CARACTERIZAÇÃO ELÉTRICA DA ASSOCIAÇÃO SÉRIE ASSIMÉTRICA DE TRANSISTORES FD SOI MOS

Gabriel Antonio Bueno Moreira¹, Michelly de Souza Engenharia Elétrica, Centro Universitário da FEI a.gabrielbueno@fei.edu.br, michelly@fei.edu.br

Resumo: Este artigo apresenta resultados experimentais da caracterização elétrica da associação série assimétrica de transistores FD SOI. É mostrado que a transcondutância tende aos valores dos transistores isolados com comprimento igual a $L_{\rm S}$. A condutância de saída sofre redução significativa quando $L_{\rm S}$ é muito menor que $L_{\rm D}$ e quando $V_{\rm DS}$ é muito maior que $V_{\rm GT}$. Além disso, a estrutura assimétrica proporciona aumento de até 26dB, quando comparada aos transistores isolados, além de permitir a redução de comprimento, sem degradação de $A_{\rm V}$.

1. Introdução

Com o intuito de minimizar os efeitos decorrentes do elevado campo elétrico na região de dreno dos transistores da tecnologia FD (fully-depleted) SOI (Silicon-On-Insulator) [1], algumas estruturas alternativas têm sido exploradas, visando a obtenção de circuitos analógicos de alto desempenho. Uma das soluções mais largamente empregadas para reduzir-se a condutância de saída de transistores MOS é a utilização de uma alteração da estrutura self-cascode chamada de associação de transistores SOI, apresentada na Figura 1, na qual os transistores são associados em série com suas portas curto-circuitadas, operando como um único transistor [2].

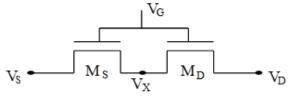


Figura 1 - Representação da associação série assimétrica.

Com o objetivo de aumentar a tensão de ruptura e reduzir g_D, foi proposta a associação assimétrica de transistores, na qual os dois transistores apresentam diferentes concentrações de dopantes na região do canal [3]. Assim, a associação apresenta um transistor com concentração de dopantes mantida em valores habitualmente utilizados em transistores FDSOI convencionais, do lado da fonte (M_S), a qual fixa o valor da tensão de limiar, e a outra com concentração reduzida, junto ao dreno (M_D), diminuindo o campo elétrico nesta região. Este projeto tem como objetivo estudar o desempenho elétrico da associação série assimétrica de transistores FD SOI com diferentes comprimentos de canal.

2. Metodologia

Foram caracterizados eletricamente transistores FDSOI fabricados na Université catholique de Louvain - UCLouvain (Bélgica) em modo *self-cascode*, com comprimentos de canal L_S e L_D variando entre 0,75 e 10 um e W = 20 um. Os transistores apresentam espessura de camada de Si, óxido de porta e óxido enterrado de 80nm, 31nm e 390nm respectivamente. Foram usados transistores com duas concentrações de dopantes: 6x10¹⁶ cm⁻³ e 1x10¹⁵ cm⁻³. Assim, no total, foram extraídas curvas para 100 combinações de M_S e M_D para as associações e mais 10 para cada série de transistores isolados (baixa e alta concentração de dopantes), totalizando 120 transistores. A partir das curvas de correntes medidas destas combinações, foram extraídos parâmetros como tensão de limiar transcondutância (g_m), condutância de saída (g_D) e ganho de tensão (A_V).

Para cada combinação de transistores, foram levantados 3 tipos de curvas, sendo:

- a) I_{DS} x V_G com V_{DS} = 50mV para extração de V_{TH} , a partir do método da segunda derivada de I_{DS} x V_G [4].
- b) I_{DS} x V_G com V_{DS} = 500mV até 1,50V, com passo de 250mV, de onde foram extraídas as curvas de g_m x V_G através da equação 1.

$$g_m = dI_{DS}/dV_G \tag{1}$$

c) I_{DS} x V_{DS} para V_G entre 0V até 800 mV acima de V_{TH} ($V_{GT} = V_G - V_{TH}$, ou sobretensão de condução), com passo de 200 mV, de onde foram levantadas as curvas de g_D em função de V_{DS} , para cada valor de V_{GT} através da equação 2.

$$g_D = dI_{DS}/dV_{DS} \tag{2}$$

3. Resultados

As curvas de I_{DS} em função de V_G para dois tipos de associação (L_D fixo e L_S variando e vice-versa) para V_{DS} =1,5V, estão apresentadas na Fig. 2. Foi observado que I_{DS} aumenta tanto com a redução de L_D como L_S .

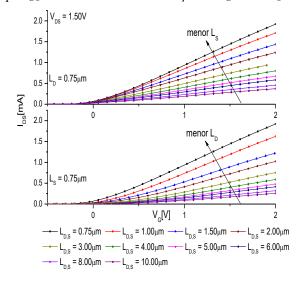


Figura 2 - Curvas I_{DS} x V_G para diferentes L_D e L_S com $V_{DS} = 1,5V.$

A partir da derivada das correntes de dreno em função da tensão de porta, foram obtidas as curvas de transcondutância apresentadas na Fig. 3, para associações com L_D fixo e L_S variando e vice-versa, com tensão de dreno $V_{DS} = 1,5V$. Observando as curvas, podemos notar que assim como para a corrente de dreno, a transcondutância é inversamente proporcional aos comprimentos de canal L_S e L_D .

Devido à baixa resistência apresentada pelo transistor M_D , que apresenta tensão de limiar negativa, maiores valores de tensão atingem o dreno de $M_S (V_X)$, resultando em maior corrente e transcondutância.

A Fig. 4 apresenta as curvas de I_{DS} e tensão no nó intermediário (V_X) , em função de V_{DS} , e a Fig. 5 as curvas de g_D em função de V_{DS} , extraídas com $V_{GT} = 200 \text{mV}$. Comparando os transistores isolados, com as associações, nota-se que a associação apresenta grande redução na condutância de saída. Essa redução ocorre em função da tensão V_X da associação. A tensão V_X se mantém igual a V_{DS} , até o momento em que ambos transistores entram em saturação, onde, a partir desse ponto, M_D absorve o aumento de V_{DS} , diminuindo g_D , que se torna próximo à condutância de saída do transistor isolado com $L=1,50~\mu m$, porém apresentando maior nível de corrente.

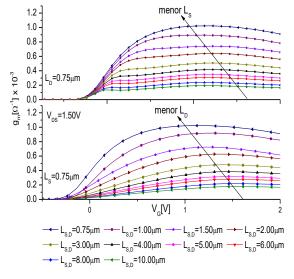
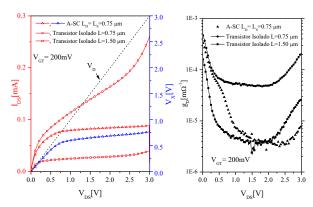



Figura 3 - Curvas g_m x V_G para L_D = 0,75 μm e L_S variando e L_S = 0,75 μm e L_D variando (V_{DS} =1,5V).

Observando-se os valores de g_D para as diversas associações de L_S e L_D pôde-se observar que quanto menor é L_S em relação à L_D , menor é o valor de g_D , chegando a apresentar uma redução de até 93,05%, quando $V_{DS}=1,50V$ e $V_{GT}=0V$.

A partir da relação g_{m}/g_{D} , foram calculados os valores do ganho de tensão (A_{V}) para algumas das associações medidas. A maior diferença de ganho, encontrada entre a associação de menor e maior comprimento, foi de $A_{V}=27,4$ dB, ocorrendo para $V_{GT}=0V$. Os maiores valores de A_{V} foram observados de associações com maiores comprimentos L_{S} e L_{D} . Entretanto, o uso da associação permite a redução das dimensões de L, sem degradação do ganho em comparação com transistores isolados. Por exemplo, a associação assimétrica com $L_{D}=L_{S}=0,75$ µm, apresenta

um ganho A_V = 41,7dB que é maior do que o ganho do transistor isolado com baixa concentração de dopantes, com L=2 μ m (A_V = 35,93dB), vide Tabela 1.

Figuras 4 e 5 - Curvas I_{DS} x V_X(4) e g_D x V_{DS}(5) para assoc. assimétrica e transistor isolado.

Associações	AV[dB]
LD = LS = 0.75 μm	41.7
LD = 2 µm (Isolado)	35.93

Tabela 1 - Ganhos calculados para a associação assimétrica e transistor isolado.

4. Conclusões

Os resultados mostraram que as características analógicas do transistor assimétrico, são melhoradas pelos aumentos dos comprimentos de $L_{\rm S}$ e $L_{\rm D}$. Selecionando o comprimento dos transistores associados, é possível reduzir significativamente o valor de $g_{\rm D}$. Em relação a $g_{\rm m}$, seus valores tenderam aos dos transistores isolados com comprimento igual a $L_{\rm S}$. Sendo assim, foi possível a obtenção de alto ganho para as associações comparado aos dispositivos isolados de L similar, chegando em até 26 dB de aumento na associação assimétrica, além de a associações permitirem a redução de L, sem causar degradação significativa de $A_{\rm V}$.

5. Referências

- [1] J.P, Colinge. Silicon-On-Insulator Technology: Materials to VLSI. 3rd Ed. Massachusetts: Kluwer Academic Publishers. 2004.
- [2] Galup-Montoro, C. et al., IEEE JSSC, v. 29, n. 9, p.1094-1101, 1994.
- [3] Souza, M. de Flandre, D., Pavanello, M. A. Asymmetric Self-Cascode Configuration to Improve the Analog Performance of SOI nMOS Transistors. Proc. of 2011 IEEE International SOI Conference, p. 1-2, 2011.
- [4] A. Ortiz-Conde et al. Revisiting MOSFET threshold voltage extraction methods Microelectronics Reliability, vol. 53, n. 1, pp 90-104, 2013.

Agradecimentos

À instituição UCLouvain pela disponibilização do chip estudado.

Aluno de IC do Centro Universitário FEI. Projeto com vigência de 06/19 a 05/20.