ESTABILIDADE DIMENSIONAL EM FIBROCIMENTO CARBONATADO

Beatriz Moreira Amaral¹, Orientador: Rui Barbosa de Souza³

1,3 Departamento de Engenharia Civil, Centro Universitário FEI

bia.m.amaral@gmail.com e rui.souza@fei.edu.br

Resumo: A cura com carbonatação acelera o processo que já ocorre no ambiente com os materiais cimentícios, dessa maneira, nesse projeto espera-se analisar a retração por secagem no fibrocimento quando submetido a esse processo de cura. Os testes exploratórios com a câmara de carbonatação, que está sendo confeccionada, já mostram que a umidade em seu interior deve ser muito bem controlada para o sucesso da cura das amostras.

Introdução

O fibrocimento é um compósito cimentício composto por duas fases: matriz cimentícia e fibras. A matriz cimentícia é uma pasta composta por cimento e adições minerais. Para aumentar a resistência mecânica e a tenacidade deste compósito é utilizada fibras que são distribuídas pela matriz, que podem ser de celulose, amianto ou sintéticas, PVA. PP, e PAN.

Quando exposto a carbonatação acelerada, o fibrocimento sofre alterações em sua estrutura, aumenta sua resistência mecânica porem deixa-o mais suscetível a retração uma vez que 90% de sua composição é pasta de cimento.

2.Carbonatação

A carbonatação é potencializada em compósitos que são reforçados por fibras, o que é o caso do fibrocimento, por conta da sua alta porosidade que facilita a absorção do ${\it CO}_2$ e consequentemente formação de carbonato de cálcio no interior do material que por sua vez diminui o pH, fornecendo por consequência um ambiente menos agressivo a fibra. O consumo da Portlandita e a consequente liberação de ${\it H}_2{\it O}$ no final do processo também causa retração nos compósitos cimentícios.

$$CO_2 + H_2O \rightarrow H_2CO_3$$
 (1)
 $2H_2CO_3 + Ca(OH)_2 \rightarrow Ca(HCO_3)_2 + 2H_2O$ (2)
 $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$ (3)

- (1) Formação do ácido carbônico
- (2) Carbonatação do hidróxido de cálcio
- (3) Carbonatação do bicarbonato de cálcio

A carbonatação é uma reação química do dióxido de carbono com os compostos hidratados do cimento. O CO2 presente na atmosfera penetra nos poros insaturados da matriz cimentícia, que é então dissolvido na fase aquosa presente nos poros, transformando-se em ácido carbônico H2CO3, que se divide como íons HCO3- e CO3- que junto com os íons (Ca2+ e OH) formados a partir da dissolução da Portlandita (Ca(OH)2) se precipitam formando o carbonato de cálcio (CaCO3).

2. Retração no fibrocimento

A movimentação higroscópica, a absorção do $colonical{CO}_2$, a redução volumétrica ocorrida da formação dos compósitos hidratados do cimento e sua alta porosidade contribuem para a retração do fibrocimento. Estes são fatores diretamente relacionados ao consumo de cimento, como o fibrocimento tem grande volume de matriz cimentícia, com um consumo de cimento em torno de 80%, possui então grande potencial de retração por secagem e consequentemente manifestações patológicas, por terem geometrias finas, grandes áreas de secagem e áreas livres para perda de água para o ambiente.

A retração por secagem ou retração hidráulica é devida a evaporação da água capilar que gera tensões capilares nos poros dos compósitos cimentícios. A perda da água capilar é a principal causa da retração por secagem, pois é perdida quando o compósito está exposto ao ambiente.

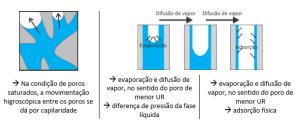


Figura 1 - Movimentação higroscópica entre poros com diferente umidade relativa. Fonte: Rui Barbosa de Souza (2014)

Compósitos cimentícios de baixa espessura, como é o caso da telha de fibrocimento, possuem uma matriz mais suscetível as variações de volume devido as mudanças de umidade (Bentur; Mindess, 2007). Essas variações de volume também são agravadas com a adição de fibras devido ao inchamento e retração das mesmas, podendo causar problemas de durabilidade dos compósitos devido as fissuras geradas e distorções que ocorrem e sua forma. (TONOLI et al., 2009).

3. Metodologia

O estudo dos efeitos da cura com carbonatação na retração por secagem será feito pela comparação de resultados de ensaios de caracterização quanto à composição e desempenho de conjunto de amostras idênticas de compósito cimentício, todas submetidas ao mesmo processo de moldagem e com mesmo material, porém com divisão posterior em dois grupos para que um destes seja submetido à cura com o emprego da carbonatação acelerada e outro grupo tenha cura protegida até mesmo da carbonatação ambiente, com cura por imersão.

Produzidas as amostras, serão realizados ensaios para a caracterização do compósito cimentício quanto às suas propriedades físicas e seu desempenho. Assim, serão levantadas experimentalmente as características de desempenho e composição de ambos os tipos de amostras, para que na comparação da propriedade final se possa haver parâmetros que justifiquem a possível mudança desta propriedade macroscópica estudada, a retração por secagem.

4. Resultados

Foram realizados testes exploratórios com o cloreto de sódio, para obter a umidade ótima para a carbonatação acelerada.

O primeiro teste ocorreu deixando o sal em um outro recipiente e que por uma tubulação fosse realizada a troca de ar com a câmara principal.

Figura 2 – Câmara de carbonatação com o cloreto de sódio em outro recipiente.

O segundo teste ocorreu deixando uma fina camada de cloreto de sódio na câmara principal, para que pudesse absorver mais rapidamente.

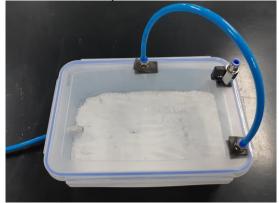


Figura 3 – Câmara de carbonatação com o cloreto de sódio em seu interior.

5. Conclusões

Os testes exploratórios mostraram que o cloreto de sódio é sim uma opção viável para o controle de umidade dentro da câmara de carbonatação, deixando-a em torno de 60%.

Porém, quando as amostras estão sob cura na câmara, o cloreto de sódio satura muito rapidamente, havendo a necessidade de sua troca constante.

5. Referências

DE SOUZA, Rui Barbosa. Estudo da retração do fibrocimento reforçado com fibra polimérica. 2014. 268 f. Tese apresentada para obtenção do título de Doutor em Engenharia – Escola Politécnica da Universidade de São Paulo, São Paulo, 2014.

Disponível em: < http://www.teses.usp.br/teses/disponiveis/3/3146/tde-22102014-095743/pt-br.php>. Acesso em: 17 de fevereiro 2018.

PIZZOL, Vinnicius Dordenino. Carbonatação acelerada: Nova tecnologia de cura para fibrocimento sem amianto. 2013. 61 f. Pós-Graduação em Ciência e Tecnologia da Madeira - Universidade Federal de Lavras, Minas Gerais, 2013.

Disponível em: http://repositorio.ufla.br/bitstream/1/4934/1/DISSERT A%C3%87%C3%83O_Carbonata%C3%A7%C3%A3o%20acelerada%20nova%20tecnologia%20de%20cura%20para%20fibrocimento%20sem%20amianto.pdf>.

Acesso em: 17 de fevereiro 2018.

TONOLI, Gustavo Henrique Denzin. Aspectos produtivos e análise do desempenho do fibrocimento sem amianto no desenvolvimento de tecnologia para telhas onduladas. 2006. 154 f. Dissertação para obtenção do título de Mestre em zootecnia - Universidade de São Paulo, São Paulo, 2006.

Disponível em http://www.usp.br/constrambi/Imagens2/disset_Gustav oTonoli[2].pdf>. Acesso em: 17 de fevereiro 2018.

Agradecimentos

À instituição FEI pela realização das medidas e empréstimo de equipamentos.

Aluno de IC do Centro Universitário FEI (ou FAPESP, CNPq ou outra). Projeto com vigência de 05/18 a 05/19.