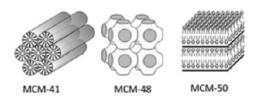
ESTUDO EXPLORATÓRIO DO AUMENTO DE DIÂMENTRO DE POROS DE ESTRUTURAS MESOPORAS

Enzo Luigi Benatti¹, Rodrigo Condotta²

¹² Departamento de Engenharia Química, Centro Universitário FEI

¹² unieebenatti@fei.edu.br; rcondotta@fei.edu.br


Resumo: O uso de peneiras moleculares no cenário da engenharia química é amplo e eficaz, este estudo pretende contribuir com a melhoria no desempenho de tal, analisando o diâmetro dos poros presentes nestas estruturas após a dissolução parcial em soluções de fluoreto de amônio (NH4F), para que seja possível amplificar os campos de sua aplicação.

1. Introdução

Zeólitas são estruturas de alumínio-silicatos cristalinas, são muito importantes na indústria petroquímica, pois estão presentes em processos de refinamento de petróleo e de produção de combustíveis, tal destaque se dá por sua utilização em catalizadores heterogêneos. [1]

Peneiras moleculares são estruturas constituídas de minerais zeolíticos, por conta de seu baixo custo e característica sustentável, há uma grande adesão destes materiais em processos químicos, essas peneiras podem ser divididas em 3 grupos, a MCM-41 (arranjo hexagonal), a MCM-48 (arranjo cúbico) e MCM-50 (organização laminar). [2]

Figura 1- Estruturas mesoporosas [1]

Este projeto pretende analisar o comportamento dos poros presentes em peneiras moleculares do tipo MCM-48 após a dissolução em fluoreto de amônio (NH4F).

2. Metodologia

Primeiramente foram realizadas as sínteses das peneiras, por meio de soluções de fontes de silício com água, etanol e hidróxido de sódio (NaOH), por fim, as amostras coletadas eram submetidas a soluções de fluoreto de amônio e analisadas.

Para a realização da síntese hidrotérmica baseada na referência Beck et al. [3] e Kim et al. [4], onde a composição molar é dada por 1SiO2: 0,25Na2O: 0,27CTABr: 100H2O: 3,57C2H5OH, assim tendo como porcentagem em massa 0,28SiO2: 0,007Na2O: 0,046CTABr: 0,842H2O: 0,077C2H5OH.

O material obtido foi então analisado num difrator de raios-X (DRX), para identificação do tipo de peneira molecular formada, e por fissisorção de Nitrogênio

(BET), para determinação das características físicas dos poros presentes na estrutura.

Em seguida, realizou o ataque das estruturas com solução de NH4F. O ataque foi realizado sob 2 diferentes condições de concentração (20% e 40%), de temperatura (25°C e 50°C) e 3 de tempo (25, 50 e 75 minutos).

Por fim, as amostras foram submetidas novamente as análises de BET e DRX, para avaliar suas novas condições.

3. Resultados

Por meio dos resultados DRX, foi possível observar a condição da estrutura de cada amostra, sendo estas estruturas as apresentadas na figura 1. A seguir é possível notar as características de um gráfico MCM-48, apresentam 3 picos, uma grande inicial, um menor abaixo do grande e uma leve inclinação na linha sequencial.

Figura 2- Gráfico de estrutura MCM-48

A Tabela 1 apresenta as condições de ataque (dissolução da sílica) de que algumas bateladas. Os resultados apresentados evidenciam as mudanças na área superficial, estimadas através do BET, das amostras.

Tabela I – Áreas superficiais e condições de ataque

Bate- lada	Ataque: Conc(%), tempo (min), Temp. (°C)	Área superficial depois (m 22 /g)	A rea	Porcentagem de diminuição de área superficial
03 A	40%, 75m, 25°C	1240,85	353,92	78,72%
03 B	20%, 75m, 50°C	1240,63	1065,23	71,48%
04 A	20%, 50m, 50°C	1050 72	275,69	73,98%
04 B	40%, 50m, 25°C	1059,73	981,30	7,40%
05	40%, 25m, 25°C	908,62	836,58	7,90%

06	20%, 75m,	990,01	270,99	72,63%
	50°C			
07	20%, 75m,	1089,9	208,26	80,89%
	50°C			

É possível notar que as amostras com menores aumentos de poros, mantiveram suas áreas superficiais relativamente altas, como no caso da batelada 03 B e 04 B, essas mantiveram também a estrutura original.

Observa-se que antes das dissoluções as bateladas apresentadas indicaram estruturas do tipo MCM-41 e MCM-48, além disso é possível perceber a diferença do diâmetro dos poros em cada exemplar, já as variações dos diâmetros dos poros das estruturas após o ataque, estas são apresentadas na Tabela 2:

Tabela 2- Relação das áreas superficiais e estruturas após as dissoluções.

Batelad a	Estrutur a pós	nn n	Diâmetr o do poro depois (A)	Porcentagem de aumento do diâmetro
03 A	МСМ-	34.51	120,14	248,14%
03 B	48		51,44	49,05%
04 A	MCM-	33.34	139,30	317,77%
04 B	48		57,59	72,68%
05	MCM- 41	40,11	65,05	62,13%
06	MCM- 41	42,82	152,83	256,86%
07	MCM- 48	38,64	168,30	335,45%

Através destes resultados é possível observar que amostras que foram submetidas a longas temperaturas e alta duração, apresentaram um aumento significativo do diâmetro de poros, contudo esse aumento resultou na diminuição da área superficial

Finalmente, observa-se que antes das dissoluções as bateladas apresentadas indicaram estruturas do tipo MCM-41 e MCM-48, além disso é possível perceber a diferença do diâmetro dos poros em cada exemplar. Contudo é necessário analisar se como estas estruturas não se fragilizam e colapsam devido à redução na espessura das paredes, após a dissolução em fluoreto de amônio. Nas figuras 3 e 4 é possível fazer o comparativo desta fragilização após a dissolução.

Figura 3- Gráfico de comparação da estrutura antes e após a dissolução da Batelada 05, estrutura MCM-41

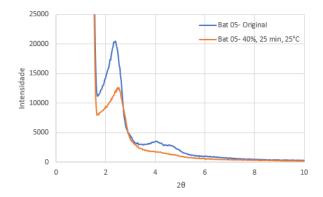
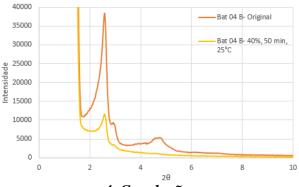



Figura 4- Gráfico de comparação da estrutura antes e após a dissolução da Batelada 04 B, estrutura MCM-48

4. Conclusões

Até o momento os resultados encontrados satisfazem as expectativas do estudo, as intenções futuras serão realizar novas sínteses com outros metais em sua composição como o ferro (Fe) e analisa-las com os objetivos de formação da estrutura MCM-48 e aumento dos respectivos poros, sem prejudicar a estrutura inicial.

5. Referências

- [1] LUNA, F. J.; SCHUCHARDT, U. Modificação de zeólitas para uso em catálise. Química Nova, v. 24, n. 6, p. 885–892, dez. 2001
- [2] SALVIA, N.; VALENCA, G.; ANJOS, W. SÍNTESE E CARACTERIZAÇÃO DE PENEIRAS MOLECULARES MESOPOROSAS. [s.l: s.n.
- [3] J. S. BECK, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, Journal of the American Chemical Society, volume 9. 1992.
- [4] ANTHONY Y. KIM, Hybrid Mesoporous Materials with Functionalized Monolayers, Advanced Materials volume 10, issue 2.1998.

Agradecimentos

À instituição Centro Universitário FEI pela disponibilização de reagentes químicos e disponibilidade dos equipamentos de análise.

¹ Aluno de IC CNPq. Projeto com vigência de 09/2023 a 08/2024.