
IMPLEMENTATION OF PID AUTO-TUNING CONTROLLER USING FPGA AND NIOS II

PROCESSOR

RAPHAEL C. GOMEZ, EDSON A. BATISTA, LUIS HENRIQUE G. CORBELINO, CRISTIANO Q. ANDREA, ALEXANDRE

C. R. DA SILVA, MARCO H. NAKA. ALEXSANDRO M. CARNEIRO.

Laboratory of Control and Automation, Department of Engineering, Dom Bosco Catholic University
Av. Tamandaré 6000, 79117-900 Campo Grande, MS, Brazil

E-mails: raphaelceni@gmail.com,edson.ucdb@gmail.com,luis.corbelino@gmail.com,
cristiano@batlab.ufms.br, acrsilva@gmail.com, marco.h.naka@gmail.com,

alexsandro.ucdb@gmail.com

Abstract FPGAs devices are becoming faster and cheaper every day. Its fast implementation has been increasing its popular-
ity, and modern control studies can be beneficed with its advantages. In this paper is presented a project of an auto tuning PID
implemented in FPGA with a NIOS II processor, using Relay Feedback and Ziegler-Nichols methods.

Keywords PID, FPGA, Ziegler-Nichols, Relay Feedback, Auto Tuning.

1 Introduction

Developing more complex and higher precise control
systems, reducing time in manufacturing and the
improvement of quality have always been the main
focus in technological researches

From this point of view, the analysis of closed-
loop control systems is essential, because it is possi-
ble to design controllers based on the plant’s behav-
ior in order to obtain a desired output. The PID con-
troller is used to solve that problem. It is well ac-
cepted because of its easy implementation and for
providing control of different kinds of processes.

PID works with a mechanism of control with a
feedback, extensively used in industrial applications
in order to minimize the error or eliminate it in sec-
ond order systems. Another advantage is the fact that
it increases the system’s performance. Nowadays,
more than 90% of feedback systems use PID or PI
controllers, which can be found at any area where
controllers are used (Aström and Hägglund, 2001).
Some examples of PID’s applications are: control of
robotic arms in automotive industries, temperature
control in petrochemical industries, or even pressure
control in a production line.

As a result, a great variety of tuning methods has
been developed for these controllers. The classic
approach of Ziegler-Nichols method with the Relay-
Feedback method makes possible to implement an
auto-tuning PID controller. Other methods for tuning
a PID controller are: Fuzzy, Root Locus, CHR
(Chien, Hrones and Resqick, 1952), Cohen-Coon
(Cohen and Coon, 1953), Visioli (Visioli, 2001), Ya-
Gang (Wang and Cai, 2002) and also the IMC (In-
ternal Model Control) method.

The auto-tuning is expected to identify the out-
put of the system and automatically find the parame-
ters of the controller. The Ziegler-Nichols method is
practical and direct while the Relay-Feedback me-
thod is utilized to obtain the data that will be used for

the Ziegler-Nichols tuning. It is expected that the
results will be more accurate with the combination of
both methods.

About the equipments, the PLCs (Programmable
Logic Controller) are the most common hardware
used as a controller in industry. These devices were
developed around 1960 with the aim to replace re-
lays in logic control. The PLCs have a closed archi-
tecture and the programming is carried out using the
language ladder or relay diagrams. Another attractive
option to satisfy the needs of industrial control and
automation are the programmable logic devices.

The programmable logic devices were devel-
oped more than a decade ago and, nowadays, are
used in several areas such as, telecommunication,
instrumentation and in control. In comparison to an
analogical controller, it has some advantages that are
essential to obtain the desired result, as better noise
immunity owing to its discrete signal (Ruschel
1996), it is easily integrated with other digital sys-
tems and it makes possible the implementation of
more sophisticated control methods.

The FPGA (Field Programmable Gate Arrays) is
a reconfigurable logic device that provides mainly
practicality and portability, with low consumption of
energy, high speedy of operation and large capacity
of data storage.

The FPGA, contrary to TTL technology inte-
grated circuits that have a fixed logic, allows the
designer to make future modifications. The recon-
figurable logic devices are synthesized by means of
hardware description. This description can be devel-
oped with a standard language, for example, VHDL
(VHSIC – Hardware Description Language).

In this paper, it is described the development of
the Relay-Feedback and Ziegler-Nichols methods for
the PID auto-tuning synthesized in a FPGA from
Cyclone family of (Altera) with NIOS II processor.

This paper has the objective to make it easier
and faster to develop automation systems using
FPGA by developing a template that can be easily

configured for future implementations. This template
can be used in systems that already have FPGA de-
vices or in future projects that need controllers,
where the developer designs the application and uses
the PÍD auto-tuning template for the controller.

The paper is organized by the following topics:
In section 2 is presented the techniques of auto-
tuning for PID, utilizing the Ziegler-Nichols and
Relay-Feedback methods. Section 3 shows the con-
trol algorithm used in the NIOS II processor and the
development of the hardware used to test the tech-
nique proposed. Finally, simulations of the con-
trolled system in MATLAB and SIMULINK, and the
results obtained are presented in section 4.

2 Auto-Tuning PID

The PID is the sum of the proportional, integral and
derivative controllers. Considering second order sys-
tems, the Proportional (P) controller reduces the time
of settlement, but does not eliminate the state error.
The Integral (I) controller eliminates the state error,
but may make the transitory output worse while the
Derivative (D) controller increases the system’s sta-
bility, reducing the transitory oscillations, the over-
shoot and improving the transitory output but it also
amplifies high frequency noise (Nise, 2002).

2.1 PID Tuning

There are different techniques for tuning a PID con-
troller. The Ziegler-Nichols method is well known
for being the first to propose a simple and objective
methodology for PID tuning.

The Ziegler-Nichols method proposes two tech-
niques: in the first one, the proportional gain is in-
creased until the closed-loop system’s output has a
constant period. That way, the ultimate gain Ku and
the oscillation period Pu are determined. Any gain
greater than Ku makes the systems unstable. The
controller’s tuning is obtained in Table 1. The sec-
ond technique consists in applying an open-loop test.
A step disturbance is generated at the controller’s
output, and by the system’s answer to that distur-
bance, the delay or dead-time and the variation rate
are calculated and used ahead for the controller’s
tuning.

In this paper, two methods are utilized. The Re-
lay-Feedback proposed by (Aström and Hägglund,
1995) uses relays in a closed-loop system to provoke

controlled oscillations in a determined process and
then, to estimate the period Pu, which is approxi-
mately the same as the constant period. At last, the
ultimate gain Ku is estimated, witch is related to the
relay’s output “h” and the plant’s output “a” as seen
in Equation (1).

a

h
Ku

4

In that way, it is possible to obtain a controller
using the two methods together.

When using the FPGA, the period Pu is easily
obtained by setting a counter on the simulated relay.
This can be seen well in the next section.

The Equation (2) corresponds to a PID control-
ler.

)
1

1()(sT
sT

KsC d
i

p

This controller is supposed to be used in an in-
dustrial environment. For this reason, some adjust-
ments need to be done. The derivative term can cause
some problems on a real system considering that it
uses the derivate of the error. That way it can gener-
ate some excessive control actions that may com-
promise the system. Because of that, instead of using
the derivate of the error, it is used the derivate of the
system’s output. This can be seen in the next section.

2.2 Auto Tuning

The Auto-tuning PID utilized in this paper is basi-
cally a controller which the tuning is done by means
of Ziegler-Nichols and Relay-Feedback methods.
The hardware used as controller is responsible for
analyzing the plant’s output, simulating the Relay-
Feedback’s method, then calculate the parameters
necessaries as Ku and Pu, then tune the PID control-
ler using Ziegler-Nichols. It is relevant to consider
that this is an auto-tuning controller, and not an
adaptive, which means that if there is any change on
the plant, it will not do a new tuning of the control-
ler, unless it has been reset. A PID auto-tuning sys-
tem with relay feedback is seen in Figure 1.

For implementing the PID into the FPGA device
and inserting the logic into the NIOS II processor, it
is necessary to obtain an equation that represents a
digital PID.

The digital structure of a PID is represented by
Equation (3), u(t) is the control signal, e(t) is the

Table 1. Ziegler-Nichols table for PID tuning.

Controller Kc Ti Td

P Ku5,0 - -

PI Ku4,0 Tu8,0 -

PID Ku6,0 Tu5,0 Tu12,0

Figure 1. Scheme of an auto-tuned PID.

(1)

(2)

system’s error, Ts is the system’s time sample and
q0, q1 and q2 are related to Kc, Ti and Td according
to Equations (4), (5) and (6).

)2(2)1(1)(0)1()(teqteqteqtutu

Ts

Td

Ti

Ts
kcq

2
10

Ts

Td

Ti

Ts
kcq

2

2
11

Ts

Td
kcq2

The equations for q0, q1 and q2 are found sub-
stituting the derivate by the first order difference and
using the trapezoidal approximation for an integral.

Instead of using the error for the derivative term,
it is used the system’s output to prevent excessive
control action. Equation 7 represents the proportional
and integral error, and Equation 8 represents the de-
rivative error.

)()()(tytyte ref

)()(tyted

Equation 9 represents the new PID equation, or
PI+D.

)]}2()1(2)([)1(

)1()({)1()(

tytyty
Ts

Td
te

Ti

Ts

tytyKctutu

As the prototyping of the proposed system was

synthesized using FPGA, in the next section the
hardware and the programming is described.

3 FPGA-NIOS II

FPGA is a reconfigurable logic device which pro-
vides a fast prototyping. One advantage in hardware
development synthesized in FPGA is the utilization
of the NIOS II processor. The applicability of the
NIOS II processor favors the development of em-
bedded systems to work in the industrial automation
sector. In this paper, a hardware was developed in

order to allow the testing of an execution of a PID
controller. The system developed in this paper can be
used, for example, to control the speed or position of
a DC motor.

In Figure 2, it is shown the hardware architec-
ture, which includes a 50MHz CLOCK that provides
the system with a capacity of making all the opera-
tions needed without compromising the controller.
An 8bits input and output, which may be reconfig-
ured accordantly to the AD and DA available. An
8Mbytes SD-RAM memory, used to store the code
responsible and the variables to be computed and a
PLL which adjust the 50 MHz CLOCK for the SD-
RAM.

3.1 Hardware Configuration

The prototyping was done using the DE2 board from
Altera. This board has an EP2C35F672C6, from the
CYCLONE II family.

The hardware that will be used is configured us-
ing QUARTUS II software.

The hardware developed in this project is com-
posed by:

 CPU - 50 MHz NIOS II/s processor.
 SDRAM - 8 Mbytes SDRAM memory.
 SYS_CLK_TIMER - 1 μs internal timer

module.
 SYSID - peripheral identification system

module.
 JTAG_UART - USB communication port.
 INPUT - 8 bits input.
 OUTPUT - 8 bits output.
 The main components are selected and config-

ured at SOPC Builder and then attached to the pe-
ripherals in QUARTUS II. With the hardware gener-
ated at SOPC Builder and the compilation in Quartus
II, the embedded module is ready to receive the op-
eration logic. The operation logic is programmed
using C/C++ language in NIOS II IDE environment.
The configuration of the embedded module can be
seen with the respective I/O in Figure 2. The re-
sources used to generate the embedded module are
presented in Table 2.

3.2 NIOS II processor configuration

The configuration of the embedded NIOS II proces-
sor, present in the FPGA is done using the NIOS II
IDE software. This software allows designers to pro-
gram using C/C++ language. In this paper, a library
with functions that allows the automatic generation

Figure 2. Configuration of the embedded module on Quartus II

Table 2. Resources utilized to generate prototyped hardware.

Total logic
elements

Dedicated
Logic Register

Memory
Bit

Total
Pins

9% 5% 6% 12%

 (3)

(4)

(6)

(5)

(7)

(8)

(9)

of a PID controller was developed. This library was
perfectly inserted into the Select Project Template
and might serve as base to PID controller’s projects.

The activities programmed into the processor
makes the embedded module receive the signal from
the 8 bits input, this signal corresponds to the plant’s
output. The input can be changed to 16 bits if neces-
sary, although for controlling a motor’s speed 8 bits
are enough. After receiving the 8 bits signal, this
signal is converted to a decimal base. The step is
generated in the FPGA device and the error is also
calculated internally.

At a first moment, the module works as a relay
feedback, providing a step input in the closed-loop
system. Secondly, it compares the error, and change
the input’s amplitude with a higher or lower value
depending on its Setpoint. This effect generates an
oscillatory signal with a constant period as seen in

Figure 5. Part of the code responsible for that analy-
sis and for setting the counter that determines the
period Pu is presented in Figure 3.

The period found is used to find the parameters
of the Ziegler-Nichols controller, and tune the con-
troller. After tuning the controller, the signal is
changed from the comparator to the actual controller.
The tuning of the controller using C/C++ with the 8
bits input coming from the AD converter is seen in
Figure 4. It can be observed that the processor calcu-
lates the parameters q0, q1 and q2, which are the
controller’s constants.

4 Simulation and Implementation

The system was modeled and simulated in MATLAB
using the tool Simulink, as seen in Figure 1. The
plant utilized for simulation is a plant present in
(Nascimento Jr. and Yoneyama, 2000) whose answer
is known, so that the results can be compared to the
expected values. This plant is represented in the Eq-
uation (10).

3

10
)(

)5,0(

S

e
SG

S

Figure 5 corresponds to the plant’s output using
relay feedback, which is analyzed for finding the
controller’s parameters. The system’s output using
auto-tuning can be seen in Figure 6.

For the implementation of the system, it is nec-
essary to use two converters, an AD (analogi-
cal/digital) and a DA (digital/analogical) converter.

Figure 4. C/C++ code responsible for tuning the controller.

Figure 5. Plant’s output with relay feedback and relay output.

Figure 3. C/C++ code which simulates the relay feedback.

Figure 6. Plant’s output with auto-tuned PID.

(10)

The system implemented is presented in Figure 7,
where it is possible to see the complete system, and
each component’s function, with the FPGA respon-
sible for the major part.

The simulation carried out with the known plant
had the objective to calculate the digital PID con-
stants q0, q1 and q2. With these parameters calcu-
lated, it is necessary to know the previous inputs as
seen in Equation (3). The simulation was performed
in MATLAB and the parameters calculated in the
DE2 board. In that way, it was not necessary to
transform the plant into a discrete one. The method
presented in this article does not need an equation
that corresponds to a plant, it tunes the controller
automatically from an unknown plant.

5 Conclusion

The development of the PID auto-tuning controller
using FPGA and NIOS II processor helps developers
to increase speed in designing industrial systems.
That way the developer can concentrate on other
things and later use the template of the PID Auto-
Tuning, saving time and hardware, because the
FPGA can be used for something else at the same
time. An example is a robotic arm that uses camera’s
images to change an object’s position. The FPGA
can do the image processing and the control of the
arm position using the PID auto-tuning, without the
need of another hardware. The applicability of the
results presented in this paper can be utilized as pa-
rameters to practical implementations in control and
automation industry. The results obtained with the
embedded module are approximately the same as the
ones obtained in simulation using MATLAB. To
make it easier to future applications of the system
proposed in this paper, a specific library was devel-
oped with the necessary functions to generate the

PID auto-tuning. This library can be made available
by the manufacturer in applications that use the
NIOS II processor. For the next steps, it is hoped to
do some real tests without the knowledge of the
plant, where this prototype will be linked to a power
circuit, signal converters and to the plant, in order to
make the parameters’ control. The tuning will also be
done using different methods instead of Ziegler-
Nichol to compare the results.

References

Altera Corporation, Nios II Software Developer’s
Handbook. Página web <www.altera.com>
acessada em 10 de março de 2009, San Jose:
Altera Corporation, 2007. pp. 620.

Anthony Cataldo (2005), Low-priced FPGA options
set to expand. Electronic Engineering Times
Journal, N 1361, PP 38-45, USA.

Åström, K. and Hägglund, T. (1995), PID
Controllers: Theory, Design and Tuning, Ed.
ISA.

Åström, K. and Hägglund, T. (2001), The Future of
PID Control, Control Engineering Practice,
Vol.9, No. 107, pp. 1163-1175.

Chien et al. (1952), Chien, Hrones, and Reswick. On
the Automatic Control of Generalized Passive
Systems. Transactions of the ASME, V. 74, pp.
175-185.

Cohen, G.H. and Coon, G.A. (1953), Theoretical
Considerations of Retarded Control.
Transactions of the ASME, pp. 827-834.

Deng D., Chen S. and Joos G. (2001), FPGA
implementation of PWM pattern generators,
Canadian Conference on Electrical and
Computer Engineering, V1, pp. 225-230.

Franklin G., Powell J., and Emami-Naeini A. (2002),
Feedback control of dynamic systems, Addison-
Wesley, 4th ed.

Gordon Hands (2004), Optimised FPGAs vs
dedicated DSPs, Electronic Product Design
Journal, V 25, N 12, UK.

Nise, N. S. (2002). Engenharia de Sistemas de
Controle, 3 Ed, Rio de Janeiro: LTC.

Ogata, K. (1998). Engenharia de Controle Moderno.
3 Ed. Rio de Janeiro: Prentice Hall do Brasil.

 Rivera, Morari and Skogestad (1986). Internal
Model Control, 4. PID Controler Design,
Industrial and Enginering Chemistry Process
Design and Development, V. 25, pp. 252-265.

Ruschel, O. T. (1996). Princípios da comunicação
digital, EDIPUCRS, Porto Alegre, pp. 12.

Visioli, A. (2001), Optimal Tuning of PID
Controllers for Integral and Unstable Processes.
IEE Proc.Control Theory Appl., No. 148, pp.
180-184.

Wang, Y.-G, and Cai, W.-J. (2002), Advanced
Proportional-Integral-Derivative Tuning for
Integrating and Unstable Processes with Gain

Figure 7. Representative scheme of implemented system in FPGA
from DE2 Altera.

and Phase Margin Specifications. Ind. Eng.
Chem. Res., Vol. 41, pp. 2910-2914.

Chan Y. F., Moallem M. and Wang W. (2004),
Efficient Implementation of PID control
algorithm using FPGA technology, Proceedings
of the 43ed EE Conference on Decision and
Control, V5, pp. 4885-4890.

Ziegler, J. and Nichols, N. (1942). Optimum Settings
for Automatic Controllers, Transactions of the
ASME, No. 1, pp. 759-768.

