job M?,
corresponding to the use of a mechanism M). Tt
announces its job, obtaining current list of jobs in-
volving M. Having the current job list, I, needs
to deliberate, it has two alternatives associated
with its job M} and each member list M, see
figure 4:

Fusion: since our robots are cooperative, the
aim is to enhance as much as possible the overall
performance. Thus, the robot always try to merge
his job with the current (already negotiated) jobs
M. This is done by trying to detect and suppress
redundant transitions. The result is a new job

bWe assume that the robots are equipped with a reliable
inter-robot communication device.
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M ]‘.’l whose actions may be distributed between
the different robots.

However, the constraints imposed by social
rules may prevent a fusion between two jobs. The
only remaining solution is to coordinate them in
order to avoid conflicts. Coordination: in this si-
tuation R, can use a mechanism M only after its
released by the agents associated with M?. In
other words, M} has to be coordinated with M}
by adding temporal constraints to the jobs.

After each deliberation process, the robots to
adapt their plans to the job modification. Note
that such a negotiation process involves only com-
munication and computation and concerns future
(short term) robot actions. It can run in parallel
with execution of the current coordination plan.

Job execution process: Before executing an
action A?, the robot validates the transition as-
sociated to A?. Indeed, a transition remains “ne-
gotiable” until its validation. Once validated,
it is “frozen” and the other robots can only per-
form insertions after a validated transition. Acti-
on execution causes the evolution of the system,
resulting in events that will entail new planning,
negotiation and execution steps for the robot itself
and for the other robots.

4 Illustration and future work

We have implemented a first version of the overall
system and run it on simulation. We describe here
below some of the obtained results. The applica-
tion domain that we have chosen is a set of mobile
robots in a hospital environment. Servicing tasks
are items delivery to beds as well as bed cleaning
and room preparation®. Fig. 5 shows the simu-
lated environment and 14 partially ordered tasks:
TO,...T13 and the initial world state description.
Each robot is equipped with a STRIPS-based task
planner and a motion planner.

¢Each robot control system runs on an independent Sun
workstation which communicates with the other worksta-
tions through TCP /IP.

Station1

Figura 5. Example 1: Transfer object and clean beds in a
hospital area

The robots must negotiate the use of the fol-
lowing mechanisms, see figure 6: 1. clean-room
that allows cleaning actions with cumulative ef-
fects when executed several times or by several ro-
bots; 2) door-manipulation with open/close acti-
ons, which can be potentially redundant; and 3) a
mechanism that controls the use the dock station
by the robots. This mechanism has an amount rule
(with low obligation level) that limits the number
of robots near a station to one.

clean-room(?r) door(?d)

Begin state Begin state ,
state-room(?r):DIRTY] state-door(?d):CLOS|

Event(state-room(?r):DIRTY,CLEAN, 7ef) EVent(state-door(?d):CLOSE,OPEN, 7e1;

Event(state-door(?d):OPEN,CLOSE,?e2,
End State :

state-room(?r):CLEAN End State
state—door(?d):CLOS!
occuped-station(?new-station)

Begin state .
pos-robot(?robot):?old-statign

Event(pos-robot(?robot):?old-station, ?new-station,?e1)

Event(pos-robot(?robot),?new-station, OPEN-AREA,?e2)

End State
pos-robot(?robot): OPEN-ARE,

2elAmount-rule(pos-robot,1,?new-station, OPEN-AREA)

Figura 6. Mechanisms to negotiate.

The set of tasks is transmitted to five robots.
After a first phase (not described here (Botelho
and Alami, 1999)), they plan and incrementally
allocate the tasks using M+ Cooperative Task Al-
location. Fig. 7 shows the individual plans af-
ter a number of negotiation processes. Note that
r0 has allocated T3 in a first step. However it
has lost it because r1 has found a better cost to
achieve it. r1 is achieving T3. It has elabora-
ted a plan with six actions in order to achieve its
main goal state-room(S1) :CLEAN and to satisfy
the social rule requiring state-door(DO) : CLOSED
with a high obligation level. Besides, it has al-
so produced an additional plan that satisfies ru-
le 1 (with a low obligation level) by introducing
a go-to(OPEN-AREA) action. After several jobs
negotiation processes, r1 deletes its open action,
which will be accomplished by r3. This robot will
open a first time the door and after all robots ta-
ke in advantage of this event. Afterwards, r1 will



close the door for everybody. We can see also the
incremental allocation process: while the robots
are achieving their current tasks, they try to al-
locate their future task, for instance: r1-T8 and
r2-T7. The arrows between robot plans illustrate
the temporal constraints induced by the coordina-
tion between jobs.
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Figura 7. M+ task achievement process.

The overall process continues; the tasks are
incrementally planned, negotiated and executed.
In the end of this run the robots have satisfied
the social rule associated to the robot position
near the stations. Indeed, some robots delete re-
dundant actions (open/close door), accomplished
opportunistically by others. Besides, some robots
also helped the others to clean rooms.

Table 8 shows the time sharing among exe-
cution and deliberation activities. Deliberation
activities are decomposed into task allocation and
mechanisms negotiation. All activities run in pa-
rallel. Note that execution activities are more ex-
pensive, however r0 has a high task allocation ac-
tivity due to the mission nature and to its proper
context: the tasks order limits their execution in
parallel and r0 spends a lot of time searching for
a task to perform.

We have run the system several times with
different parameter values. These parameters are
associated with two aspects: the type of coope-
ration and the number of robots. We have run
the system with three different cooperation stra-
tegies: 1. COOP-TOTAL: treating redundancy and
opportunistic incremental help between jobs ; 2
NO-INC: only treating redundant cases with no in-
cremental help; and 3. NO-COOP: the system allows
only coordination between jobs.

On the whole, COOP-TOTAL enhance the sys-
tem performance: better cost and less actions (see
Figs; 9 and 10).

The number of robots vs. the workload is pre-
sented in table 11. We can see that when we have

Er4 ®r3 Or2 Or1 W10

i iati Exec-total
1

Figura 8. Time Sharing.

‘lTotaI actions @ Accomplished actions ‘

COOP-TOTAL NO-INC NO-COOP

Figura 9. Planned and achieved action by the robots.

5 robots, one of them (r0) is almost idle. This fact
is due to the nature of mission. The partial order
of tasks prevents an optimum deployment of more
than 3 robots.However, note that our system has
found a very good balance when only three robots
are involved.

5 Conclusion

We have proposed and discussed a scheme for co-
operative multi-robot task achievement based on
mechanism. This scheme is a key component of a

COOP-TOTAL NO-INC NO-COOP

Figura 10. The costs.



ERO WR1 OR2 OR3 MR4

Figura 11. Workload for each robot.

general architecture for multi-robot cooperation.
Its main originality comes from its ability to allow
the robots to detect and treat - in a distributed
and cooperative manner - resource conflict situa-
tions as well as sources of inefficiency among the
robots. We have presented its main ingredients
and operators, and illustrated its use through a
simulated system.

We intend to validate our approach through
a number of significant different application do-
mains. Besides, we would like to extend and
further formalize the overall system and its re-
presentational and algorithmic ingredients, taking
into account cost and time issues to help planning
and negotiation activities.
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