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Abstract – We extend the risk zone concept by creating the Generalized Risk Zone. The Generalized Risk Zone is applied in a 
model-independent methodology to select representative observations in a sample set, with the goal of enhancing classification 
performance. The methodology involves the calculation of Cauchy-Schwartz divergence, as a measure of distance between 
densities, and we do so in the context of Information Theoretic Learning. We applied this methodology in Neural Networks, 
Support Vector Machines and Learning Vector Quantization. We have also discussed the comparison between Support Vectors 
and the vector that lay in the Generalized Risk Zone. 
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Resumo – Nós estendemos o conceito de zona de risco através da Zona de Risco Generalizada. A Zona de Risco Generalizada é 
aplicada em uma metodologia independente de modelo para selecionar observações representativas em uma amostra, com o 
objetivo de melhorar a performance de classificação. A metodologia envolve o cálculo da divergência de Cauchy-Schwartz 
como uma medida de distância entre densidades, implementada dentro do contexto de Information Theoretic Learning. Nós 
aplicamos esta metodologia em Redes Neurais, Máquina de Vetor de Suporte e Aprendizado por Quantização Vetorial. 
Discutimos também a comparação entre vetores de suporte e o vetor gerado pela Zona de Risco Generalizada. 
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1    Introduction 

There may be several reasons to select subsets of 
observations in a sample. For instance, one may be 
interesting in splitting representative from non-
representative observations with the goal of 
enhancing classification performance.  

There are a number of previous contributions in 
the literature concerning data selection under a 
variety of approaches, e.g. Active Learning [13], 
[18], [19]; query-based learning [14] and sequential 
design [15]. It is worth noting that Support Vector 
Machines (SVM) [11], [12] implicitly select 
representative observations, the support vectors.  

Risk zone, an idea originally proposed in [1] in a 
Learning Vector Quantization (LVQ) [16] context, is 
a key concept for the methodology proposed in this 
paper. Risk zone is connected to the selection of a 
subset of the observations with the goal of 
conducting the location of prototypes to convenient 
locations other than the class mean. This 
methodology was successfully applied in a heart 
diseases diagnosis problem [17]. Some central tools 
used in the sequence are in the context of Information 
Theoretic Learning (ITL) [4], [5], [7]-[9]. ITL is a 
kernel based methodology that lays hold of 
information theory concepts. 

In this paper we extend the risk zone ideas by 
developing what we call ‘Generalized Risk Zone’ 
(GRZ). GRZ is applied in a model-independent 
methodology to select representative observations in 
a sample set.   

2   Methodology 

The Cauchy-Schwartz divergence [9] is a 
fundamental tool in the GRZ development. It allows 
the calculation of ‘distances’ between different 
probability density functions (pdfs). In fact, the 
Cauchy-Schwartz divergence is not a metric distance 
since it does not satisfy the triangle inequality.  

Let xi ∈ Rn  be an observation and consider a 
supervised classification environment, with a 
dichotomous labeled set: 

 
                    X = {(xi, yi),  i = 1,…,N}                    (1) 
 
where  yi = 1 or yi = 2. In a LVQ context one is 
interested in updating prototypes location in order to 
force these vectors to represent different classes, two 
of those in a dichotomous labeled sample. A risk 
zone is a region of the space where observations may 
be considered to be at the risk of being captured by 
the wrong class prototype [1]. The idea is to update 
the prototypes by using only the subset of the 
observations that belongs to the risk zone. We say 
that an observation xi belongs to the risk zone if, and 
only if, its distance to a prototype of other class is 
smaller than the distance between this prototype and 
the nearest prototype of the same class. Let pc be the 
nearest prototype representing the class of an 
observation xi and pr be any of the prototypes 
representing the other class. An observation xi 
belongs to the risk zone if, and only if d(xi, pr) < d(pc, 
pr) for any prototype pr ≠ pc. Equivalently, 
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Up to this point we followed [1] and so we are 

circumscribed to prototypes models. We follow by 
proposing the Generalized Risk Zone (GRZ) that is 
not restricted to this type of models.  

2.1 The Generalized Risk Zone 

Let us consider a supervised classification 
dichotomous problem as in equation (1). Call p the 
pdf of the observations in class 1, and q the pdf 
referred to class 2. The starting point is to consider 
the Cauchy Schwartz divergence♣ as a measure of 
distance between densities instead of considering the 
distance between prototypes. In analogy to distance 
between an observation and a prototype 
(representative of a class), we propose the divergence 
between an observation and a pdf (associated to a 
class). We denote the Cauchy Schwartz divergence as 
DC-S( • , • ). 

We may now define the Generalized Risk Zone 
as follows: Say that an observation xi belongs to the 
GRZ if, and only if 
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Here, we set h = q   if   xi ∈ class 1  and  h = p   if   xi 
∈ class 2.  

The square in the denominator of (2) was 
introduced by technical reasons related to the Cauchy 
Schwartz divergence calculation.  

We calculate the Cauchy Schwartz divergence, 
in order to determine the GRZ, by using the ITL 
approach which involves a kernel function. The only 
free parameter is this kernel function width, we call 
σ2 (see the appendix for details). 

2.2 Concerning the implementations 

We implemented three different classification 
algorithms: (i) LVQ 1, with three prototypes per 
class, 100 epochs and learning rate 0.01; (ii) A neural 
network (NN), trained with Bayesian regularization, 
with 10 initial neurons in the hidden layer and logsig 
activation function in the hidden and output layers 
and (iii) Support Vector Machine (SVM) with radial 
basis function kernel. We implemented k-fold 
experiments. All percentages are mean of 10 times 
(in LVQ 1 case, 10 random initialization of the 
prototypes choice), except for SVM, that was the best 
of six experiments varying C (= 0.1; = 5) and kernel 
size (= 0.5; = 1; = 5). Each of the methods (LVQ, NN 
                                                           
♣ Please find details on the Cauchy Schwartz divergence 
calculation in the appendix. 

and SVM) was implemented using just the 
observations that belong to the GRZ, and with the 
goal of comparing performances, all the methods 
were also implemented with all available 
observations.  

3   Results and Discussion 

It follows the results concerning two controlled and 
two real data experiments.  

 
Experiment 1: We generated two classes divided by 
a cosine function (in-sample: 1030 observations C1 
and 1027 observations C2, out-of-sample: 1060 
observations C1 and 1041 observations C2). In 
Figures 1a, 1b and 1c one can find the GRZ (in 
purple) for different the kernel sizes: σ2 = 0.0025, 
0.01 and 0.06. Classification with the algorithms 
trained by all observations and trained by GRZ 
observations can be found in table 1. 

 
Table 1: Out-of-sample accuracy percentage 

(parenthesis indicates in-sample). 
 All 

Obs 
2057 

σσσσ2 = 
0.0025 
449 obs 

(21.8%)♠ 

σσσσ2= 0.01 
702 obs 
(34.1%)♠ 

σσσσ2 = 0.06 
1196 obs 
(58.1% )♠ 

LVQ 
1 

92.6 
(92.5) 

90.9 
(70.3) 

91.4 
(77.5) 

91.8 
(85.6) 

NN 99.4 
(99.9) 

98.9 
(98.2) 

99.2 
(99.1) 

99.4 
(99.6) 

SVM 99.5 
(99.6) 

99.5 
(98.2) 

99.5 
(98.9) 

99.5 
(99.3) 

♠ Of the total number of observations (2057) 
 
Notably SVM has shown equivalent out-of-

sample performance for training with all observations 
and with just the GRZ selected (for different values 
of σ2). SVM algorithms are time consuming and this 
approach may represent a significant gain from the 
computational point of view. One hundred and thirty 
support vectors resulted from the run with for all 
observations. Conversely, 101 (77.7%) of the support 
vectors were selected to be at the GRZ for all values 
of σ2. When SVM was run only using GRZ 
observations, we had 100% of coincidence between 
those and the support vectors for σ2 = 0.0025 and σ2 
= 0.01 and 99% for σ2 = 0.06.  

Another point to be noted is that, by applying the 
GRZ selection, equivalent performance was obtained 
using just a fraction of the observations. This shows 
that the observations in the GRZ are really the 
relevant ones.  

 
  



 
 Fig. 1a: Classes 1 and 2 and GRZ for σ2 = 
0.0025 (449 observations). 

 
 Fig. 1b: Classes 1 and 2 and GRZ for σ2 = 
0.01 (702 observations). 

  
 Fig. 1c: Classes 1 and 2 and GRZ for σ2 = 
0.06 (1196 observations). 
 

Experiment 2: We generated two classes by using a 
circle and a roll with the same centers and no 
superposition. For in-sample phase we had 123 
observations C1 and 2611 observations C2. For out-
of-sample phase were 127 observations C1 and 2646 
observations C2. In Figures 2a to 2c one can find the 
GRZ for σ2 = 0.0025, 0.01 and 0.06. Classification 
with the algorithms trained by all observations and 
trained by GRZ observations can be found in table 2. 

Table 2: Out-of-sample accuracy percentage 
(parenthesis indicates in-sample).  

 All 
Obs 
2734 

σσσσ2 = 
0.0025 

280 obs 
(10.2%)♠ 

σσσσ2 = 
0.01 

453 obs 
(16.6%)♠ 

σσσσ2 = 
0.06 

784 obs 
(28.7%)

♠ 
LVQ 

1 
88.1 

(87.5) 
98.2 

(86.8) 
97.8 

(89.8) 
97.4 
(93) 

NN 99.7 
(100) 

99.3 
(100) 

99.6 
(100) 

99.6 
(100) 

SVM 99.6 
(99.7) 

99.6 
(97.1) 

99.6 
(98.5) 

99.6 
(99) 

♠ Of the total number of observations (2734) 
 

Note that, training with the GRZ subsets has 
clearly enhanced the LVQ performance and matched 
the NN and SVM ones. Three hundred and ten 
support vectors resulted from the run with for all 
observations and 49 (15.8%) of the support vectors 
were selected to be at the GRZ for σ2 = 0.0025 and 
σ2 = 0.01. For σ2 = 0.06, 96 (31%) of the support 
vectors were in GRZ. When SVM was run only using 
GRZ observations, we had 100% of coincidence 
between those and the support vectors for all 
observations for σ2 equal to 0.0025, 83.1% for σ2 
equal to 0.01 and 63.4% for σ2 equal to 0.06. 

 
 Fig. 2a: Classes 1 and 2 and GRZ for σ2 = 
0.0025 (280 observations). 

 
 Fig. 2b: Classes 1 and 2 and GRZ for σ2 = 
0.01 (453 observations). 

 
 Fig. 2c: Classes 1 and 2 and GRZ for σ2 = 
0.06 (784 observations). 
 

Experiment 3: Heart Disease Diagnosis Data Set 
 

This data set was formed by assembling four data sets 
[17] concerning heart diseases diagnosis. Each of 
these four data sets is individually available in the 
UCI♣ machine learning repository. The data was 
collected from the Cleveland Clinic Foundation; the 
Hungarian Institute of Cardiology; the V.A. Medical 
Center, and the Zurich University Hospital. All the 
                                                           
♣ http://www.ics.uci.edu/~mlearn/MLSummary.html. 
 



original databases have 76 attributes but only 13 of 
them are actually relevant [10]. The goal is to predict 
angiographic disease status concerning narrowing in 
major vessels. After missing data elimination, we 
ended up, in the assembled data set, with 740 patients 
and 10 input attributes. 

For in-sample phase we set apart 540 patients 
and 200 for out-of-sample phase. Results are 
presented in table 3. 

 
Table 3: Out-of-sample accuracy percentage 

(parenthesis indicates in-sample). 
 All 

Obs 
540  

σσσσ2 = 
0.0025 
480 obs 

(88.9%)♠ 

σσσσ2 = 
0.01 

522 obs 
(96.7%)♠ 

σσσσ2 = 
0.006 

486 obs 
(90%)♠ 

LVQ 1 80 
(80.7) 

80.4 
(79.4) 

79.7 
(80.7) 

80.9 
(79.6) 

NN 74.6 
(97.9) 

71.9  
(98) 

74.6 
(98.2) 

71.5 
(98.2) 

SVM 81 
(80.7) 

82.5 
(78.1) 

81.5 
(80.3) 

82.5 
(78.8) 

♠ Of the total number of observations (540) 
 
For all three classification schemes, the out-of-

sample results with a reduced set of observations (by 
using the GRZ) are comparable, or marginally better 
then the results with the totality of the observations. 
Three hundred and ninety seven support vectors 
resulted from the run with for all observations and 
359 (90.4%), 383 (96.5%) and 364 (91.7%) of the 
support vectors were selected to be at the GRZ for σ2 
equal to 0.0025, 0.01 and 0.06. When SVM was run 
only using GRZ observations, we had 96.2% of 
coincidence between those and the support vectors 
for all observations for σ2 equal to 0.0025, 98.7% for 
σ2 equal to 0.01 and 97% for σ2 equal to 0.06. 

 
Experiment 4: Breast Cancer Data Set 
 
This data set concerns an application in diagnosing 
breast mass cytology. Data is available at the UCI♣ 
repository and was provided by the University of 
Wisconsin Hospitals, Madison. The input is 
composed by nine cytological characteristics of 
benign or of malignant breast fine-needle aspirates. 
These attributes are: uniformity of cell shape, 
uniformity of cell size, clump thickness, bare nuclei, 
cell size, normal nucleoli, clump cohesiveness, 
nuclear chromatin, and mitosis. All the attributes 
assume discrete values between 1 and 10. The two 
output classes are “benign” or “malignant”. 

After removing missing points, the data set 
remained with 683 instances with 9 input attributes. 
For in-sample phase we set apart 558 patients and 
125 for out-of-sample phase. Results are in table 4. 

 
 

                                                           
♣ http://www.ics.uci.edu/~mlearn/MLSummary.html. 

Table 4: Out-of-sample accuracy percentage 
(parenthesis indicates in-sample). 

 All Obs 
558 

σσσσ2 = 0.01 
243 obs 

(43.5%)♠ 

σσσσ2 = 0.06 
554 obs 

(99.3%)♠ 
LVQ 1 95.3  

(96.6) 
96.1 

(94.4) 
95.4  

(96.9) 
NN 94.9  

(99.7) 
87.7 

(99.6) 
94.6  

(99.6) 
SVM 96  

(97.7) 
96  

(93.8) 
96  

(97.7) 
♠ Of the total number of observations (558) 
 
Once again, a part from a slightly worst result for 

the NN model with σ2 = 0.01, it seems that one may 
obtain comparable results by using an appropriate 
subset of observations. One hundred sixty eight 
support vectors resulted from the run with for all 
observations and 55 (32.7%) and 164 (97.6%) of 
these support vectors were selected to be at the GRZ 
for σ2 equal to 0.01 and 0.06. When SVM was run 
only using GRZ observations, we had 69.3% of 
coincidence between those and the support vectors 
for all observations for σ2 equal to 0.01 and 99.4% 
for σ2 equal to 0.06. 

4   Final Remarks 

In this paper we propose a methodology to identify 
representative observations from a data set. It is a 
model-independent risk zone approach, that we call 
‘Generalized Risk Zone’. The objective is to select 
observations that are on the risk to be wrongly 
classified and to investigate how useful they are in 
the training process. 

Since the method is model-independent, GRZ 
observations can be used for any classification 
model. Experiments with LVQ, Neural Networks and 
SVM have been done and our results show that using 
GRZ observations for training at least equalize (and 
sometimes improve it) the accuracy for training with 
all observations. 

A comparison with support vectors selected by 
SVM is also done. Since we are dealing with 
observations that are important for classification, we 
investigate both subsets from data and come up with 
interesting conclusions. At first we observed that in 
most experiments, a great percent of the support 
vectors selected by SVM from all observations were 
in GRZ observations.  Besides, we investigate new 
sets of support vectors when SVM was directly 
applied to GRZ observations and compare the new 
support vectors with the ones obtained from all 
observations. It is interesting that sometimes the 
accuracy of classification can be kept with a smaller 
set of original support vectors or with a merge set 
composed by original SV and others observations. 



Future works are closely related to establish 
margin concepts for GRZ and to extend it to 
multiples classes problems.  
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Appendix – Divergence calculation 
Different measures of information, e.g., entropy, 
mutual information and divergence [2], [3], involve 
the necessity of pdf’s estimation. This is especially 
harassing for continuous variables, since the 
calculation involves some sort of discretization 
procedure. The ITL approach proposed in [4] has 
overcome this setback by extracting information 
directly from the observations. 

Let us consider the Cauchy-Schwartz 
divergence, between two pdfs p and q, as defined in 
[9]: 
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Note that the DC-S, is a way of measuring the 

distance between the pdf’s p and q. 
Let M and N be the number of available 

observations generated by pdf’s p and q respectively. 
In order to estimate p and q in (3), we use a Parzen 
windows approach [6] with a zero mean normal 
kernel function. In this way one may write the 
estimative  
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The last equality results from the convolution 
theorem for Gaussians [7]. It is fundamental to note 
that there are no approximations in the calculation of 
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depends exclusively on observations xi. 
In a similar manner one may get 
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By applying (4), (5) and (6) in (3), one gets 
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