DESEMPENHO ESCOLAR: UMA ABORDAGEM VIA ANÁLISE DE REDES II

Bianca Campos de Lemos Souza¹, Júlio César Dutra² ¹ Departamento de Engenharia de Produção, Centro Universitário FEI ² Departamento de Engenharia de Materiais, Centro Universitário FEI biancacls97@gmail.com; jdutra@fei.edu.br

Resumo: O presente trabalho avalia o quanto o grau de amizade ou vínculo existente entre alunos de determinado curso pode influenciar no desempenho ao longo do semestre. Para isso, um instrumento contendo duas perguntas procurou verificar o grau de vínculo que os alunos possuem quando há dúvidas nas disciplinas e a frequência na qual determinado aluno mantém contato com seus pares. Concluiu-se que o alto número de laços e a sua força conduzem a notas comparativamente altas, independente do coeficiente usado.

1. Introdução

Esse trabalho investigou por meio da análise de uma rede social fechada de um grupo de alunos do curso de engenharia mecânica do Centro Universitário FEI a relação que pode existir entre os atores que compõem essa rede e o seu desempenho ao longo de um semestre de curso. A análise de redes sociais é um método que estuda as relações individuais entre indivíduos levando em conta o contexto social no qual eles estão inseridos [1,2].

O objetivo precípuo do presente trabalho é visualizar padrões de quantificação dentro das redes tanto para os laços ou arestas entre os atores como para eventuais cliques e até mesmo a rede, como um todo, que prestigiem o aprendizado, ou seja, o aprender das competências, habilidades e atitudes necessárias em algumas disciplinas do curso mencionado. Isso significa que tal análise pode mensurar o quanto a estrutura da rede, em particular, pode facilitar a repercussão da informação por todos os atores que a compõe.

2. Revisão Bibliográfica

Três medidas de centralidade foram usadas no presente trabalho: a de intermediação, a de grau e a de proximidade. A Tabela I apresenta as fórmulas utilizadas para o cálculo dessas três medidas. As definições dos símbolos estão dadas em outro trabalho [3]. Outra medida utilizada foi o clique. Um exemplo desse uso pode ser encontrado no trabalho de Woolf et al [4], na área de medicina, no qual estudantes do primeiro e segundo ano da faculdade UCL foram analisados. Nessa pesquisa, a rede foi considerada não direcionada; caso um estudante A mencionasse B, e B não mencionasse A, a relação era considerada como existente. Este método pode causar uma má interpretação da rede, como evidenciado no relatório da pesquisa. Com o intuito de obter um resultado, os pesquisadores determinaram os ncliques da rede, centralidade de proximidade e de intermediação. Como desfecho, foi possível afirmar que as amizades entre os alunos do primeiro e segundo ano influenciava no desempenho nos exames.

Tabela I – Medidas de centralidade de uma rede.

Denominação	Fórmula
Intermediação C _B	$C_B = \frac{\sum_{j < k} g_{jk}(n_i)}{g_{jk}}$
Grau C _D	$C_{D-out}^{wa} = k_i^{out} x (\frac{s_i^{out}}{k_i^{out}})^{\alpha}$
Proximidade C _C	$C_C = \left[\sum_{j=1}^g d(n_i, n_j)\right]^{-1}$

A forma de calcular a centralidade de grau não é a mesma proposta por Wasserman e Faust [2] porque ela não abrange todas as características da rede quando esta possui laços com peso: ao somar os pesos, a quantidade de laços é desconsiderada, o que pode suceder em equívocos na análise. Opsahl, Agneessens e Skvoretz [5] propuseram uma nova forma de calcular a centralidade de grau, de modo que esta abrangesse todas as variáveis de uma rede com peso.

A centralidade de grau de saída passa a ser calculada da seguinte forma:

$$C_{D-out}^{wa} = k_i^{out} x (\frac{s_i^{out}}{k_i^{out}})^{\alpha}$$
 enquanto a centralidade de entrada é calculada por:

$$C_{D-in}^{wa} = k_i^{in} x \left(\frac{s_i^{in}}{k_i^{in}}\right)^{\alpha} \tag{2}$$

A soma dos pesos é presentada pela letra s. O parâmetro α é uma variável determinada através do objetivo que o analista da rede pretende alcançar. Quando α possui valor entre 0 e 1, a quantidade de laços é o que determina o valor da centralidade de grau. Entretanto, quando α é maior que 1, o peso dos laços determina o valor da centralidade.

3. Metodologia

Com base nos recursos disponíveis e na facilidade para coletar os aspectos necessários, aplicou-se o método do questionário. Duas questões capazes de coletar os dados necessários (relação de estudos e amizade entre os alunos) foram feitas:

- 1. Com quem você estuda ou esclarece dúvidas, quando necessário?
- 2. Com quais pessoas você mantém contato? Com que frequência você se comunica com essas pessoas?
- (1) Raramente
- (2) Ocasionalmente
- (3) Frequentemente
- (4) Sempre

Todos os alunos da turma estudada responderam a este questionário. De posse das respostas, foi possível montar duas matrizes de adjacência no Excel®, uma para cada pergunta. Nesse trabalho somente a segunda pergunta será apresentada já que a primeira foi objeto de trabalho anterior, assim como o método para determinação da nota padronizada [3]. Os grafos foram feitos por meio do software UCINET for Windows® [6].

3. Resultados e Discussão

A Figura 1 apresenta a rede social formada de acordo com a segunda pergunta. Os laços nessa rede possuem pesos, traduzidos na sua espessura e cor.

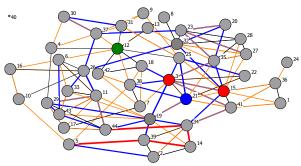


Figura 1 – Rede complexa relacionada para a segunda pergunta. Obtido pelo UCINET® [5].

Com o intuito de se analisar os cliques (subgrafo cujos nós são interligados e tem uma certa distância geodésica máxima entre eles), foi feita uma média simples da centralidade de grau segundo o coeficiente α das Equações (1) e (2). As Figuras 2 e 3, a seguir, comparam a colocação de cada clique com suas respectivas notas médias e a média geral em vermelho.

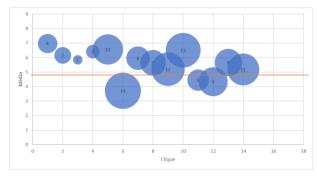


Figura 2 - Comparação entre as notas e as posições dos cliques no ranking IN para α =0,5.

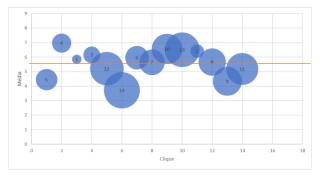


Figura 3 - Comparação entre as notas e as posições dos cliques no ranking IN para α =1,5.

Verifica-se que o os números escritos dentro dos círculos são as posições do ranking. Por meio desta figura, nota-se que os cliques 2, 3 e 4 possuem valores acima da média por conta do alto número de laços e da força dos seus laços e que o clique 11 possui valor acima da média somente para α =1,5, por conta da força dos seus laços. No entanto, seu valor é abaixo da média para α =0,5 devido ao reduzido número de laços.

4. Conclusões

Os resultados experimentais e metodologia permitem que as seguintes conclusões sejam depreendidas:

Os cliques cujos nós possuem valores altos de centralidade de grau e centralidade de intermediação e boa centralidade de proximidade apresentaram desempenho médio superior aos demais cliques da rede em todas as disciplinas examinadas.

Cliques 2, 3 e 4 possuem notas padronizadas acima da média por conta da alta centralidade de grau segundo o coeficiente α =0,5 e α =1,5. Isto é, nesse caso, a alta quantidade e força dos laços resultou em notas altas;

Clique 11 possui notas acima da média somente para α =1,5 por conta da força dos seus laços. Entretanto, seu valor é abaixo da média para Q=0,5 devido ao reduzido número de laços.

5. Referências

- [1] R. Isba; K. Woolf, R. Hanneman, **Social network** analysis in medical education. Medical Education. (2016), p.1-8.
- [2] S. Wasserman; K. Faust, Social Network Analysis: Methods and Applications. (1994) New York: Cambridge University Press.
- [3] B.C.L. Souza; J.C. Dutra, Desempenho escolar: uma abordagem via análise de redes. (2017), Relatório Final, 58p.
- [4] K. Woolf et al., The hidden medical school: A longitudinal study of how social networks form, and how they relate to academic performance. (2012) Academic Centre for Medical Education, p.577-586.
- [5] T. Opsahl; F. Agneessens; J. Skvoretz, Node centrality in weighted networks: Generalizing degree and shortest path. (2010, Imperial College Business School, v.32, p.245-251.
- [6] S.P. Borgatti, M.G. Everett; L.C. Freeman, Ucinet 6 for Windows: Software for Social Network Analysis. (2002), Harvard: Analytic Technologies.

Agradecimentos

Ao Centro Universitário FEI pelo financiamento da bolsa de iniciação científica PBIC011/17 e os recursos necessários para a realização do projeto.

- ¹ Aluna de IC do Centro Universitário FEI Projeto com vigência de 12/16 a 3/18.
- ² Professor Doutor do Departamento de Engenharia de Materiais do Centro Universitário FEI.