CARACTERIZAÇÃO DAS CURVAS DE GANHO DO AMPLIFICADOR DE ELETROCARDIOGRAMAS

Daniel da Silva Alencar Souza¹, Beatriz Barsocchi Testa¹, Cleiton Fidelix Pereira¹

¹ Engenharia Elétrica, Centro Universitário FEI

<u>danielalencar80@gmail.com</u>, cleitonfidelix@fei.edu.br

Resumo: Os sinais de EletroCardioGrama são muito pequenos, com amplitude na ordem de milivolts e, para que essas ondas sejam detectadas para fazer-se uma análise precisa, é necessário amplificar o sinal elétrico captado pelos eletrodos colocados sobre a pele do paciente. Dessa forma, utilizando um bio-amplificador fabricado com a tecnologia de 0,13 μm, adaptado com pseudorresistores, foram levantadas suas curvas de ganho em diferentes temperaturas.

1. Introdução

Biopotenciais são sinais elétricos endógenos que se relacionam ao funcionamento de células eletricamente excitáveis de sistemas biológicos [1]. Dessa forma, o sinal de ECG (eletrocardiograma) monitora o comportamento dos biopotenciais e pode identificar problemas de saúde do paciente. Entretanto, uma vez que a amplitude dos sinais de ECG é muito pequena e ela pode estar sujeita a interferência de ruídos, [1] os circuitos amplificadores são capazes de realizar a medida dos sinais de interesse e os amplificar ao nível de tensão suficiente para estudo dele. Dessa forma, a Figura 1 retrata um sinal A de ECG e sua forma amplificada em B.

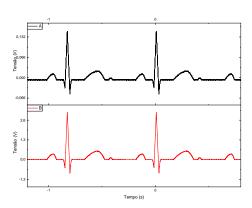


Figura 1 - Sinal de Eletrocardiograma amplificado

Nesse sentido, houve o objetivo de comparar o desempenho do amplificador do grupo de pesquisa sob influência de temperatura com um amplificador de instrumentação utilizado comercialmente. A Figura 2 apresenta a estrutura do circuito amplificador encapsulado do grupo de pesquisa com a presença de pseudorresistores e a Figura 3 apresenta um circuito genérico de amplificador comercial.

O circuito da Figura 2 foi utilizado para extração dos dados a fim do levantamento e análise das curvas de ganho do amplificador de ECG em temperaturas ambiente, de 30, 40 e 50°C.

Outrossim, [2] o circuito amplificador de instrumentação é caracterizado por fornecer uma saída de alta rejeição a sinal de modo comum, uma alta impedância de entrada e uma saída que se baseia na diferença entre duas entradas. Este é bastante utilizado industrialmente para aquisição de sinais biológicos e é genericamente representado pelo circuito da Figura 3.

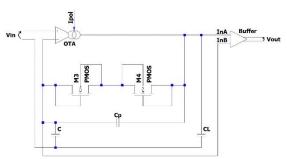


Figura 2 - Circuito amplificador do grupo de pesquisa

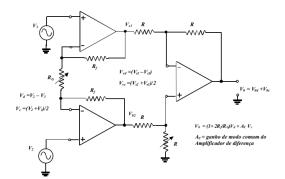


Figura 3 - Circuito amplificador de instrumentação

2. Metodologia

Para controlar a temperatura sobre o circuito encapsulado, foi utilizado o protótipo desenvolvido em [3], o qual consiste em uma caixa de madeira revestida com uma chapa de metal e uma resistência com o acoplamento do Termostato Digital W1209 como ferramenta de controle de temperatura. Ademais, foi utilizado um gerador de funções para fornecer a frequência e tensão de entrada desejados; uma fonte para alimentação do circuito; e o osciloscópio Rohde&Schwarz para análise dos sinais.

Para obter medições com maior imunidade à ruídos, foi desenvolvida uma placa de circuito impresso (PCI) a partir do software *Autodesk Fusion 360* para acoplamento do circuito encapsulado. A PCI contém 2 reguladores de tensão e aterramentos para outras aplicações possíveis do projeto. A Figura 4 apresenta o projeto da PCI.

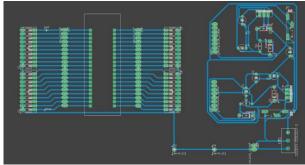


Figura 4 - PCI

O circuito amplificador comercial foi simulado com um filtro RC passa baixas através do software *MultisimLive Online*, projetado em uma protoboard e submetido à temperatura ambiente A Figura 5 apresenta o circuito amplificador simulado.

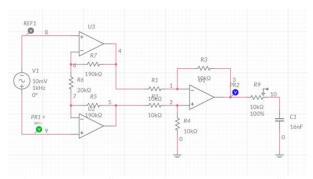


Figura 5 - Amplificador de instrumentação com filtro passa baixas

3. Resultados

Para o circuito encapsulado do grupo de pesquisa, a partir das curvas de ganho expostas na Figura 6. Pode-se notar que para as diferentes temperaturas, a frequência de corte inferior foi alterada, diretamente proporcional ao módulo da temperatura e a frequência de corte superior e o ganho da faixa de interesse se mantiveram os mesmos. A Figura 7 retrata a comparação do comportamento do ganho do amplificador de instrumentação comercial, o qual não utiliza pseudorresistor com o amplificador projetado pelo grupo de pesquisa.

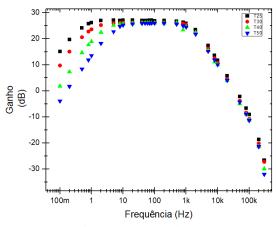


Figura 6 - Curvas de ganho do amplificador encapsulado

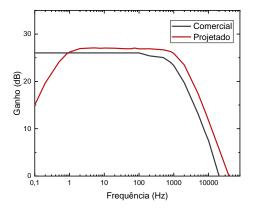


Figura 7 - Curvas de ganho do amplificador projetado e amplificador comercial

4. Conclusões

Para o circuito amplificador projetado, a frequência de corte inferior foi alterada em relação a temperatura, devido à redução da resistência equivalente do pseudorresistor enquanto a frequência de corte superior e o ganho da faixa de interesse se mantiveram os mesmos pois o pseudorresistor interfere somente em baixas frequências.

Ademais, devido à ausência do filtro passa-baixas dependente do pseudorresistor, o amplificador projetado no circuito comercial não elimina as baixas frequências.

5. Referências

- [1] Pereira, C. F. PROJETO, SIMULAÇÃO E CARACTERIZAÇÃO DE PSEUDORRESISTORES MOS PARA USO EM AMPLIFICADORES DE SINAIS BIOLÓGICOS. Centro Universitário FEI, São Bernardo do Campo, SP. 2015
- [2] Aplicações com *OpAmp*. Unicamp. Disponível em: https://www.dsif.fee.unicamp.br/~elnatan/ee640/20a%2 OAula.pdf
- [3] T. B, Beatriz. CARACTERIZAÇÃO DA RESISTÊNCIA EFETIVA DO PSEUDORRESISTOR EM FUNÇÃO DA VARIAÇÃO DE TEMPERATURA. Centro Universitário FEI, São Bernardo do Campo, 2020.

Agradecimentos

À instituição Centro Universitário FEI pela realização das medidas e empréstimo de equipamentos.

Aluno de IC do Centro Universitário FEI. Projeto com vigência de 10/2022 a 09/2023.