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Abstract. The problem of ranking features in N-class problems have been addressed by the
multi-class discriminant principal component analysis (MDPCA) for texture and face image
classification. In this paper we present a nonlinear version of the MDPCA, named multi-class
nonlinear discriminant feature analysis (MNDFA), that is based on kernel support vector ma-
chines (KSVM) and AdaBoost techniques. Specifically, the problem of ranking features, com-
puted from multi-class databases, is addressed by applying the AdaBoost procedure in a nested
loop: each iteration of the inner loop boosts weak classifiers to a moderate one while the outer
loop combines the moderate classifiers to build the global discriminant vector. The inner and
outer loop procedures use AdaBoost techniques to combine learners. In the proposed MNDFA,
each weak learner is a linear classifier computed through a separating hyperplane, defined by
a KSVM decision boundary, in the feature space. In the computational experiments we analyse
the obtained approach using a five-class granite image database. Our experimental results have
shown that the features selected by the proposed technique allow competitive recognition rates
when compared with related methods.

Keywords: Nonlinear,Multi-Class,KSVM, Discriminant Analysis, AdaBoost, Texture Analysis,
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1 INTRODUCTION

Many areas such as computer vision, signal processing and medical image analysis, have as
main goal to get enough information to distinguish sample groups in classification tasks Hastie
et al. (2001). Hence, discriminant analysis should be performed for discarding redundancies
and to select important features for pattern recognition Cunningham & Ghahramani (2015);
Hastie et al. (2001).

In this avenue, we follow a statistical learning approach whose basic pipeline can be de-
scribed as follows Giraldi et al. (2008): (a) The acquisition of information through feature
extraction ; (b) Among the features obtained, apply machine learning to select the most dis-
criminant ones for separating sample groups in classification problems Filisbino et al. (n.d.).
The step (a) can be accomplished through classical works on features computation through
histograms, object shape, image transforms, color patterns, besides the very known Haralick’s
descriptors for texture analysis Haralick et al. (1973); Zayed & Elnemr (2015), among others.
The determination of discriminant features (step (b) above), in general, depends on the incor-
poration of prior information based on labeled data. The linear discriminant analysis (LDA)
Hastie et al. (2001), Fisher criterion Filisbino et al. (2015a), discriminant principal components
analysis (DPCA) Thomaz & Giraldi (2010) and its extension to multi-class problems, Multi-
Class DPCA and Multi-Class.M2 DPCA Filisbino et al. (2015b, 2016), are methods reported
in the literature for discriminant features selection.

In this work, we focus on N-class problems but we tackle discriminant analysis for nonlin-
ear classification tasks. To perform this, we apply the following methodology: build an ensem-
ble of moderate linear classifiers to get local discriminant weights that are combined through
AdaBoost.M2 technique in order to determine the discriminant contribution of each feature Fil-
isbino et al. (2015b, 2016). Ensemble methods, like AdaBoost.M2, find an accurate classifier
by combining many moderate learners Zhou (2012). However, it is known that a strong learner
does not work well as the base component for Adaboost Garcia & Lozano (2007). Therefore,
we implement a strategy to compute the moderate learners through weak learners, useful as
AdaBoost components, that are built through the kernel support vector machine (KSVM) hy-
persurface geometry. Each moderate linear classifier is constructed through a linear ensemble
of weak classifiers that are computed through a sampling of the tangent bundle (set of tangent
spaces) of the decision boundary. To implement this computation, each iteration of the novel
algorithm calculates a separating hypersurface based on the “one-against-all” KSVM multi-
class approach. In this way, we keep the idea of using a robust classifier to steer to process of
discriminant analysis, started by the DPCA.

However, the decision boundary yielded by KSVM generates an infinite ensemble of weak
linear classifiers given by tangent spaces, each one encapsulating a local discriminant vector.
So, we construct a systematic method to get a finite ensemble of the tangent bundle, and import
from Filisbino et al. (2015b) the idea of combining these weak components through AdaBoost
approach to build a moderate classifier, at the end of each iteration of the internal loop. Finally,
the global discriminant vector is constructed by executing the AdaBoost.M2 methodology, but
now using the moderate classifiers as input. The proposed technique, called multi-class nonlin-
ear discriminant feature analysis (MNDFA), is the main contribution of this paper. It extends the
Multi-Class.M2 DPCA to nonlinear classification problems and more general feature spaces.

It is important to highlight that we do not deal with the problem of computing general
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discriminant directions that are different from the original features, like LDA does. Rather, we
apply the idea of using separating hypersurfaces computed by KSVM, linear classifiers (tangent
hyperplanes) and ensemble methods (AdaBoost, in this case) to compute discriminant weights
that are used to select, among the original features, the most discriminant ones. We have focused
here on the KSVM Vapnik (1998) method but any other separating hypersurface could be used.

To evaluate the MNDFA algorithm, we perform group separation tasks using the same
granite tiles data set applied in Bianconi et al. (2015). Firstly, we use the co-occurrence matrix
and Haralick’s descriptors to compute the feature vectors to represent the sample images Arvis
et al. (2011); Haralick et al. (1973). A co-occurrence matrix for a given image is generated by
computing the distribution of co-occurring pixel values (gray scale values, or colors) at a given
offset. Hence, we can describe texture through a set of features considering multiple directions
defined by a set of offsets. To summarize the information contained in the co-occurrence matrix
we follow Zayed & Elnemr (2015) and compute the Haralick’s texture features Haralick et al.
(1973), in order to generate the feature space. These methodologies are classical in the pattern
recognition and texture image analysis Bianconi et al. (2012). Our experimental results have
shown that the features selected by the discriminant method MNFDA in nonlinear classification
problems allow competitive recognition rates when compared with Fisher criterion Loog et al.
(2001), and a straightforward variation of the Multi-Class LDA-DPCA and Multi-Class.M2
DPCA, both proposed in Filisbino et al. (2016).

The paper is organized as follows. In section 1.1 we survey related works for discriminant
analysis. Next, section 1.2 presents the main stages of the proposed method. Then, in section
2 we review the theory behind MNDFA approach. Section 3 presents the MNDFA algorithm.
The feature extraction technique applied in this paper is presented in section 4. The compu-
tational experiments are described in section 5. Finally, in section 6, we conclude the paper,
summarizing its main contributions and describing further developments.

1.1 RELATED WORK

Given a feature space, the key question in this work is ”how can we determine the most
important discriminant features for a pattern recognition task, like classification?” Discriminant
analysis techniques address this question, which is represented in Figure 1. Both Figures 1.(a)
and 1.(b) pictures the same data set. Figure 1.(a) just shows the directions (x̃ and ỹ) and the
distribution of the samples over the space. However, in Figure 1.(b) we distinguish two patterns:
plus (+) and triangle (H). We observe that the direction x̃ can not discriminate samples of
the considered groups because the projection of the data points over direction x̃ will mix the
patterns in the corresponding one-dimensional subspace. Therefore, in terms of classification,
the direction ỹ, as well as the corresponding feature, is more discriminant than the other one.

In general, the LDA is used to identify the most important linear directions for separating
sample groups Hastie et al. (2001); Zhu (2006). In the two-class case, its objective is to find a
projection direction that maximizes the Fisher criterion.

The problem reported in Figure 1 is very studied in the context of principal components
analysis (PCA). In Zhu & Martinez (2006) it is proposed a specific method for selecting princi-
pal components that is based on the spectral decomposition of the LDA characteristic equation,
selecting the features that most correlate to the between class scatter matrix. In Thomaz & Gi-
raldi (2010) authors proposed the DPCA technique, based on the idea of ranking the principal
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(a) (b)

Figure 1: (a) Scatter plot of samples. (b) The same population but distinguishing patterns plus (+) and
triangle (H).

components by how well they align with separating hyperplane directions, determined by the
corresponding discriminant weights. Such a set of principal components ranked in decreasing
order of the discriminant weights is called in Thomaz & Giraldi (2010) the discriminant prin-
cipal components. The Multi-Class DPCA, described in Filisbino et al. (2015b, 2016), consists
of the following steps: (a) apply PCA technique for dimensionality reduction in order to elimi-
nate redundancy. (b) Compute a linear ensemble, based on the one-against-all SVM multi-class
approach. (c) Combine the discriminant weights computed through the separating SVM hyper-
planes in order to determine the discriminant contribution of each feature. The DPCA and its
multi-class version have been successfully applied to facial expression and texture classification
experiments Filisbino et al. (2015b, 2016).

1.2 TECHNIQUE OVERVIEW

The whole MNDFA methodology is shown in Figure 2. Firstly, we perform feature extrac-
tion using a suitable technique. Each iteration of the main loop is composed by the following
steps: (a) Compute a separating hypersurface using the KSVM approach and a weighted version
of the original data set (KSVM surface in Figure 2); (b) Among the support vectors, select a sub-
set, represented by x1, ··,x4 in Figure 2, useful to generate AdaBoost components and that pre-
serve the geometry of KSVM decision boundary; (c) For each selected support vector, calculate
the corresponding tangent hyperplane (weak classifiers Ci in the figure) and AdaBoost weight;
(d) Perform linear combination of the weak classifiers to get a moderate accurate learner.

In the last step of the MNDFA procedure, the moderate classifiers are linearly combined
through their AdaBoost.M2 weights to produce the global discriminant vector. The key idea of
this step is based on the fact that AdaBoost.M2 linearly combines components classifiers to get
the final hypothesis. So, it is straightforward to obtain the global discriminant weights from the
expression that defines the strong classifier.

Finally, we follow the traditional DPCA proposal (see section 2) and sort texture features
in the decreasing order of the global discriminant weights. The output of MNDFA algorithm is
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Figure 2: Main steps of the MNDFA technique.

the canonical texture directions arranged according to the discriminant weights. The method is
not restricted to any application or particular probability density function of the sample groups
and the number of meaningful discriminant directions is not limited to the number of groups,
like LDA Hastie et al. (2001).

2 TECHNICAL BACKGROUND

The foundation of MNDFA technique includes the original DPCA methodology Thomaz
& Giraldi (2010) and KSVM Vapnik (1998), which are described bellow. Let the training
observations xi ∈ Rn, i = 1, · · ·,M that generate aM×n training set matrix Θ̃ centered respect
to the global mean x̂. The DPCA methodology works in the PCA space. The PCA algorithm
computes a transformation matrix Ppca = [p1,p2, ...,pm′ ] whose columns pi, i = 1, . . . ,m′

minimize the mean square reconstruction error, being them′ ≤ n eigenvectors of the covariance
matrix Ω of Θ̃ that correspond to the m′ largest eigenvalues Turk & Pentland (1991).

If to each training sample xi it is associated a label yi ∈ {−1, 1}, then we have a projected
labeled training set:

X = {(x1, y1), (x2, y2) . . . (xM , yM)}, (1)

and, we can apply the DPCA technique to select the most discriminant principal components to
separate sample groups.

The original DPCA is implemented taking as input a training set X , like in expression (1).
Firstly, for discarding redundancies, the PCA transformation matrix Ppca = [p1,p2, ...,pm′ ] is
computed and each zero mean data vector x̃i is projected generating a vector xi = (Ppca)

T x̃i.
Afterwards, the obtained M ×m′ data matrix and their corresponding labels are used as input
to calculate the separating hyperplane, generically represented by the discriminant vector φ =
(w1, w2, ···, wm′) given by a linear classifier. If we multiply theM×m′ most expressive features
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matrix by the m′ × 1 discriminant vector:

c1 = x11w1 + x12w2 + ...+ x1m′wm′ ,

c2 = x21w1 + x22w2 + ...+ x2m′wm′ ,

... (2)
cM = xN1w1 + xN2w2 + ...+ xNm′wm′ .

we get the most discriminant feature ci ∈ R of each one of the m′-dimensional vectors xi.
Therefore, we can determine the discriminant contribution of each feature by investigating the
weights [w1, w2, ..., wm′ ]. In fact, weights that are estimated to be 0 or approximately 0 have
negligible contribution on the discriminant scores ci described in equation (2), indicating that
the corresponding features are not significant to separate the sample groups. In contrast, largest
weights (in absolute values) indicate that the corresponding features contribute more to the
discriminant score and consequently are important to characterize the differences between the
groups.

Therefore, instead of sorting these features by selecting the corresponding principal com-
ponents in decreasing order of eigenvalues, as PCA does, DPCA selects as the most important
features for classification the ones with the highest discriminant weights, that is, |w1| ≥ |w2| ≥
... ≥ |wm′ | .

The background of KSVM belongs to the reproducing kernel Hilbert spaces and Mer-
cer theory. A remarkable results in this scenario is the Mercer theorem, which we summa-
rized bellow in order to set the mathematical machinery that we are going to use in what
follows Vapnik (1998). So, let the space Rn and µ a finite measure in Rn. We define
also the function spaces L2 (Rn) = {f : Rn −→ R; |f |2 is µ− integrable} and L∞ (Rn) =
{f : Rn −→ R; ∃K > 0, |f (x) | ≤ K}.

Theorem 1 (Mercer): Suppose k : Rn × Rn −→ R is a continuous symmetric positive
definite function (kernel) such that k ∈ L∞ (Rn × Rn). Under certain conditions, the integral
operator Tk : L2 (Rn) −→ L2 (Rn):

(Tkf) (x) =

∫
R
k (x,y) f (y) dµ (y) , (3)

has a set of normalized eigenfunctions ψj : Rn −→ R, with associated eigenvalues λj > 0,
sorted in nonincreasing order, such that: k (x,y) =

∑nF

j=1 λjψj (x)ψj (y). Either nF ∈ N or
nF =∞.

With this result, the KSVM generalizes the linear support vector machines through the
kernel function k which allows to write the hypersurface that separates positive from negative
samples in the input space as Vapnik (1998):

F (x) ≡
M∑
i=1

yiαik (xi,x) + b̃ = 0, (4)

where αi ≥ 0, i = 1, 2, ·, ·, ·,M , are Lagrange multipliers in the quadratic optimization problem
behind KSVM technique Vapnik (1998). The samples xi with αi 6= 0 are named support
vectors. If nF ∈ N then, there exists a map Φ (x) ≡ (z1 (x) , z2 (x) , z3 (x) , . . . , znF

(x)) such
that the separating surface in the feature space <nF is given by:

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianópolis, SC, Brazil, November 5-8, 2017
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nF∑
r=1

ωrzr (x) + b̃ = 0 (5)

where ωr =
∑M

i=1 yiαizr (xi). In this work, we consider radial basis function (RBF) kernel,
given by:

k (x,y) = exp

(
||x− y||2

2σ2

)
, (6)

where σ ∈ R.

3 MNDFA DISCRIMINANT METHODOLOGY

The MNDFA procedure is described by the Algorithm 1 that has as input: (i) The training
instances in the image labeled database X ⊂ Rn × Y , where Y = {1, 2, 3, .., N}, that are
supposed independently and identically distributed from an uniform distribution D; (ii) The
maximum number of iterations T ; (iii) Kernel type k; (iv) Accumulation parameter τ , percent-
age µ; (v) Thresholds TRmin and TRmax.

Following the pipeline in Figure 2, the first stage of MNDFA builds a labeled feature space
(xi, yi) ∈ Rm × Y , where xi ∈ Rm is the feature vector of the image xi that belongs to the
class yi. The labeled feature vectors are built in line 2 of Algorithm 1 and compose the input
to the whole methodology. The key idea behind MNDFA is to apply the AdaBoost proce-
dure in a nested loop: given a class label y, each iteration of the inner loop (lines 6-16) uses
an one-against-all technique to boost weak classifiers (tangent hyperplanes to KSVM decision
boundary), denoted by htj,y in line 9, to a moderate one (h

t

y, in line 16) while the outer loop
computes AdaBoost.M2 weights (αt, line 21) that allow to combine the moderate classifiers to
build the global discriminant vector. So, as we have N classes, the internal loop in the Algo-
rithm 1 (line 6 to 16) constructs N weakened learners using the Algorithm 2 and an AdaBoost
procedure. To do this, in line 7 of Algorithm 1 we build the set Θ

y
, generated by taking all

ky feature vectors from class y and label them as 1. Then, using random sampling we choose
(2ky)/(N − 1) samples from classes other than y and label them as −1. The obtained set of
feature vectors xym ∈ Rm and corresponding labels ym ∈ {−1, 1}:

Θ
y

=
{

(xy1, l1) , (xy2, l2) , ...
(
xy3ky , l3ky

)}
, (7)

are the input to call the Algorithm 2, in line 8 of Algorithm 1, which constructs a set of weak
classifiers htj,y, each one represented by a tangent hyperplane to the KSVM decision boundary
that separates sample groups in the set Θ

y
. Basically, the procedure HL yields the KSVM

hypersurface using the weighted data X∗ as training set, selects a list Lsv of support vectors
(see line 7 from Algorithm 2) and computes an hyperplane for each element in Lsv. In general,
the obtained linear learners ht1,y, h

t
2,y, · · ·, htNt

sv ,y
, are weak classifiers. In order to apply KSVM

with AdaBoost we weaken the KSVM methodology (following the linear approach proposed
by Garcia & Lozano (2007)) using a parameter 0 < µ < 1 to discard a percentage µ of the
samples to generate the training set (line 2 of Algorithm 2). Besides, in order to eliminate
unrepresentative support vectors we consider the accumulation parameter τ in line 7.
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The inner loop of the Algorithm 1 computes in lines 10− 15 an AdaBoost weight αtk,y for

each weak classifiers htk,y. Then, in line 16, the moderate classifier h
t

y is produced following the
manner that AdaBoost combines the component learners. The computation of the AdaBoost
weights αtk,y is based on the idea of deriving AdaBoost method by using the linear combination
of learners, generically denoted in Zhou (2012) as h1, h2, · · ·, hT . In Zhou (2012) the stronger
classifier is given by:

H (x) =
T∑
t=1

αtht (x) , (8)

where αt does not depend on x, Zhou (2012). This formulation seeks a strong learner H that
minimizes the exponential loss function:

lexp
(
H|Dt

)
= Ex∼Dt

[
e−χ(x)H(x)

]
=
∑
i

e−χ(xi)H(xi)Dt (xi) ,

where χ is the ground-truth label function (replaced by g in line 11), with χ (x) ∈ {−1,+1},
andDt is a probability distribution Zhou (2012). The strong learnerH is produced by iteratively
generating ht and αt. When a classifier ht is generated under the distribution Dt, its coefficient
αt in expression (8) is to be determined in order to minimizes the exponential loss Zhou (2012):

lexp
(
αtht|Dt

)
= e−α

t (
1− εt

)
+ eα

t

εt,

where:

εt =

 ∑
i;χ(xi)6=ht(xi)

Dt (χ (xi) 6= ht (xi))

 .
To obtain the optimal αt, we must solve the equation:

∂lexp (αth
t|Dt)

∂αt
= −e−αt

(
1− εt

)
+ eαtεt = 0, (9)

whose solution, after a simple algebra, is given by:

αt =
1

2
ln

(
1− εt

εt

)
, (10)

which justifies lines 10− 16 of MNDFA procedure.

Next, in the outer loop, each moderate classifier h
t

y receives a normalized AdaBoost weight
α̃t, calculated in line 24. Each hypothesis h

t
, in line 17 of Algorithm 1, has the form h

t
: Θ→

[0, 1], and can be interpreted as the probability that y is the correct label associated with instance
x. It is generated through a moderate classifier h

t

y and the following normalization function:

f (z) =
z − ztmin,y

ztmax,y − ztmin,y
, (11)
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where f : [ztmin,y, z
t
max,y] → [0, 1], with ztmin,y and ztmax,y being the minimum and maximum

values, respectively, of the set
{
< xi,Φ

t
y > +Ψt

y, i = 1, 2, . . . ,M
}

. So, given a sample xi,

the probability of choosing an incorrect label y is: Pr = 1
2

(
1− ht(xi, yi) + h

t
(xi, y)

)
Freund

& Schapire (1997). However, we have |Y | − 1 possibilities to obtain the incorrect answer. So,
we can define the loss of the hypothesis through a weighted average according to some qti,y,
called the label weighting function, that assigns to each example i in the training set a load,
with

∑
y 6=yi q

t
i,y = 1. The resulting formula is called the pseudo-loss of h

t
on training instance

i with respect to qt Freund & Schapire (1997):

plossq

(
h
t
, i
)

=
1

2

(
1− ht(xi, yi) +

∑
y 6=yi

qi,yh
t
(xi, y)

)
. (12)

So, following the AdaBoost.M2 strategy Freund & Schapire (1997), in each iteration t of the
Algorithm 1, the weak learner’s goal is to minimize the expected pseudo-loss, computed in line
18 of the Algorithm 1, for a distribution Dt and weighting function qt. The algorithm uses a
second weight vector whose values at time t are denoted by wti,y, i = 1, · · ·,M , y ∈ Y − {yi},
which is initialized in line 1, based on the initial distribution D. The main loop of the algorithm
aims to update these weights in order to minimize the expected pseudo-loss. So, the weighting
function qt and the distribution Dt are computed using the wti,y (line 5 of Algorithm 1). The
lines 16-18 of the Algorithm 1 are based on the AdaBoost.M2 idea of deriving a strong learner
hf by using the linear combination of weak learners h

1
, h

2
, · · ·, hT :

hf (x) = arg max
y∈Y

T∑
t=1

α̃th
t
(x, y), (13)

where α̃t is computed in line 24. To see this, we shall remember that ht(x, y) in line 17 is
computed through the function f , in expression (11), and rewrite expression (13) as:

hf (x) = arg max
y∈Y

[
T∑
t=1

α̃tf
(
< x,Φt

y > +Ψt
y

)]
. (14)

But, from equation (11), we get:

f
(
< x,Φt

y > +Ψt
y

)
=
< x,Φt

y > +Ψt
y − ztmin,y

ztmax,y − ztmin,y
. (15)

Therefore, by substituting this expression into equation (14), and using the linearity of the inner
product, we can show that:

hf (x) = arg max
y∈Y

[< x,Υ y > +ξy] , (16)

where:

Υ y =
T∑
t=1

α̃t
Φt
y

ztmax,y − ztmin,y
, ξy =

T∑
t=1

α̃t
(
Ψt
y − ztmin,y

)
ztmax,y − ztmin,y

,
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with Υ y ∈ Rm and ξy ∈ R. The bias ξy can be incorporated in the inner product through a
translation T y such that < T y,Υ y >= ξy, which renders:

hf (x) = arg max
y∈Y

[
n∑
i=1

(
xi + T i,y

)
Υi,y

]
. (17)

This expression is the key to apply the DPCA methodology, described in section 2. Specifically,
each feature i has a vector of weights Υi,y with size |Y |. So, for each feature i we need to seek
for the most important weight, in absolute value |Υi,y|, which can be interpreted as a measure
of the discriminant contribution of the corresponding feature. These values are used to generate
the vector v in line 27 of Algorithm 1. Next, we shall sort the obtained array in decreasing
order, as performed in line 28 of the Algorithm 1, to get the global discriminant weights. The
output of the MNDFA procedure is the discriminant directions q1,q2, · · ·,qm where qi is a
feature direction selected according to its discriminant weight v (i).

4 FEATURE EXTRACTION

In this paper, the process of image feature extraction consists in the computation of Haral-
ick’s texture features through the gray level co-occurrence matrix (GLCM), computed consid-
ering multiple offsets, to represent the visual information Zayed & Elnemr (2015). So, given an
M×N image I coded using L grey levels in the set {0, 1, 2, . . . , L− 1} and an offset (∆x,∆y),
the GLCM matrix is a L× L two-dimensional array define by:

GLCM (i, j,∆x,∆y, I) =
M∑
x=1

N∑
y=1

δ (I (x, y)− i, I (x+ ∆x, y + ∆y)− j) , 0 ≤ i, j ≤ (L− 1)

(19)

where the function δ is defined as: δ (m,n) = 1, if m = n = 0, and, δ (m,n) = 0, otherwise.

Therefore, the GLCM characterizes the texture of an image by calculating how often pairs
of pixels ((x, y) , (x+ ∆x, y + ∆y)) with the gray level intensities (i, j) occur in a specific
offset (∆x,∆y) Zayed & Elnemr (2015). We shall emphasize that we are working in the digital
context and, consequently, expression (19) only makes sense if ∆x,∆y ∈ N.

Figure 3 illustrates the process to build the GLCM by only walking in horizontal direction,
(∆x,∆y) = (1, 0). In the Figure 3, GLCM(1, 1, 1, 0, I) = 1 because there is only one instance
in the input image I where two horizontally adjacent pixels I (x, y) and I (x+ 1, y) have values
I (x, y) = 1 and I (x+ 1, y) = 1. Analogously, the GLCM(1, 2, 1, 0, I) = 2 because there are
two pairs of pixels such that I (x, y) = 1 and I (x+ 1, y) = 2, and so on.

In this paper, the process of image feature extraction consists in calculating the Haralick’s
texture features through the GLCM matrix computed considering multiple directions to repre-
sent the visual information Felix et al. (2016); Zayed & Elnemr (2015).

Haralick extracted 14 descriptors from the co-occurrence matrix Haralick et al. (1973),
but only five texture features are frequently used due to correlations between the descriptors
Arvis et al. (2011). So, in this work, we use only the five texture features presented in Table
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Algorithm 1: MNDFA Procedure
Input: Samples: X = {(x1, y1), (x2, y2) . . . (xM , yM)}; where yi ∈ Y and

Y = {1, 2, 3, .., N}; Distribution D over the M examples; Parameters τ , T , and µ; (v)
Thresholds TRmin and TRmax; Kernel type k;

1 Initialize the weight vector: w1
i,y = D(i)

|Y |−1
, for i = 1, · · ·,M ; y ∈ Y − {yi};

2 Build the labeled feature vectors Θ = {(x1, y1), (x2, y2) . . . (xM , yM)} ⊂ Rm × Y ;
3 for t = 1, ... to T do
4 Set W t

i =
∑

y 6=yi w
t
i,y and Y = {−1, 1};

5 for y 6= yi: qti,y =
wt

i,y

W t
i

; and set Dt(i) =
W t

i∑N
i=1W

t
i

;

6 for y = 1, ... to N do
7 Build the subset Θ

y
, given by expression (7);

8
{

(φtj,y, b
t
j,y); 1 ≤ j ≤ N t

sv

}
= HL(Θ

y
, Dt,Y , τ, µ);

9 Define htj,y (x) =< x,φtj,y > +btj,y;
10 for k = 1, ... to N t

sv do
11 εtk = Px∼Dt(g

(
htk,y(xi)

)
6= li);

12 if εtk,y > TRmax or εtk,y < TRmin then
13 αtk,y = 0;

14 else
15 αtk,y = 1

2
ln(

1−εtk,y
εtk,y

);

16 h
t

y =
∑Nt

sv
k=1 α

t
k,yh

t
k,y =< x,

∑Nt
sv

k=1 α
t
k,yφ

t
k,y > +

∑Nt
sv

k=1 α
t
k,yb

t
k,y ≡< x,Φt

y > +Ψt
y;

17 Set h
t

: Θ→ [0, 1], given by h
t
(x, y) = f

(
h
t

y (x)
)

= f
(
< x,Φt

y > +Ψt
y

)
;

18 Compute:

εt =
1

2

N∑
i=1

Dt(i)

(
1− ht(xi, yi) +

∑
y 6=yi

qti,yh
t
(xi, y)

)
;

19 if εt > 0.5 then
20 break;

21 Calculate AdaBoost.M2 weights: αt = 1
2

ln
(

1−εt
εt

)
;

22 for i = 1, ...N and y ∈ Y − {yi} do
23 Update: wt+1

i,y = wti,yexp(−αt(1− h
t
(xi, yi) + h

t
(xi, y)));

24 Normalize α̃t = αt/
∑T

j=1 α
j , t = 1, 2, . . . , T ;

25 for i = 1, ... to m do
26

|Υi,y| =

∣∣∣∣∣
T∑
t=1

α̃t
Φt
i,y

ztmax,y − ztmin,y

∣∣∣∣∣ , y ∈ Y ; (18)

27 Compute v (i) = maxy∈Y {|Υi,y|}, i = 1, 2, . . . ,m;
28 Sort discriminant weights: v (1) ≥ v (2) ≥ . . . v (m);
29 Select texture feature following v (i);

Output: Discriminant texture directions: q1,q2, · · ·,qm.
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Algorithm 2: HL Procedure: Build Hyperplane List
1 Input: Labeled samples X = {(xi, yi), i = 1, 2, · · ·,M}; Samples probability distribution

D(xi); Parameter 0 < τ, µ ≤ 1;
2 Select J so that,

∑
j∈J D(xj) ≤ (1− µ);

3 Select (xi, yi); i ∈ J , and define D∗ = DJ ;
4 Compute the weighted data X∗ = {(D∗i · xi, yi), i = 1, 2, · · ·,M}
5 Compute KSVM hypersurface using X∗ in equation (4);
6 Normalize and sort non null Lagrange multipliers βi such that β1 > β2 > . . . > 0
7 Let sv < n and the list Lsv = {(xi, βi) ;

∑sv
i=1 βi ≤ τ} ,

8 Calculate φj = ∇xF (xj), bj = −〈∇xF (xj),xj〉, for (xj, βj) ∈ Lsv and F defined in
expression (4),

Output: Tangent hyperplane list (φj, bj), j = 1, 2, . . . |Lsv|

Figure 3: Process to create GLCM for image I , with L = 8 in expression (19).

Haralick’s Descriptors

Energy
∑

i

∑
j(GLCM(i, j,∆x,∆y, I))2

Contrast
∑

i

∑
j |i− j|2GLCM(i, j,∆x,∆y, I)

Correlation
∑

i

∑
j(i−µx)(j−µy)GLCM(i,j,∆x,∆y,I)

σxσy

Homogeneity
∑

i

∑
j GLCM(i,j,∆x,∆y,I)

1+|i−j|

Entropy
∑

i

∑
j GLCM(i, j,∆x,∆y, I)log(GLCM(i, j,∆x,∆y, I))

Table 1: Five texture features

1. According to Arvis et al. (2011), these descriptors are adequate to give good results in
classification task.

In this work, for each Haralick’s Descriptors presented in Table (1), we consider the offsets
(∆x,∆y) ∈ {(1, 0), (1, 1), (0, 1), (−1,−1)}, composing a feature space with 20 descriptors.
Besides, GLCM (i, j,∆x,∆y, I) that is defined by expression (19), is normalized such that the
sum of its elements is equal to one Haralick et al. (1973). In the above table, µx and µy are
the horizontal and vertical mean while σx and σy denote the horizontal and vertical standard
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deviations, defined by expressions (20)-(21):

µx =
∑
i

∑
j

iGLCM (i, j,∆x,∆y, I) and µy =
∑
j

∑
i

jGLCM (i, j,∆x,∆y, I) (20)

σx =

√∑
i,j

(i− µx)2GLCM (i, j,∆x,∆y, I) and σy =

√∑
i,j

(j − µy)2GLCM (i, j,∆x,∆y, I)

(21)

5 COMPUTATIONAL EXPERIMENTS
In this section we perform experiments using the granite image database described in Bianconi et al.

(2015). It contains 25 classes with 40 images per class, composing a total of 1000 full color images with
spatial resolution 1500 × 1500. There are 100 tiles in standard orientation and other 900 created by
rotations of 10◦, 20◦, · · ·, 80◦ and 90◦ angles. We take 5 classes of the standard set to perform the
experiments (see Figure 4). The high spatial resolution of each image allows to subdivide it into smaller
blocks that keep the texture patterns. So, we convert each image to gray scale and subdivide it into blocks
using crop windows with size 100×100 and 50×50, generating new databases that we call DB100 and
DB50, with 1125 and 4500 images, respectively. Next, in order to save memory allocation along the
algorithms execution, we take 500 block images (100 for each class) for training and 500 for test (100
for each class) from both DB100 and DB50 databases. Besides, Haralick’s descriptors are obtained
considering 32 gray levels (see section 4).

Figure 4: Samples from database representing the 5 classes of granite images used in the experiments.

In the following, we compare our approach with the Fisher criterion discriminant technique Zhu
(2006), and a variation of the Multi-Class LDA-DPCA Filisbino et al. (2016) computed as follows: if we
compute the LDA in the feature space, we getN−1 = 4 hyperplane directions φilda ∈ Rm, i = 1, 2, 3, 4.
Consequently, we obtain in this case a LDA weight matrix φi,ylda, which can be processed according to
lines 27-28 of Algorithm 1, by just replacing Υi,y by φi,ylda. The obtained global discriminant weights are
named Multi-Class LDA-DFA in the remaining of this paper. Also, we compare the MNDFA with the
Multi-Class.M2 DPCA, proposed in Filisbino et al. (2016), where we replace the PCA features by the
Haralick’s descriptors. So, we call the obtained variation as MDFA in what follows. The MNDFA is a
nonlinear version of MDFA. That is why we must compare these methods.

LetN be the number of classes,Ny the number of elements of class y, x̂y the average of the samples
belonging to class y , x̂ the average of all the samples and x̂yi the average of the class corresponding to
the ith sample. With these elements, the Fisher criterion postulates that the larger is the value ofWFisher

j

computed by:

WFisher
j =

∑N
y=1Ny ·

(
x̂y;j − x̂j

)2

∑N
i=1

(
xi;j − x̂yi;j

)2 , (22)
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then more discriminant is the qj feature direction for samples classification.

The considered multi-class discriminant analysis techniques are fed with the Haralick features that
are ranked according to their discriminant weights. In this stage, we use theKNN classifier, withK = 5
and Euclidian distance, to analyze the performance of the discriminant feature spaces obtained.

Figure 5 presents a comparison between MNDFA and MDFA methodologies with images of the
DB100 database for the five-class classification problem showed in Figure 4. In order to confront both
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Figure 5: Comparing MNDFA and MDFA.

techniques we decided to instantiate them with the same parameters. So, to perform the training of
MNDFA and MDFA, the KSVM and SVM relaxation parameter is set to C = 0.001. In function of this
parameter, to weaken the SVM (see Algorithm 1 Filisbino et al. (2016) ) without numerical problems,
we experimentally observe that we should set µ ≥ 0.5 to compute the separating hyperplanes by MDFA.
Besides, the pseudo-loss from Algorithm Filisbino et al. (2016) (line 10), reached the threshold for
T = 15. Therefore, we take T = 15, µ = 0.5 for both MNDFA and MDFA. The solid lines present
recognition rates when taking the same samples to perform discriminant analysis and classification using
10-fold cross validation and KNN . On the other hand, the dashed line present results when using
different sample sets for discriminant analysis and recognition rates computation. The results show that
MNDFA outperforms or is equal the MDFA methodology in both tests, except for range 2 ≤ k ≤ 3.
Therefore, MNDFA is more competitive than MDFA for comparison with other discriminant techniques.

In order to observe the behavior of MNDFA as well as improve the recognition rates, we performed
the remaining experiments using the Algorithm 1 with: T = 30, µ = 0.3 to perform the weaken process
of KSVM, and τ = 0.99 in order to take representative support vectors in the Algorithm 2. Also, due
to AdaBoost requirements, we consider the classification of the corresponding tangent hyperplanes by
setting TRmin = 0.5 and TRmax = 0.8 which discards another subset of support vectors (line 12 of
Algorithm 1). In average, we take 142 support vectors for the experiments performed in this section.

The Figure 6.(a)-(b) shows the average recognition rates where we also used the 10-fold cross val-
idation experiments with KNN , using the Haralick feature space oriented through the discriminant
techniques, for the five-class classification problem pictured in Figure 4, using images of the DB100
database. We must notice that the features selected by the MNDFA and Fisher criterion allow higher
recognition rates using few texture features. The Figure 6.(a) represent the accuracy results when tak-
ing the same set for discriminant analysis and for classification using KNN . The result shows that
our methodology is more efficient than the other ones in the interval 3 ≤ k ≤ 5 and in the interval
8 ≤ k ≤ 15. For 5 < k < 8 the recognition rates of MNDFA are below the Fisher criterion but above the
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Figure 6: Recognition rates for texture features ranked by MNDFA, Fisher criterion and a Multi-Class
LDA-DFA when varying the number k of features (DB100 database).

Multi-Class LDA-DFA ones. In Figure 6.(b) the recognition rates were computed with different sets for
discriminant analysis and classification using the database DB100. The MNDFA is better or equal than
Multi-Class LDA-DFA for all ranges and when compared with Fisher criterion, MNDFA outperforms it
for ranges 2 < k < 5 and 8 < k < 16.

The Figure 7 shows the average recognition rates for image database DB50. We can notice a
decrease in the recognition rates for all methodologies, achieving no more than 60% of accuracy. From
Figure 7, we observe that the MNDFA is better than the other methodologies in the range 1 < k < 5
and 10 < k < 16. However for 5 ≤ k ≤ 10 Fisher criterion outperforms the MNDFA and Multi-Class
LDA-DFA.

Regarding to the parameter σ in the RBF kernel (expression (6)), we follow the literature Bishop
(1997) and estimate its value using the class means x̂1 and x̂2, according to:

σ =
‖x̂1 − x̂2‖√

2
, (23)
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Figure 7: Recognition rates of the considered techniques for database DB50 when varying the number k of
features.

where x̂1 is the mean of −1 samples in the set defined in expression (7) while x̂2 is the mean of the
+1 samples in the same set. In order to experimentally analyse the influence of this parameter in the
recognition rates obtained by MNDFA discriminant components, we set σ1 = σ/3, σ2 = σ and σ3 = 3σ,
with σ set as above. The Figure 8 allows to check the effect of σ in MNDFA performance.
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Figure 8: Influence of σ parameter in the DB100 database.

We notice from Figure 8 that, for k < 2 the recognition rates of MNDFAσ2 is equal MNDFAσ3

or higher than MNDFAσ1 . For 2 ≤ k ≤ 3 we notice that MNDFAσ3 > MNDFAσ2 > MNDFAσ1 . On
the other hand, in the range 3 < k < 7 we have MNDFAσ2 > MNDFAσ1 > MNDFAσ3 . Finally, for
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k > 7 we see that MNDFAσ1 ≥ MNDFAσ2 ≥ MNDFAσ3 . Therefore, the behavior of MNDFA respect
to σ variation depends on the number of features considered. Specifically, from the performed tests we
can not say that the MNDFA performance is a monotonically increasing (or decreasing) function of σ.
However, we can improve the performance in a specific range through the variation the σ.

All experiments were executed in an Intel Core i7 computer, CPU 3.30GHz, with 12GB of RAM,
video card NVidia GeForce 9800 GTX, and operating system Windows 7 64bits, using Matlab (Re-
lease 12) software. In such computational resource, the CPU time for the MNDFA computation for the
discriminant analysis in the DB100 database was nearby 25 minutes.

6 CONCLUSION AND FUTURE WORKS

This paper presents the MNDFA algorithm, a generalization of the original MDPCA for ranking
texture features in nonlinear classification problems. The basic loop of methodology is composed by
the computation of KSVM in the feature space, followed by a nested AdaBoost procedure. The texture
experiments show that, in general, forDB100 andDB50, the features selected by MNDFA allow higher
or equal recognition rates than counterpart ones when considering number of discriminant features k ≤ 4
and k ≥ 10. The reduction of crop window size causes a decrease in recognition rates in all tested
methodologies. The sigma parameter influences the recognition rates but without a defined pattern.
Further work is being undertaken to improve MNDFA performance and to reduce its computational cost.
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