AVALIAÇÃO DA PRODUÇÃO DE TIROSINASE POR FUNGOS VISANDO A SÍNTESE DE HIDROGÉIS

Gustavo Munhoz Simão¹, Andreia de Araújo Morandim Giannetti² Departamento de Engenharia Química, Centro Universitário FEI gumunhoz@outlook.com e preamorandim@fei.edu.br

Resumo: Neste trabalho foi avaliada a produção de tirosinase por 12 fungos obtidos a partir de caules e folhas de mandioca. Os fungos foram submetidos ao crescimento em meio BDA e, em seguida, em meio líquido específico para tirosinase. A avaliação dos extratos mostrou maior produção da enzima pelo fungo *Annulohypoxylon stygium* (0,060 µmol/min) que será utilizado na etapa posterior para a otimização da produção de tirosinase e aplicação na produção de hidrogéis visando a substituição do humor vítreo.

1. Introdução

Estudos estão sendo realizados para a obtenção de novos substitutos vítreos como, por exemplo, hidrogéis. Neste contexto, destacam-se trabalhos que utilizam quitosana, alginato, colágeno, gelatina entre outros. Porém, para a produção desses materiais, existe a necessidade de realização de processos de reticulação do material sendo possível a utilização de processos químicos, físicos e biológicos como, por exemplo, aplicação de enzimas [1]. Para isso, são utilizadas enzimas como a peroxidase, tirosinase, lacase, etc sendo, a tirosinase, muito estudada devido a possibilidade de reticulação de diversas proteínas devido a presença de aminoácidos como lisina, histidina, cisteína e, tirosina [2]. Assim, no presente trabalho foi avaliada a produção de tirosinase por fungos associados a caules e folhas de mandioca e selecionado o extrato enzimático mais promissor que será aplicado na obtenção de hidrogéis de gelatina.

2. Metodologia

Inicialmente foi realizado o cultivo em meio BDA dos fungos obtidos a partir de caules e folhas de mandioca (CA1 - Microdochium lycopodinum, CA5 -Alternaria sp., CA9 - Diaporthe endophytica, CA10 -Vouchered mycorrhizae, CA11 - Phanerochaete australis, CA12 - Diaporthe caatingaensis, CA13 -Stenocarpella maydis, CA14 - Annulohypoxylon stygium, CA15 - Sordariomycetes sp., CA17 -Phanerochaetaceae sp., FO1 -Cladosporium xanthochromaticum e, FO2 - Xylaria sp) . Após essa etapa, foram obtidos os extratos enzimáticos a partir dos fungos e verificada a produção de tirosinase via espectroscopia UV/VIS utilizando-se, para isso, como substrato a tirosina. Também foi realizado o crescimento dos fungos em meio líquido específico para aumentar a produtividade de tirosinase e, os extratos enzimáticos obtidos foram avaliados novamente com relação a produção de tirosinase bem como determinação da concentração de proteínas (Figura 1). O extrato que se mostrou mais promissor foi

selecionado para aplicação em trabalhos futuros na reticulação de gelatina para produção de hidrogéis.

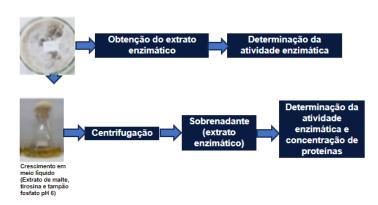


Figura 1 – Fluxograma da metodologia utilizada.

3. Resultados e Discussões

Inicialmente foi realizada a obtenção dos extratos enzimáticos a partir dos fungos submetidos ao crescimento em meio BDA (Figura 2). Analisando-se os dados obtidos por meio da utilização do espectrofotômetro UV/VIS, verifica-se que, dentre os fungos que possuíram quantidade significativa da enzima desejada, aquele que mostrou maior produção de Tirosinase foi o fungo *Stenocarpella maydis* (CA13), em relação aos demais fungos que sequer se aproximaram da marcação deste.

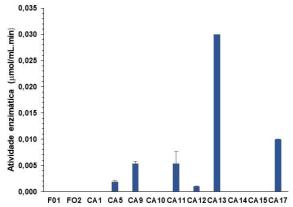


Figura 2 - Atividade enzimática obtida para cada fungo avaliado

Após a avaliação inicial, foi realizado um novo crescimento dos fungos, porém, utilizando um meio líquido (extrato de malte, tirosina e tampão fosfato) para estimular a produção de tirosinase. A segunda análise foi feita muito semelhante à primeira, com a adição de um processo de centrifugação, anterior à leitura no equipamento. Após avaliação dos dados referentes a

atividade enzimática e concentração de proteínas (Tabela 1) bem como determinação da atividade específica (Figura 3), que é uma relação de razão entre ambas, confirmou-se a maior produção de tirosinase pelo fungo *Stenocarpella maydis* (CA13), ainda que o fungo *Annulohypoxylon stygium* (CA14) tenha alcançado uma atividade maior, pois sua concentração proteica elevada é um empecilho ao processo, como mostrado na Figura 3.

Tabela 1 - Atividade e concentração proteica de cada extrato

Fungo	Atividade Enzimática (µmol/mL.min)	Concentração proteica (mg/mL)
F01	0,015	0,177
FO2	0,002	0,218
CA1	0,000	0,127
CA5	0,023	0,477
CA9	0,004	0,181
CA10	0,011	0,486
CA11	0,004	0,155
CA12	0,000	0,193
CA13	0,044	0,112
CA14	0,064	0,369
CA15	0,005	0,155
CA17	0,008	0,173

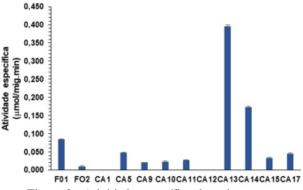


Figura 3 - Atividade específica de cada extrato

Logo, o fungo denominado cientificamente por *Stenocarpella maydis* será submetido ao crescimento modificando-se o pH e temperatura para aumento da produção enzimática e, posteriormente, aplicado o extrato enzimático enriquecido em tirosinase na reticulação de hidrogéis de gelatina visando a avaliação de obtenção de um material com características físicas, químicas e morfológicas que possibilitem a aplicação como substituto de humor vítreo.

4. Conclusões

Durante o desenvolvimento do presente trabalho foi possível verificar a eficiência de fungos associados a caules e folhas de mandioca na produção de tirosinase, com base nos resultados apresentados anteriormente, e nas expectativas para as próximas etapas. Também foi possível verificar a maior produtividade pelo extrato enzimático obtido a partir do fungo *Stenocarpella maydis* que será utilizado para os processos de

desenvolvimento vigentes no roteiro deste projeto, visando a produção dos hidrogéis previamente mencionados, assegurando assim, a eficiência almejada.

Uma vez que estes hidrogéis são de extrema importância para vários casos em que é necessária a remoção do humor vítreo, a fim de que inúmeros pacientes possam recuperar a visão com a melhoria na produção, e, logo, no acesso à tais soluções da medicina atual, para casos em que antes não se imaginaria haver muita esperança.

5. Referências

- A. C. Alavarse et al., *International Journal of Biological Macromolecules*, **202** (2022) 558-596.
- P. A. Bersanetti et al., European Polymer Journal, 112 (2019) 610-618.

Agradecimentos

Ao Centro Universitário FEI pela concessão da bolsa.

¹ Aluno de IC do Centro Universitário FEI. Projeto com vigência de 06/2023 a 05/2024.