ANÁLISE TERMODINÂMICA DE REAÇÕES DE DESOXIGENAÇÃO DE ÓLEOS VEGETAIS

Jhonny de Sousa Pessoa ¹, Luís Fernando Novazzi²

¹ Departamento de Engenharia Química, FEI (estudante de graduação)

² Departamento de Engenharia Química, FEI
jhonnysousa890h@outlook.com e lnovazzi@fei.edu.br

Resumo: O diesel verde é proveniente de reações de desoxigenação de triglicerídeos na presença de H_2 , sendo os principais produtos $C_{17}H_{36}$ e $C_{18}H_{38}$. O objetivo desse projeto é o de se fazer uma análise Termodinâmica dessas reações, por meio de equilíbrio químico, minimizando-se a energia livre de Gibbs do sistema, em planilha. Numa análise a 300 °C e 70 bar, verificou-se a conversão completa dessas matérias-primas, obtendo-se uma mistura praticamente equimolar de $C_{17}H_{36}$ e $C_{18}H_{38}$ em fase líquida, com 25% do total.

1. Introdução

O uso de combustíveis provenientes de fontes renováveis vem ganhando importância e hoje é uma realidade, como no caso do biodiesel no Brasil. Por outro lado, há dificuldades sobre a compatibilidade do biodiesel as estruturas dos motores atuais. Como resultado, um novo diesel vem sendo estudado como alternativa, o chamado diesel verde. Ao se comparar com o biodiesel convencional, realizado pela transesterificação de óleos vegetais, o diesel verde apresenta propriedades mais próximas ao diesel convencional. Esse combustível pode ser obtido por meio de reações de desoxigenação de triglicerídeos, na presença de H₂.

Essas reações foram classificadas como hidrodesoxigenação (HDO) e hidrodecarbonilação (HDC), sendo indicadas na Figura 1. A HDO engloba uma hidrogenação completa, que gera hidrocarbonetos e água como produtos de reação. Já na HDC, qualquer átomo de oxigênio é eliminado na forma de CO₂.

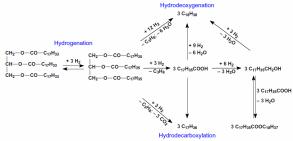


Figura 1 – Reações de desoxigenação de triglicerídeos Fonte: [1]

Os produtos obtidos pelas rotas HDO e HDC são os alcanos $C_{17}H_{36}$ e $C_{18}H_{38}$, respectivamente. É essa mistura que tem propriedades semelhantes às do diesel. Como a matéria-prima no processo é um óleo vegetal, considera-se que o produto da reação seja o diesel verde.

2. Metodologia

A análise Termodinâmica de reações químicas empregada nesse trabalho se baseou na técnica proposta por [2]. Nessa estratégia, faz-se a minimização da energia de Gibbs no equilíbrio, expressa na Equação 1, na qual a variável \underline{G} é a energia total de Gibbs, R é a constante universal dos gases, T a temperatura, n_i o número de moles do componente i, $\Delta G_{f,i}^o$ é a energia de Gibbs de formação do componente i, y_i representa sua fração molar e P é a pressão do sistema.

$$\frac{G}{RT} = \left(\sum n_i \frac{\Delta G_{f,i}^o}{RT}\right) + \sum n_i \ln(y_i P)$$
 (1)

A energia de Gibbs de formação $\Delta G_{f,i}^o$ é calculada para uma dada temperatura T de acordo com a Equação 2, na qual T_R é a temperatura de referência de 298 K, $\Delta H_{f,i}^o$ é a entalpia de formação do componente i na temperatura T e $\Delta G_{R,i}^o$ é a energia de Gibbs de formação de i para o estado padrão (298 K e 1 bar).

$$\frac{\Delta G_{f,i}^{o}}{R T} = -\int_{T_R}^{T} \left(\frac{\Delta H_{f,i}^{o}}{R T^2}\right) dT + \frac{\Delta G_{R,i}^{o}}{R T_R}$$
 (2)

O termo $\Delta H^o_{f,i}$ é corrigido em relação à entalpia de referência $\Delta H^o_{R,i}$, considerada na temperatura de 298 K, por meio da Equação 3.

$$\Delta H_{f,i}^o = \Delta H_{R,i}^o + \int_{T_R}^T \Delta C_p \ dT \tag{3}$$

Na equação anterior, o termo ΔC_p representa a variação dos calores específicos entre produtos e reagentes $C_{p,j}$, ponderados pelos respectivos coeficientes estequiométricos ν_i :

$$\Delta C_p = \sum \nu_i C_{p,j} \tag{4}$$

Assume-se uma aproximação polinomial para a estimativa do calor específico $C_{p,j}$ em função da temperatura T, de acordo com a Equação 5. Os coeficientes a_j , b_j , c_j e d_j foram obtidos da literatura para as substâncias mais comuns. Para os coeficientes do triglicerídeo e dos alcanos $C_{17}H_{36}$ e $C_{18}H_{38}$ foram calculados pelo método de Joback, com base numa técnica de contribuição de grupos [3].

$$C_{p,j} = a_j + b_j T + c_j T^2 + d_j T^3$$
 (5)

A otimização da energia de Gibbs, expressa na Equação 1, foi feita por meio da variação do número de mols de cada componente n_i . Nesse problema, o balanço atômico entre C, H e O é computado como uma restrição a ser satisfeita. O problema de otimização pode ser formalmente declarado por meio da Equação 6.

$$\min_{\mathbf{n}_{i}} \left(\sum \mathbf{n}_{i} \frac{\Delta G_{f,i}^{0}}{R T} \right) + \sum \mathbf{n}_{i} \ln(\mathbf{y}_{i} P)$$
sujeito a:
$$\sum n_{C,o} = \sum n_{C,i}; \sum n_{H,o} = \sum n_{H,i}; \sum n_{O,o} = \sum n_{O,i}$$
(6)

3. Resultados e Discussão

Na tabela a seguir é apresentada uma cópia dos resultados da otimização executada em planilha eletrônica para o sistema reacional envolvendo a desoxigenação de triglicerídeos (óleo de soja), com uma pressão de 70 bar, temperatura de 300 °C e relação molar entre o H_2 e o triglicerídeo de 7 para 1.

Tabela 1 - Resultados da otimização para a desoxigenação conduzida a 300 °C e 70 bar

	deltaGi/R*T	log ni	ni	yi	ni*(deltaGi/R*T+ln(yi*P))
C57H110O6	232.501068	-5.7	2E-06	1.55E-07	0.000441094
C17H36	118.497111	0.109117	1.285634	0.099733	154.8421723
C18H38	126.157411	0.102257	1.265485	0.09817	162.0895046
C3H8	11.7175612	0.005559	1.012883	0.078574	13.59527374
CH4	-5.2411454	0.730892	5.381355	0.417459	-10.04279171
CO2	-82.909084	0.312727	2.054599	0.159386	-165.3890771
со	-33.999308	0.276639	1.890773	0.146677	-59.88140586
H2O	-45.212538	-4.74874	1.78E-05	1.38E-06	-0.000971167
H2	0	-9.61288	2.44E-10	1.89E-11	-4.98492E-09
total			12.89075		95.21314592

Analisando-se o número de mols n_i do triglicerídeo, nota-se que sua conversão foi praticamente completa, assim também como a do H_2 . Também se percebe que foram formados 1,285 e 1,265 mols de heptadecano e octadecano, respectivamente, o que resulta numa proporção quase equimolar entre eles. Vale ressaltar também a formação prevista de propano e a relevante produção de metano, com 5,381 mols, além de quantidades importantes de dióxido e de monóxido de carbono.

Fez-se uma avaliação do efeito da temperatura sobre o sistema reacional, checando-se as composições da fase líquida e gasosa obtidas. A fase líquida é constituída pelos hidrocarbonetos mais pesados, o heptadecano e o octadecano. No intervalo de temperatura de 270 °C a 350 °C, observou-se que a relação entre o heptadecano e o octadecano ficou praticamente constante e equimolar. Isso significa que, nas condições estudadas, tanto a rota HDC como a HDO são relevantes. Entretanto, na fase gasosa, foram notadas variações importantes, conforme indicado na Figura 2.

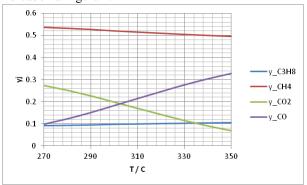


Figura 2 - Influência da temperatura sobre a composição da fase gasosa na desoxigenação de triglicerídeos Fonte: autor

O eixo vertical dessa figura se refere às frações molares y_j dos diferentes componentes em fase gasosa. Há um efeito bastante positivo do aumento da temperatura na produção de monóxido de carbono, com

comportamento inverso observado para o dióxido de carbono. Esses gases foram obtidos experimentalmente no trabalho de [1].

Na Figura 3 se faz uma análise da influência da temperatura sobre a relação entre a quantidade de combustíveis líquidos L sobre a quantidade de substâncias gasosas G produzidas nas reações de desoxigenação, em base molar, para uma pressão de operação de 70 bar e relação molar de alimentação $\rm H_2$ / triglicerídeo de 7. Verifica-se que baixas temperaturas levam a uma maior produção de hidrocarbonetos líquidos.

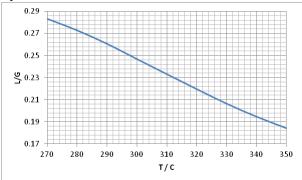


Figura 3 - Influência da temperatura entre a quantidade de líquido e gás na desoxigenação de triglicerídeos Fonte: autor

4. Conclusões

A análise Termodinâmica do sistema envolvendo a desoxigenação de triglicerídeos mostrou que a matéria-prima graxa pode gerar hidrocarbonetos pesados (heptadecano e octadecano), potenciais constituintes do diesel verde. Numa simulação da desoxigenação conduzida a 300 °C, 70 bar e relação de alimentação $\rm H_2$ / matéria-prima graxa de 7 para 1, notou-se a produção de cerca de 25% de combustível líquido, em base molar. Verificou-se também um efeito negativo do aumento da temperatura sobre essa produção. No fechamento desse projeto, pretende-se fazer uma maior varredura das condições de operação e se comparar com dados de literatura.

5. Referências

- [1] D. Kubicka, L. Kaluza, Deoxygenation of vegetable oils over sulfided Ni, Mo an NiMo catalysts, *Applied Catalysis A: General*, v.372, p.199-208, 2010
- [2] J. R. Elliot, C. T. Lira, *Introductory Chemical Engineering Thermodynamics*, 2 ed. New Jersey: Editora Prentice Hall PTR, 2012
- [3] JOBACK, K.G.; REID, R.C. Estimation of pure component properties from group contributions. *Chem. Eng. Communications*, v.57, p.233-243, 1987

Agradecimentos

Os autores gostariam de agradecer o Centro Universitário FEI pela concessão de bolsa de Iniciação Científica e por todo o apoio institucional.

¹ Aluno de IC do Centro Universitário FEI. Projeto com vigência de 02/2022 a 01/2023.