RADIAÇÃO NATURAL EM CARVÃO

Ariane Machado Teixeira Dias¹, Wagner Sciani² ^{1,2} Departamento de Física, Centro Universitário FEI ariane.ane.@hotmail.com e wsciani@fei.edu.br

Resumo: Neste estudo são realizadas análises para a quantificação de isótopos radioativos naturais em amostras de alguns tipos de carvões. Através da técnica de espectrometria de raios gama determinam-se as concentrações, atividades e doses absorvidas do isótopo $^{40}_{19}K$ e da $^{238}_{92}U$ elementos série do e $^{232}_{90}Th$ medindo-se os raios gamas emitidos por estes isótopos.

1. Introdução

O carvão tem sido usufruído pela humanidade desde a antiguidade como uma grande fonte de energia. Esse estudo subdivide-se em carvão ativado, de origem vegetal, que é responsável por uma energia renovável, e em antracito de origem mineral, não renovável. Mesmo com essas diferenças e a desvantagem da contribuição para a poluição do ar e para o desmatamento (no caso do vegetal) o uso de ambos vem aumentando, por serem uma abundante fonte de energia, um dos combustíveis mais baratos e diminuírem a dependência de fontes menos abundantes como o gás natural e do petróleo.

Além da vantagem energética do carvão, suas aplicações não se limitam a isso. O mesmo em suas outras formas, como o carvão ativado, é considerado um dos mais eficientes tratamentos para intoxicações e envenenamentos, pois através da adsorção química, remove a substância tóxica e interrompe sua circulação diminuindo a quantidade disponível para absorção pelo sistema digestivo. Além disso, o carvão vegetal ativado é indicado também para dores no estômago, diarreias infecciosas, disenteria hepática, intoxicação, mau hálito e aftas [1,2].

Sendo assim, este trabalho tem o objetivo de analisar a concentração de radionuclídeos naturais em amostras de carvões, algo de relevante importância, visto que é um produto frequentemente aplicado em áreas diretamente ou indiretamente ligadas ao homem.

2. Metodologia

2.1 Preparo das amostras

As amostras foram trituradas com o almofariz e pistilo com o intuito de reduzir o tamanho do grão original, e colocadas no moinho para uma melhor homogeneização. Após a homogeneização, foram colocadas na estufa durante um período de 24h com o objetivo de eliminar as moléculas de água existentes para a interpretação correta dos dados. Logo após, foram armazenadas em potes de acrílico, vedadas e pesadas.

2.2 Aquisição dos dados

As amostras foram colocadas no detector cintilador de NaI(Tl), localizado no Laboratório de Física das Radiações do Centro Universitário FEI pelo período de 24h. O arquivo gerado foi salvo em dois formatos, um para a análise dos espectros no programa *GENIE2000* [3] e outro para a análise gráfica no programa *ORIGIN*.

Para a análise dos espectros gerados pelo programa são selecionados os picos referentes às energias emitidas pelos nuclídeos $^{40}_{19}K$ e o $^{208}_{91}Tl$ e $^{214}_{83}Bi$ pertencentes a série de decaimento do $^{232}_{90}Th$ e $^{238}_{92}U$, respectivamente. Sendo utilizadas esses picos por apresentarem energias maiores do que outros destas séries, o que poderia impedir a determinação correta dos elementos encontrados na amostra.

3. Resultados

Através do programa *ORIGIN* foram plotados os espectros vistos na figura 1 e figura 2. Ambas as figuras mostram os picos das amostras e os picos do fundo. A radiação de fundo é referente a toda radiação gama presente no ambiente onde se encontra o detector onde as amostras foram colocadas. As energias mostradas nos picos são referentes ao radionuclídeo 40 K (1460 keV), 232 Th (2614keV) e 214 Bi (1764 keV) da série do 238 U [4].

Figura 1 – Gráfico da amostra 01 de Carvão ativado e fundo.

Figura 2 – Gráfico da amostra 01 de Carvão Antracito e fundo.

Através da técnica de espectrometria de raios gama, foram obtidas as áreas dos picos de interesse e calculadas a atividade, concentração e dose efetiva das amostras aplicando as equações (1),(2) e (3), respectivamente, abaixo:

$$Atv_a \left[\frac{Bq}{Kg}\right] = \frac{A_a * Atv_p (KBq)}{A_p * m_a(g)} * 1000$$
(1)

$$C\left[\frac{g}{Kg}\right] = \frac{A_a * m_p(g)}{A_p * m_a(g)} * C_p \tag{2}$$

 $E = dose \ absorvida * \ 0.7 * 10^{-6} * 24 * 365$ (3)

Onde:

- A é a área do pico da energia equivalente ao elemento observado;
- *m* é a massa da amostra analisada;
- 0,7 * 10⁻⁶ é o fator de peso para órgãos humanos;
- Os índices p e a correspondem, respectivamente ao padrão e a amostra.

Por meio dessas equações obtiveram-se os resultados para cada amostra referente aos dois tipos de carvões estudados. As tabelas 1,2 e 3 mostram, respectivamente, as médias das atividades, concentrações e doses efetivas das quatro amostras para os carvões antracito (CAN) e ativado (CA):

Tabela 1 – Média das atividades das amostras para cada tipo de carvão e radionuclídeo

Тіро	Atividade [Bq/kg]	
СА	$(31,5 \pm 1,6)$. 10^{-2}	⁴⁰ K
	$(18,2\pm3,4)$. 10^{-2}	
CAN	$(3,4\pm1,1).\ 10^{-2}$	²³⁸ U
	$(36,7\pm7,3)$. 10^{-3}	²³² Th

Tabela 2 – Média das concentrações das amostras para cada tipo de carvão e radionuclídeo

Tipo	Concentração [g/kg]	
CA	$(11,9 \pm 1,1).10^{-4}$	⁴⁰ K
	$(68,9\pm9,0)$. 10^{-5}	
CAN	$(27,2\pm6,1)\ 10^{-4}$	²³⁸ U
	$(9,1\pm1,7)\ 10^{-3}$	²³² Th

Tabela 2 – Médias da Dose efetiva para cada tipo de carvão

Tipo	Dose efetiva [mSv/ano]
CA	$(0,8048 \pm 0,0031)$. 10^{-4}
CAN	$(2,7725 \pm 0,0018) \cdot 10^{-4}$

4. Conclusões

Por meio das análises realizadas destas amostras, além de aprender a técnica de medição utilizada, se estudou como analisar os picos dos gráficos. Através dos resultados obtidos dos espectros observou-se que as amostras de carvão ativado apresentaram poucas quantidades de 40 K e nenhuma presença de ${}^{238}U$ e ${}^{232}Th$ pois seus picos se sobrepõem ao do fundo. Já para o carvão antracito a quantidade de 40 K foi menor e apresentou traços dos outros dois radionuclídeos.

Os resultados obtidos nos espectros podem ser confirmados pelo cálculo dose efetiva, encontra-se uma média de $(0,8048 \pm 0,0031) \cdot 10^{-4}$ mSv/ano para o carvão ativado e $(2,7725 \pm 0,0018) \cdot 10^{-4}$ para o carvão antracito. Comparando com valor do limite máximo permissível de todas as radiações de 1 mSv/ano [5] com os resultados obtidos nesse projeto, constata-se que os carvões estudados estão dentro dos padrões permitidos.

5. Referências

[1] UNILAGO. **Carvão ativo: Breve histórico e estudo de sua eficiência na retenção de fármacos**. Disponível em: http://www.unilago.edu.br/revista/edicaoatual/Sumario/201 4/downloads/6.pdf.

[2] TAE, Revista. **Carvão ativado: O elemento discreto que purifica a água que bebemos**, São Paulo, Volume, n. 53, p. 29-30, mar.2020.

[3] Mirion Technologies. **Genie 2000 Basic Spectroscopy**. Canberra,2016. Disponível em: https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/sp ec-sheets/c40220_genie-

2000_basic_spectroscopy_software_spec_sheet_2.pdf?1562 601384

[4] JÚNIOR, J. A. D. S. Avaliação radiométrica do U-238, Ra-226 e K-40 em área anômala do agreste de Pernambuco . RECIFE-PE,2009. Disponível em: https://attena.ufpe.br/bitstream/123456789/9472/1/arquivo8 682_1.pdf. Acesso em: 9 abr. 2020.

[5] CNEN. **Diretrizes Básicas de Proteção Radiológica**. Norma – NN – 3.01. mar.2014. Disponível em: http://appasp.cnen.gov.br/seguranca/normas/pdf/Nrm301.p df. Acesso em: 20 ago.2020

Agradecimentos

À instituição Centro Universitário FEI pela realização das medidas e equipamentos.

¹ Aluno de IC (R.A: 11.217.051-9) do Centro Universitário. Projeto com vigência de 08/19 a 08/20