Uso de agentes redutores na fermentação ABE como uma estratégia para melhorar a produção de butanol

Vitória Babo Ventura de Souza¹, Bruna Pratto² Departamento Engenharia Química, Centro Universitário FEI <u>vitoriababo@outlook.com</u> e <u>brunapratto@fei.edu.br</u>

Resumo: O processo de fermentação de acetonabutanol-etanol (ABE) emerge como uma opção promissora para produção de biocombustíveis. Contudo, a viabilidade comercial do processo ABE tem sido comprometida devido aos baixos rendimentos e concentrações de produtos alcançados. No presente trabalho, foi investigado o uso de agentes redutores (Lcisteína e ácido ascórbico) de baixo custo como estratégia para melhorar a produção de butanol na fermentação. O uso de agentes redutores nas concentrações (0,3 e 0,6 mM) e momento de adição (0 h) avaliados apresentaram desempenho ligeiramente inferior ao controle (sem adição de agente redutor). Diante disso, sugere-se investigar concentrações menores e adição do agente redutor durante a fase exponencial de crescimento da bactéria fermentativa.

1. Introdução

O processamento de resíduos lignocelulósicos por meio de rotas fermentativas tem mostrado ser uma possibilidade promissora para produção de biocombustíveis e bioprodutos.

Dentre as vias bioquímicas para a produção de biocombustíveis, a fermentação ABE se destaca. Nessa via, os produtos formados são acetona, etanol e butanol na proporção mássica de 3:6:1, respectivamente. O resíduo lignocelulósico deve ser primeiramente prétratado para remoção de lignina e aumento de acessibilidade dos polissacarídeos, posteriormente hidrolisado para obtenção dos açúcares fermentescíveis e fermentado anaerobicamente por bactérias do gênero *Clostridium* para geração dos solventes ABE.

O biobutanol (n-butanol) é o produto de maior interesse, com várias vantagens como combustível veicular. Suas propriedades são similares às da gasolina, podendo ser misturado em até 40% (v/v) sem impactos negativos nos motores de ignição por centelha. Além disso, é menos corrosivo, possui maior poder calorífico e menor volatilidade do que o etanol (GUAN et al.,2016). Também é mais biodegradável e seguro para armazenagem se comparado à gasolina.

Um dos principais desafios no processamento de biomassa para biobutanol é a etapa de fermentação ABE, cujo rendimento de butanol é baixo (~ 0.3 g_{butanol}/g_{açúcar consumido}) devido à baixa tolerância do microrganismo ao próprio produto (biobutanol) e a compostos inibidores (fenólicos, furanos e ácidos alifáticos) provenientes do pré-tratamento da biomassa. Neste contexto, a utilização de agentes destoxificantes e redutores podem melhorar a eficiência da fermentação. Os agentes destixificantes atuam na remoção de compostos fenólicos do hidrolisado lignocelulósico antes da fermentação. Já os agentes redutores utilizados

durante a fermentação fornecem elétrons para a regeneração oxidativa (dado que durante a fermentação uma sequência de reações REDOX ocorre) das células. O fornecimento adequado de NAD+ e NADH durante a fase de produção de solventes é crucial para obter uma boa concentração final de butanol.

Neste sentido, o presente estudo tem por objetivo avaliar o uso de agentes redutores e destoxificantes na eficiência da fermentação ABE de hidrolisado de bagaço de cana-de-açúcar, visando aumento da produção de butanol em comparação com o meio convencional (sem adição de agentes redutores). Para isso, foi utilizado polisorbato 80, conhecido também como *Tween* 80, na hidrólise enzimática, e posteriormente a destoxificação com carvão ativado, para remover compostos fenólicos presentes no hidrolisado. Além disso, outros compostos como a L-cisteína e ácido ascórbico foram empregados como agentes redutores na etapa fermentativa.

2. Metodologia

O resíduo lignocelulósico, após coletado e triturado, foi pré-tratado com ácido sulfúrico (1,4% m/m) a 121°C por 55 min (condição otimizada em estudos anteriores) [1]. Esse processo teve como objetivo desestruturar a matriz lignocelulósica e aumentar a acessibilidade da celulose. Em seguida, a biomassa pré-tratada foi submetida à hidrólise enzimática utilizando 20 FPU/gcellulose da enzima comercial *Cellic®Ctec2* e 10% m/v de carga de sólidos. A mistura foi agitada a 250 rpm em incubadora shaker a 50 °C por 48 h, visando obter os açúcares fermentescíveis (glicose e xilose). Durante esta etapa, também foi adicionado *Tween* 80 (1% v/v_{reação}), que tem a função de minimizar a adsorção da enzima na lignina presente na biomassa.

O hidrolisado resultante foi submetido a um processo de destoxificação com carvão ativado (5% $m_{\text{carvão}}/v_{\text{reacional}})$ a 28 $^{\rm o}\text{C}$ por 1 h para remoção dos compostos fenólicos presentes no hidrolisado.

O microrganismo utilizado na fermentação ABE foi o *Clostridium acetobutylicum* ATCC 824. A ativação dos esporos da bactéria foi feita em meio RCM (*Reinforced Clostridium Medium*) a 37 °C até densidade ótica (D.O) de 2-2,5 (aproximadamente 24 h).

5% v_{inóculo}/v_{total} das células ativadas foram ressuspendidos no hidrolisado celulósico, dando início a fermentação ABE. Dois agentes redutores (L-Cisteína e ácido ascórbico) foram adicionados no meio reacional no tempo inicial, em concentrações de 0,3 e 0,6 mM.

Após adição de todos os compostos, os frascos foram acondicionados na estufa a 37 °C por 96 h.

A fermentação foi realizada em 18 ensaios com réplicas sendo distribuídas conforme a tabela 1 a seguir:

Tabela 1 – Ensaios fermentação ABE

Tabela I – Elisalos fermentação ABE							
Hidrolisado não-destoxificado			Hidrolisado destoxificado				
Ensaio	Condição	Réplica	Ensaio	Condição	Réplica		
1	Sem agentes redutor		10	Sem agente redutor			
2	Hid. + ác. ascórbico	Α	11	Hid. + ác ascórbico 0,3 mM	Α		
3	0,3 mM	В	12		В		
4	Hid. + L- cisteína 0,3 mM	А	13	Hid. + L- cisteína 0,3 mM	А		
5		В	14		В		
6	Hid. + ác	Α	15	Hid. + ác ascórbico 0,6 mM	Α		
7	ascórbico 0,6 mM	В	16		В		
8	Hid. + L- cisteína 0,6 mM	Α	17	Hid. + L- cisteína 0,6 mM	Α		
9		В	18		В		

Durante a fermentação, alíquotas foram retiradas para análise dos produtos formados e substrato consumido por cromatografia líquida de alta eficiência (HPLC).

3. Resultados

Apenas as condições que levaram aos resultados mais expressivos foram apresentados na tabela 2.

Tabela 2 – Desempenho Fermentação

Tabela 2 – Desempenno Fermentação								
	Hid.	Hid.	Hid. + ác.	Hidrolis.				
	s/	Destox	ascórb.	destox. +				
	redutores	s/	0,3 mM	ác. Ascórb.				
		redutores		0,3 mM				
Glicose								
Inicial	33,42	33,46	29,88	29,91				
(g/L)								
Xilose								
Inicial	4,92	4,80	4,39	4,29				
(g/L)								
Glicose								
consumida	32,97	32,98	$29,43 \pm 0,01^{a}$	$29,44 \pm 0,07^{a}$				
(g/L)								
Consumo	56	41	41 ± 0,04 a	65 ± 0,01 a				
xilose (%)	50	41	41 ± 0,04	05 ± 0,01				
Consumo	99	99	98	98				
glicose (%)	99	99	90	96				
Acetona	2,65	2,84	$2,17 \pm 0,12^{a}$	1,97 ± 0,45 a				
(g/L)	2,03	2,04	2,17 ± 0,12	1,77 ± 0,43				
Butanol	7,70	7,51	6.86 ± 0.12^{a}	$6,57 \pm 0,56^{a}$				
(g/L)	7,70	7,51	0,00 ± 0,12	0,57 ± 0,50				
Etanol	1,65	1,25	$1,58 \pm 0,07$	$1,08 \pm 0,04^{\text{ a}}$				
(g/L)	1,03	1,23	1,50 ± 0,07	1,00 ± 0,04				
Total ABE	12,00	11,60	$10.61 \pm 0.07^{\text{ a}}$	9.61 ± 0.15^{a}				
(g/L)	12,00	11,00	10,01 ± 0,07	7,01 ± 0,13				
Rend.								
produto								
$(g_{butanol}/$	0,23	0,23	0,23	0,22				
$g_{ m glicose}$	0,23	0,23	0,23	0,22				
consumida								
)								
Ácido								
Acético	2,91	3,80	$2,81 \pm 0,03^{\text{ a}}$	$3,52\pm0,26^{a}$				
(g/L)								

^aValor médio ± desvio padrão representam a média de ensaios realizados em duplicata.

Através da tabela 2, observa-se que o efeito da destoxificação mostrou-se pouco significativo, uma vez apresentou valores similares ao hidrolisado não-destoxificado. Análises realizadas indicaram baixa concentração (0,3 g/L) de compostos fenólicos no hidrolisado bruto, o que sugere que a destoxificação não teve efeito positivo na fermentação. Trabalhos da literatura [2,3] relatam que concentração de fenólicos acima de 0,8 g/L tornam-se inibidoras para *Clostridium*.

A adição de agentes redutores durante a fermentação resultou em uma produção ligeiramente menor de butanol em comparação com o experimento controle. Possivelmente, as concentrações avaliadas foram altas e adicionadas em fase de crescimento inadequada para as células.

Como estudos posteriores, faz-se necessário adicionar os agentes redutores após 12 h de fermentação, que corresponde ao meio da fase exponencial de crescimento (alta atividade metabólica) e, portanto, permite uma maior conversão de NADH [4]. Além disso, sugere-se a investigação de concentrações menores de agentes redutores e a possível suplementação de glicose, uma vez que todo o açúcar foi consumido durante a fase acidogênica, não havendo fonte de carbono para iniciar a fase solvatogênica.

5. Referências

- [1] da SILVA, L.F.L. *et al.* **Dilute-acid pretreatment optimization targeting full sugars exploitation and minimal generation of degradation products**. XXIII Simpósio Nacional de Bioprocessos, Búzios, RJ, 2022.
- [2] LEE, K.M. *et al.*, 2015. In situ detoxification of lignocellulosic hydrolysate using a surfactant for butyric acid production by Clostridium tyrobutyricum ATCC 25755. Process Biochem. 50, 630–635.
- [3] PRATTO, B. *et al.*, **Biobutanol production from sugarcane straw: Defining optimal biomass loading for improved ABE fermentation**. Industrial crops and products, v. 148, p. 112265, 2020.
- [4] CHANDGUDE, V. et al., Reducing Agents Assisted Fed-Batch Fermentation to Enhance ABE Yields. Energy Conversion and Management, 2021.

Agradecimentos

À instituição Centro Universitário FEI por ceder o local, equipamentos e as tecnologias que permitiram a realização deste trabalho. Também aos colegas, familiares e professores que deram o suporte durante todo o processo.

4. Discussões e conclusão

¹ Aluno de IC do Centro Universitário FEI (CNPq – processo 125532/2022-9). Projeto com vigência de 09/2022 a 09/2023.