PARALLEL DISTRIBUTED EVOLUTION STRATEGIES

RoBERTSON S. PerEIRA, OsvaLDO R. SaaveDra, OMAR A. CARMONA?

Grupo de Sistemas de Energia Elétrica
Departamento de Engenharia de Eletricidade
Universidade Federal do Maranhdo

Sdo Luis - MA - 65085-580

Abstract— FEvolutionary techniques have been emerged as powerful tools to handle complex optimization
problems. However the computational time required may be unacceptable for some kind of applications. The
availability of low-cost parallel computer resources and the natural parallelism of Evolutionary algorithm open
a important alternative to overcome these difficulties. This paper is devoted to the study of the parallel imple-
mentation of evolution strategies and the effect of the parameters on the global efficiency. Results obtained show
the beneficial effects in time processing and solution quality. Numerical results with three widely used functions

are reported.

Key Words— Parallel processing, Evolutionary Computation, optimization

1 Introduction

Evolutionary Computation encloses different ap-
proaches for solving complex problems based on
the emulation of mechanisms of natural evolution.
Results obtained from application of simulated
evolution for solving complex engineering prob-
lems have evidenced that search processes based
on natural evolution are robust, and can be used
in a vast domain variety (Fogel, D.B, 1995).

There are three main approaches where the
majority of current implementations are classified:
Genetic Algorithms (GA’s); Evolution Strategies
(ES’s); Evolutionary Programming (EP).

Each of these main stream algorithms have
clearly demonstrated their capability to yield
good approximate solutions even in case of
complicated multimodal, discontinuous, non-
differentiable, noisy or moving response surfaces
of optimization problems (Back, T., Hammel, U.,
Schwefel, H. P., 1997). In these approaches, a
population of individuals is initialized and then
evolves into a search space, through a stochastic
process of selection, mutation, and in some cases,
recombination.

The algorithms based on the principles of the
natural evolution have been applied successfully
to a set of problems of numerical optimization.
They are adequate to solve complicated problems
of optimization, such as those found in several en-
gineering areas. On the other hand, it is recog-
nized that the main obstacle of the practical ap-
plications of evolutionary techniques is processing
time. However, evolutionary algorithms are good
candidates for parallelization, reducing consider-
ably the processing time by using multiprocessing
and in some cases, competitive time are already
achieved.

This paper is devoted to the study of the

2Grupo de Sistemas Distribuidos, ICMC - Universidade de
Sao Paulo, Sio Carlos - SP.

parallel distributed implementation of evolution
strategies on a low-cost platform and the effect of
the parameters on the global efficiency. Numer-
ical results with three benchmark functions are
also reported.

2 Classical Evolution Strategies

Evolution strategies (ES’s) were developed in 1960
by Rechemberg and Schwefel in Germany and ex-
tended by other authors, such as Rudolph and
Herdy (Schwefel, H.P. and Méanner, R., 1991). In
ES’s, an individual is represented as a pair of float-
valued vectors, i.e., a = (x, o), where the first vec-
tor x represents a point in the search space The
second vector o is a vector of standard deviations.
This perturbation vector provides instructions on
how to mutate z and is itself subject to muta-
tion. In other words, both components, z and o,
are submitted to evolution process by application
of the operators of mutation and also recombina-
tion. Thus, a suitable adjustment and diversity
of parameter mutations should be provided under
arbitrary circumstances.

More recently, two approaches have been ex-
plored, denoted by (¢ + A)-ES and (y,A)-ES
(Back, T., Hammel, U., Schwefel, H. P., 1997).
In the former, p parents generate A offspring and
all solutions compete for survival with the best p
individuals being selected as parents of the next
generation. In the latter, only A offspring com-
pete for survival and the u parents are completely
replaced in each generation. Then, the life of an
individual is limited to a single generation. this
method is not elitist, thus facilitating the strat-
egy to accept temporary deterioration that might
help to leave the region of attraction of a local
minimum and reach a better optimum (Back T.,

Rudolph, G. and Schwefel, H.P., 1997).

3 Standard ES’S Algorithm

The process of ES’s is described in (Béck T.,
Rudolph, G. and Schwefel, H.P., 1997). The
following pseudocode algorithm summarizes the
components of the (4, A)-ES evolutionary algo-
rithm, where each individual is characterized by a
pair a = (z,0;):

t:=0

1. initialize P(t) := { a1(0), ...
Rn-}-n

yan(0) } € 1*
where | =
and ar = (zi,0:)Ve € {1,..,n}Vk € {1,...,pn};

2. evaluate P(t): {®(a1(t)),...,P(au(t))}
where ®(ar(t)) = f(zr(t))Vk € {1,...,pn};

while termination criterion not fulfilled do

3. recombine: ay(t) :=r(P(1))Vk € {1,...,A};

4. mutate: ay(t) := m{a;(¢)Vk € {1,...,A};

5. evaluate P'(1) := {a¥(t),...,a%(t)};
{®(ai (1)), .., ©(aX(t))}

6. select: P(t+1):= Sd(P'(t));

t:=t4+1
end do

Where operators r(.), m{.} and Sy4(.) de-
fine the application of recombination, mutation
and deterministic selection to the respective ar-
guments. Search points in ES’s are n-dimensional
vectors z € R", and the fitness value of an individ-
ual is identical to its objective function value, i.e
®(a) = f(x) where z is the object variable com-
ponent of a and each individual include up to n
different variances o; (i € {1,...,n}).

3.1 Recombination

In £S, new individuals are generated using the
mutation and recombination operators. In con-
trast with genetic algorithms, the recombination
Different
recombination mechanisms are used to produce
one new individual from a set of randomly se-

operator creates only one offspring.

lected parent individuals. Basically, recombina-
tion works choosing ¢ (1 < ¢ < p) parent vectors
from P(t) € I" with uniform probability. Next,
characteristics of g parents are mixed to create a
new individual. When ¢ = 2, recombination is
called bisexual, and if ¢ > 2, 1t is called multi-
sexual. In particular, if ¢ = u, recombination is
called global (Back, T., Hammel, U. | Schwefel, H.

P, 1996). On this class, there are two variants:

e Global discrete recombination: This variant
is similar to uniform crossover in genetic al-
gorithms. Each component of an offspring is
created by selecting at random an individual
from parent population.

e Global intermediary recombination: FEach
component of an offspring is generated by
the arithmetic average of the corresponding
parent components, as follows:

b = (1/e) 3ok br.i

where b} is i-component of the offspring b’

Notice that recombination is performed on
strategy parameters as well as on the object vari-
ables, and the recombination operator may be
different for object variables and standard devi-
ations.

3.2 Mutation

The mutation operator m I — T (where
I = R™™) yields a mutated individual m(d@) =
(#',d"), by first mutating the standard deviations
and then mutating the object variables as follow:

ol = U‘Z@pr(T’N(O,l)+TNj(0a1)) (1)

I3

v =2l + 0N (0, 1) (2)

wherei =1,.., and j =1,...,n. N(0,1) rep-
resents a Gaussian number with zero mean and
variance 1, that should be the same for all vec-
tor positions. N;(0,1) also represents a Gaussian
number; nevertheless, this value must be different
for each j value.

The global factor 7/N(0,1) allows for any
overall change of the mutability, whereas 7N;(0, 1)
allows for individual changes of ;. The factors
7 and 7' are defined as “learning rates” and
are suggested by Back (Bidck T., Rudolph, G.
and Schwefel, H.P., 1997) as 7 = (v/4n)~' and
7' = (v/2n)~!, respectively, where n represents
the problem size.

Cauchy Mutation.- The evolution strategy with
Cauchy-based mutation follows the same general
algorithm above, except that the eq. (2)) is re-
placed by:

.EZJ = :Eg + (T?(Sj (3)

where é; is random number with Cauchy dis-
tribution with scalar parameter setting as ¢t = 1.
This number must be obtained for each value of
J.

Due to Cauchy distribution be more expanded
than Gaussian distribution, it allows, probabilis-
tically speaking, larger mutations and in this way,
generating more different individuals (Nogueira,

M. L., Saavedra, O. R., 1999).

3.3 Selection

In contrast with evolutionary programming, selec-
tion in classical ES (S4) is completely determin-
istic (Fogel, D.B., 1995). In case of (¢ + A)-ES,
the p best individuals are selected from the union
of parents and offspring. Thus, this selection is
elitist and therefore guarantees a monotonic im-
proving performance. In (u, A) strategies, the p
best individuals are selected only from offspring
population and replace the parents in the next
generation (not elitist selection).

4 Parallel Distributed ES’S

Evolutionary algorithms are good candidates for
parallelization. There are several approaches in
the technique literature, that can be separated
into two categories:

e Diffusion model,;
e Migration model.

In the diffusion model, each individual is
placed on a single processor and selects another
individual to share information in order to gen-
erate a new trial solution point. This model is
well suited for SIMD machines.
sults seem to indicate that algorithms using the
diffusion model perform better in average. In
(Rudolph, G, 1992) is implemented a parallel ES
using diffusion model and applied it to global op-
timization problems. The efficiency improves as
soon as the population size increases or function
evaluations become more expensive, so that more
time must be spent upon one iteration.

In the Migration model, one sequential ver-
sion is allocated on each processor and exchange
information between the processors during the
search. Suppose that there are A individuals form-
ing on each processor, the exchange of information
can be regarded as migration of individuals, where
typically the best individuals are exchanged. Sev-
eral variations of algorithms can be derived, de-
pending of the number of individuals exchanged,
when this exchange is executed, etc. Due to the
parallel version be other algorithm as the sequen-
tial one, it is possible to obtain efficiencies above
100%.

This paper is concentrated on the study and
implementation of the parallel evolution strategies
using the migration model. An important reason

Numerical re-

is the exploitation of the significant asynchronism
level obtained from this paradigm.

4.1 The Motwwation for Parallel Distributed Pro-
cessing

The local network utilized was a cluster formed
by 5 PC’s, connected by a switch Fast-Ethernet
and running Linux Slackware. The platform PVM

version 3.4.3 allows a network of parallel and se-
rial machines to be viewed as a unique concurrent
computational resources. In this way, this plat-
form provides, with very low cost, a parallel dis-
tributed environment that offers the best features
of sequential and parallel processing, due to the
availability of high-speed processors and to natu-
ral scalability.

The PVM provides the functions to auto-
matically start up tasks on the parallel virtual
machine and allows the information interchange
among theses tasks. Also, the available PVM ver-
sion has host failure detection. If a host fails, the
PVM system will run continuously and will au-
tomatically delete this host from the virtual ma-
chine. It is still the responsibility of the applica-
tion developer to make his application tolerant to
host failure (Geist, A.. et al, 1994). The PVM
provides non-blocking asynchronous routines for
sending and receiving messages; these routines are
especially suited for the asynchronous approach
implemented here.

4.2 Implementation of the Migration model

There are several ways how to implement the mi-
gration process. We suggest three ways in the
following.

After k generations:

a) each processor send the 5 best individuals
to the others processors. In the sequence,
receives individuals sent for the other pro-
cessors, selects the v best individuals and
substitutes the v poor individuals of the lo-
cal population.

b) Each processor send the v best individuals
to the master processor. It controls the over-
all process by receiving the best individuals
at each epoch, selecting the 4 best individ-
uals of this epoch and sending it to all pro-
cessors.

When no individual is arrived, the master
processor executes a copy of evolutionary
code, evolving it population similarly to oth-
€Ts Processors.

¢) Similarly to (b), but considering only single
individual for interchange, i.e. v = 1.

In this work, we have analyzed the option (b).
In order to observe the relationship between v and
the convergence of algorithm, tests varying the
size of 7 have been performed and are reported
in the next section. In figure (1) the conceptual
parallel model is illustrated. In each processor is
allocated a copy of evolutionary algorithm. Addi-
tionally, the master processor hosts tasks related
with the global control of the parallel process and
send/receive the best individuals to/from others

1th
generation

(1th epoch)

2k
(2nd epoch)

l

Last
generation

- OIIIOIIIOIIIO
® OIIIO IIOIIIO

Figure 1. Migration model: conceptual parallel model

processors. At each epoch, slave processors send
the best individual to the master processor. As
soon 1t receives individual from all processors, the
master chooses the best individual and send it im-
mediately to all processors.

In the slave processor the individual received
from the master processor substitutes the worst
individual in the local population. This process
is made asynchronously, i.e., slave processors do
not remain waiting data in the buffer. By the op-
posite, they keep evolving, and alternately, check
the input buffer searching for new data. Thus the
epoch is then marked by sending the best individ-
ual, but the reception and inclusion of individual
is done as soon as they are available.

5 Test Results

In the following, the test results of (4 A) parallel
evolutionary strategy are illustrated using three
well-known functions used in the references (Yao,
Xin and Li, Yong, 1997), (Nogueira, M. L., Saave-
dra, O. R., 1999). The evolution strategy imple-
mented is based on Cauchy mutation rather than
the traditional Gaussian mutation. The platform
used has been a PC-based Linux cluster running
PVM version 3.4.3.

The test functions used are complex multidi-
mensional multimodal functions, with several lo-
cal minima, and are given by the following expres-
sions:

n

fr =3 —misin(v/[ai]) (4)

i=1

fa = —20exp (—0.2\/11(;13)) —exp(v(z))+20+e
()

with:

and:
1 n
v(z) = - Z.E_l cos(2ma;)

n n
= z? — cos L +1 6

Functions (4 - 6) have been chosen due to sim-
ilarity with formulation problems found in power
systems (Gomes, J. R. and Saavedra O. R., 1999).
It is interesting to make use of this work and to
export some concepts and approaches to improve
current evolutionary applications in this area.

5.1 Parameters

The population size used was y = 30, while off-
spring population size was A = 200. The tests
have been performed over 10 simulations for each
function. For all cases, the problem dimension
has been fixed in n = 30. The constraints for
variables are given by:

f1: [-500;500];
far [-32;32];
fa: [-600;600];

In the parallel implementation, the number
of generations of serial version was divided by the
number of processors. Migration is executed each
k = 100 generations. In all the case, the number
of generations of serial version was 5000.

In figures (6) is presented, for each func-
tion, the effect of the number of individuals in-
terchanged at each epoch, considering five pro-
cessors. The stochastic behaviour allows only to
analyse the trend of the phenomenon, that basi-
cally indicates that small 4 tax are, in average,
more appropriate for good performance, because
the communication between processor is small. In
this way, it is expected a most asynchronous be-
havior from algorithm.

Serial Version
f Mean Best Std Dev Time(s)
f1 -12095.73327 118.43833 155.95
f2 0.089115 0.3733721 195.81205
f3 0.0036980 0.00370 170.07

Table 1. Average performance of serial algorithm.

Table (1) shows results obtained from serial
version using Cauchy mutation rather than the
classical Gaussian Mutation (Nogueira, M. L.,
Saavedra, O. R., 1999). Columns 3 — 5 show the
mean best obtained over 10 runs, the associated
standard deviations and the CPU time in seconds,

respectively. The the minimum values f™" of
each test functions are —12569.5, 0 and 0, respec-
tively

Parallel Version
f | np | Mean Std Time s E
Best Dev (s) (%)
2 |12569.48 1.0e-4 78.76 1.98 99.00
f1 3 |-12569.48 3.6e-4 50.79 3.07 102.34
4 |-12569.48 1.3e-4 37.78 4.12 103.19
5 |12569.48 4.0e-5 31.65 4.92 98.4
2 0.08921 2.e-4 97.02 2.01 100.91
f2 3 0.08948 2.e-4 63.03 3.10 103.55
4 0.10097 0.0038 50.44 3.88 97.05
b) 0.11798 0.0484 40.69 4.81 96.24
2 | 2.5e-8 1.25e-5 83.91 2.02 101.34
f3 3 6.95e-7 2.22e-05 55.63 3.05 101.90
4 1.15e-5 1.95e-5 4291 3.96 99.08
5 |0.00063 6.75e-4 32.24 5.27 105.50

Table 2. Average performance of parallel distributed algo-
rithm

Table (2), shows results obtained using the
parallel distributed algorithm. Column np indi-
cates the number of processors used, and columns
6-7 show the speed-up (5) and efficiency (E) ob-
tained, respectively. The v tax used was 6, 6,
and 1 for f1, fo and f3, respectively. Due to
the stochastic characteristic of algorithm, in some
cases a superlinear performance is observed. In
general, good solutions, efficiencies and speed-ups
are reached using parallel processing. The benefi-
cial impact of the parallel processing is observed
mainly in the processing time and the quality of
the obtained solutions. These results are impor-
tant, because the main obstacle of the application
of evolutionary techniques to engineering prob-
lems is the CPU time required to reach compet-
itive solutions. Although parallel computers be
expensive, it is possible get a low-cost parallel dis-
tributed platform using a PC-based cluster. In
this way, parallel processing stops being a myth
and becomes an all users tool.

6 Conclusions

In this work the study of the parallel distributed
implementation of evolution strategies has been
presented. Results obtained using a migration
model show the beneficial effects in time process-
ing and solution quality. Numerical results using
three widely used functions have been reported,
showing the beneficial effect of parallel processing
in the solution quality. The parallel processing
is achieved by using a low-cost platform formed
by PC-based Linux cluster running PVM version
3.4.3.

Acknowledgments

This project was supported by CNPq, Con-
selho Nacional de Desenvolvimento Cientifico e
Tecnolégico and BNB, Banco do Nordeste do
Brasil.

References

Fogel, D.B. (1995), “A Comparison of Evolution-
ary Programming and Genetic Algorithms on
Selected Constrained Optimization Problems”
Simulation , pp. 397-404.

Back, T., Hammel, U. | Schwefel, H. P. (1996)
“Evolutionary Computation: an Overview” in
Proc. 3rd TEEE Conf. on Evolutionary Com-
putation, Piscataway, NJ, IEEE Press, pp. 20
- 29.

Schwefel, H.P and Rudolph, G. (1995), “Con-
temporary Evolution Strategies”, Proceedings
of FEuropean Conference on Alife, Granada,
Spain.

Back, T., Hammel, U., Schwefel, H. P. (1997),
“Evolutionary Computation: Comments on
the History and Current State”, IEEE Trans-
action on Evolutionary Computation, Vol 1,
No 1, pp. 3 -17.

Yao, Xin and Li, Yong (1997), “Fast Evo-
lution Strategies”, Control and Cybernetics,

26(3):467-496.

Nogueira, M. L., Saavedra, O. R. (1999), “Multi-
modal Optimization using Standard Evolution
Strategies with Cauchy Mutation”, Proceed-
ings of the 1999 North American Power Sym-
posium, pp. 283-288, EEUU.

Geist, A., Beguellin, A., Dongarra, J., Jiang, W.,
Manchek, R. and Sunderam, V. (1994), “PVM:
Parallel Virtual Machine - A Users’ Guide and
Tutorial for Networked Parallel Computing”,
The MIT Press.

Rudolph, G (1992), “Parallel Approaches to
Stochastics Global Optimization”, in: W.
Joosen and E. Milgrom (eds.): Parallel Com-
puting: From Theory to Sound Practice, Proc.
of the European Workshop on Parallel Com-
puting, pp. 256-267, Amsterdam.

Schwefel, H.P. and Manner, R., Eds. (1991),
“Parallel Problem Solving from Nature”, Proc.
1st Workshop PPSNI, Berlin, Germany, Vol.
496 of Lecture Notes in Computer Science,
Springer.

Gomes, J. R. and Saavedra O. R.(1999), “Opti-
mal Reactive Power Flow Using an Extended
Evolution Strategy”, in: Computational In-
telligence and Applications, N. Mastorakis
(ed.), World Scientific and Engineering Soci-
ety Press, pp. 230-238.

f1

fl’y=01 e
y=02 ——
Flycos -v-- -
y=10 —
17:14 PR

-12569.5

100 200 300

f2 05

0.089

0.0001

100 200 300 400 500 600 700 800 900 1000
1 | |
[3y=01
f%’y:ﬂ?
3y=06 +rrre-
f3'y=10
f3,¥=14 e e
3
0.0001
| | | | | | | |
100 200 300 400 500 600 700 800 900 1000

Figure 2. The effect of 4 tax on the convergence, using 5 processors.

