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Abstract. The quadratic discriminant (QD) classifier has proved to be
simple and effective in many pattern recognition problems.  However, it
requires the computation of the inverse of the sample group covariance
matrix.  In many biometric problems, such as face recognition, the num-
ber of training patterns is considerably smaller than the number of fea-
tures, and therefore the covariance matrix is singular.  Several studies
have shown that the use of mixture covariance matrices defined as a
combination between the sample group covariance matrices and, for in-
stance, the pooled covariance matrix, not only overcomes the singularity
and instability of the sample group covariance matrices but also im-
proves the QD classifier performance.  However, little attention has
been paid to understanding what has happened with the final shape of
these mixture covariance matrices.  In this work, we visually analyse in
the commonly used eigenfaces space the eigenvectors and eigenvalues
of these covariance matrices, given by the three following approaches:
maximum likelihood, maximum classification accuracy, and maximum
entropy.  Experiments using the two well-known ORL and FERET face
databases have shown that the maximum entropy approach is the one
that achieves a more intuitive visual performance and best classification
accuracies, especially in face experiments where moderate changes in
facial expressions, pose, and scale, occur.

1 Introduction

The quadratic discriminant (QD) classifier is one of the most popular parametric Bay-
esian classifiers.  It requires the inverse of the sample group covariance matrices.
Since in some applications, especially in face recognition, the number of training
patterns per group is smaller than the number of features, the sample group covariance
matrices become singular and the QD classifier cannot be used.

Several studies have shown [2, 3, 5, 6, 13] that by using a mixture covariance ma-
trix defined as a combination between the ill-posed sample group covariance matrices
and well-posed covariance matrices, such as the pooled covariance matrix, it is possi-
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ble to overcome the singularity and instability of the sample group covariance matri-
ces and also improve the classification performance.  However, given the high-
dimensionality of these small sample size problems, little attention has been paid to
understanding what has happened with the final shape of these mixture covariance
matrices.

In this work, we visually analyse the eigenvectors and eigenvalues of the mixture
covariance matrices in the well-known and commonly used eigenfaces space [9, 10].
These mixture covariance matrices are given by the combination of the sample group
and pooled covariance information using three approaches: maximum likelihood,
maximum classification accuracy, and maximum entropy.  Experiments using the two
well-known ORL and FERET face databases have shown that the maximum entropy
approach is the one that not only preserves as much of the sample group covariance
information as possible but also achieved the best classification accuracies.

2 The Quadratic Discriminant Classifier

The quadratic discriminant (QD) classifier is based on the p-multivariate Gaussian
class-conditional probability densities.

Assuming the symmetrical or zero-one loss function, the Bayes QD rule [12]
stipulates that an unknown pattern x should be assigned to the class i that minimises:
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where iπ  is a prior probability associated with the ith class, ix  is the maximum likeli-
hood estimate [14] of the corresponding true mean vector given by
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and iS  is the maximum likelihood estimate of the respective true covariance matrix
given by
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where jix ,  is the pattern j  from class i  and in  is the number of training patterns
from class i .

The use of the QD rule described in equation (1) is, however, especially problem-
atic if iS  is a singular matrix, that is, if in  is less than the dimension of the feature
space p  [8].  In fact, when the sample covariance matrix is singular the smallest
( 1+− inp ) eigenvalues are estimated to be 0 and the corresponding eigenvectors are
arbitrary, though constrained by orthogonality [5].
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One straightforward method routinely applied to overcome the limited sample size
problem on the QD classifier is to employ the Fisher’s linear discriminant function
(LD) classifier (e.g. [1]).  The LD classifier is obtained by replacing the iS  in (1) with
the pooled sample covariance matrix pS  defined as
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where g is the number of classes and gnnnN +++= L21 .  However, pS  is theoreti-

cally a consistent estimator of the true covariance matrices iΣ  only when

gΣ==Σ=Σ L21 .

3 Mixture Covariance Matrix

A less limited set of covariance estimators can be obtained by using a mixture covari-
ance matrix defined as a linear or convex combination between the sample covariance
matrix of each class iS  and the pooled covariance matrix pS .  It is given by
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where the mixture parameter iw  takes on values 10 ≤< iw  and could be different for
each class depending on the optimization technique used to solve the problem.

Each mixture covariance matrix mix
iS  defined in equation (5) has the important

property of admitting an inverse if the pooled estimate pS  does so [7].  This implies
that if the pooled estimate is non-singular and the mixture parameter takes on values

0>iw , then the mix
iS  will be non-singular.  A number of optimisation techniques can

be used to determine an appropriate blending of the iS  and pS  covariance matrices.
In the next sub-sections, three possible approaches are briefly described.

3.1 Maximising the Likelihood

According to Hoffbeck and Landgrebe [6], the value of the mixture parameter iw  can
be appropriately selected so that a best fit to the training patterns is achieved.  Their
technique is based on the leave-one-out-likelihood (LOOL) parameter estimation [8].

The strategy consists of evaluating several values of iw  over the optimisation grid
10 ≤< iw , and then choosing iw  that maximizes the average log likelihood of the

corresponding p-multivariate normal density function, computed as follows:
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where the notation /v represents the corresponding quantity with observation vix ,  left
out.  Once the mixture parameter iw  is selected, the corresponding leave-one-out

covariance estimate )( i
mix
i wS  is calculated using all the in  training observations and

substituted for iS  into the QD rule defined in (1).

3.2 Maximising the Classification Accuracy

Another way of determining an appropriate value for the mixture parameter iw  de-
scribed in equation (5) is based on the well-known Reguralized Discriminant Analysis
classifier proposed by Friedman [5].

In this approach, all the mixture parameters iw  of each class are equal and selected
to maximise the leave-one-out classification accuracy based on the QD rule defined in
equation (1).  The following classification rule is developed on the 1−N  training
observations exclusive of a particular observation vix ,  and then used to classify vix , :
Choose class k  such that
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Each of the training observations is in turn held out and then classified in this manner.
The resulting misclassification loss, i.e., the number of cases in which the observation
left out is allocated to the wrong class, averaged over all the training observations is
then used to choose the best mixture parameter w .

3.3 Maximising the Entropy

The covariance estimation problem can be viewed as a problem of estimating the
parameters of Gaussian probability distributions under uncertainty.  The maximum
entropy criterion [4] maximises the uncertainty under incomplete information, and
therefore may be a promising solution.

We have shown that, particularly in pre-processed or well-framed biometric recog-
nition applications [3], in order to maximise the entropy given by the convex combi-
nation of iS  and pS , we do not need to determine the best mixture parameter iw  but
simply select the maximum variances of the corresponding matrices.

In the maximum entropy (ME) approach, the mix
iS  estimator is given by the fol-

lowing procedure:

1. Find the eigenvectors me
iΦ  of the covariance given by pi SS + .

2. Calculate the variance contribution of both iS  and pS  on the me
iΦ  basis, i.e.,
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3. Form a new variance matrix based on the largest values, that is,
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4. Form the mix
iS  estimator

Tme
i

me
i

me
i

mix
iS )(ΦΛΦ= . (10)

It is important to note that the projection basis calculated on step 1 is not necessar-
ily unique and was chosen only to simplify the procedure.  In fact, it might be any
orthonormal basis that diagonalises an unbiased mixture of iS  and pS .

The main idea of the maximum entropy approach is to expand in a straight-forward
way the iS  smaller and consequently less reliable eigenvalues while trying to keep
most of its larger eigenvalues unchanged.

4 Experiments

In order to investigate and visualise the different approaches of blending the sample
group and pooled covariance matrices, two experiments using the two well-known
ORL (http://www.uk.research.att.com/facedatabase.html) and FERET Face Databases
[11] were performed.

The experiments were carried out as follows. First the face images from the original
vector space are projected to a lower dimensional space (face subspace) using Princi-
pal Component Analysis (PCA) [9, 10] and then classified using the pooled covari-
ance matrix and the three mixture covariance approaches described in the previous
sections.  Each experiment was repeated 25 times using several eigenfaces.  Distinct
training and test sets were randomly drawn, and the mean and standard deviation of
the recognition rate, as well as the mean of the likelihood and classification accuracy
mixture parameters, were calculated.  Then, based on the best classification accuracy
of the several PCA features used, the number of eigenfaces to visualise and calculate
the covariance eigenvectors and eigenvalues on the face subspace was determined.
The best classification results were obtained by using respectively 40 and 50 eigen-
faces (which we call most effective eigenfaces) for the ORL and FERET databases.

The ORL face experiments were computed using for each individual 5 images to
train and 5 images to test.  In the FERET experiments, sets containing 4 “frontal b
series” images for each of 200 total subjects were considered.  Each image set is com-
posed of a regular facial expression (referred as “ba” images in the FERET database),
an alternative expression (“bj” images), and two symmetric images (“be” and “bf”
images) taken with 15 degrees pose angle effects.  The FERET training and test sets
were composed of 3 and 1 images respectively.  Since in all applications the same
number of training examples per subject was considered, the prior probabilities were
assumed equal for all classes and recognition tasks.  For implementation convenience
all ORL and FERET images were first resized to 64x64 and 96x64 pixels.  The mix-
ture parameter range was taken to be ]0.1,...,2.0,1.0[  for both iw  likelihood and
w classification accuracy optimisations.
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5 Results

Figures 1 and 2 present the visual analysis of two examples of the ORL and FERET
covariance blending experiments using the respective most effective eigenfaces.
These examples were chosen based on the closeness of the likelihood and classifica-
tion mixture parameters to their respective mean values.  The test average recognition
rates (with standard deviations) over the different PCA dimensions for the ORL and
FERET databases are also shown in Tables 1 and 2, respectively.

The visual results of Figures 1a-1b, and 2a-2b, can be described as follows.  The
first image row corresponds to the training images of a specific subject, and the sec-
ond and third following rows correspond to the eigenvectors (in descending ordering
of eigenvalues, from left to right) of the respective sample group and pooled covari-
ance matrices transformed back to the image space by using the corresponding most
effective eigenfaces.  Accordingly, the fourth, fifth and sixth image rows correspond
to the eigenvectors of the maximum likelihood (ML), maximum classification accu-
racy (MC), and maximum entropy (ME) mixture covariance matrices.  The numbers
below each image row describe the magnitude of the eigenvalue of each covariance
eigenvector with its corresponding percentage of total variance shown in parentheses.

Since only 5 images of each individual were used to form the ORL training set, the
results of Figures 1a and 1b relative to the sample group covariance estimates were
limited, in terms of total variation within the subject’s images, to the first 4 eigenvec-
tors.  The remaining eigenvectors (only 4 shown) are arbitrary, constrained to the
orthogonality assumption on the face space, and should be replaced or modified using
the pooled information. As can be seen on Figures 1a and 1b, the mixture covariance
matrices that preserve as much of the sample group covariance information as possible
were the ones blended using the maximum entropy approach.  It is important to note
that although the percentage of total variation of each eigenvalue was different due to
the use of the pooled information, the first eigenvectors and eigenvalues of the maxi-
mum entropy covariance matrices are quite similar to the respective sample group
covariance ones.  In terms of how accurate the mixture covariance results were to the
choice of the training and test sets (shown in Table 1), it is fair to say that the per-
formance of the maximum entropy approach was better than the pooled estimate and
slightly better than the other two mixture covariance estimates.

Figures 2a and 2b show the results of the FERET experiments.  Analogously to the
ORL experiments, the sample group covariance information became limited to the
first 2 eigenvectors.  The remaining eigenvectors (only 3 shown) represent no subject
variation at all and are arbitrary, constrained to the orthogonality assumption on the
face space.  As can be observed, the visual results of the mixture covariance estimates
seem to be more related to the pooled information than the sample group one.  Again,
the maximum entropy approach was the one that preserved as much of the sample
group covariance information on the covariance matrices blending as possible.  How-
ever, in this application where the face images are well-framed thus favouring the
pooled covariance matrix, there is no significant visual or classification performance
improvement (shown in Table 2) in using mixture covariance matrices.
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23.3(42%) 16.9(30%) 13.1(23%)  2.7 (5%)     0.0 (0%)     0.0 (0%)    0.0 (0%)   0.0 (0%) 

 
4.1 (16%)   2.4 (9%)    2.2 (8%)    1.8 (7%)    1.6 (6%)     1.3 (5%)   1.0 (4%)   1.0 (4%) 

 
 

 
5.1 (18%)  3.2 (11%)  3.0 (10%)   1.7 (6%)    1.6 (6%)    1.6 (5%)    1.2 (4%)   1.1 (4%) 

 
6.8 (21%)  4.5 (14%)  4.2 (13%)   1.6 (5%)    1.5 (5%)    1.5 (5%)    1.3 (4%)   1.2 (4%) 

 
23.2 (31%) 16.8 (22%) 13.1 (17%)  2.6 (3%)    2.2 (3%)    1.9 (2%)    1.7 (2%)    1.7 (2%) 

Fig. 1a. Visual analysis of a ORL subject (top-down): image examples of a subject, image
eigenvectors with eigenvalues of the corresponding sample group covariance matrix; pooled
covariance matrix; ML covariance (w=0.9 and wavg=0.92); MC covariance (w=0.8 and
wavg=0.61), and ME covariance

Fig. 1b. Analogous to Fig.1a but with ML covariance parameter w=1.0 (wavg=0.83)
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Fig. 2a. Visual analysis of a FERET subject
(top-down): image examples of a subject,
image eigenvectors with eigenvalues of the
corresponding sample group covariance matrix;
pooled covariance matrix; ML covariance
(w=0.5 and wavg=0.62); MC covariance (w=0.8
and wavg=0.85), and ME covariance

Fig. 2b. Analogous to Fig. 2a but with the
ML covariance parameter w=0.9
(wavg=0.95)

Table 1. ORL classification results

Eigenfaces Pooled Smix - ML Smix - MC Smix - ME

10 88.4% (1.4%) 91.9% (1.6%) 93.8% (1.7%) 93.5% (1.5%)
20 91.8% (1.8%) 94.4% (1.7%) 94.7% (1.4%) 95.2% (1.8%)
40 95.4% (1.5%) 96.2% (1.5%) 96.5% (1.6%) 96.7% (1.5%)
60 95.0% (1.6%) 95.7% (1.5%) 95.4% (1.6%) 95.9% (1.6%)
80 94.6% (1.9%) 94.9% (1.7%) 94.7% (1.9%) 94.8% (1.7%)

Table 2. FERET classification results.

Eigenfaces Pooled Smix - ML Smix - MC Smix - ME

10 94.9% (1.1%) 94.7% (1.4%) 95.3% (1.1%) 95.3% (1.2%)
30 96.8% (0.8%) 96.6% (1.1%) 97.0% (0.9%) 97.2% (1.0%)
50 96.9% (0.8%) 96.7% (1.1%) 97.3% (1.0%) 97.8% (0.9%)
70 96.7% (0.9%) 96.5% (0.9%) 96.9% (0.9%) 97.3% (0.9%)
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6 Conclusion

In this paper, a visual study of three mixture covariance matrix approaches for the
quadratic discriminant (QD) classifier has been undertaken in the context of face rec-
ognition.  This analysis allows a better understanding of the importance and applica-
bility of blending the sample group covariance matrices and the pooled covariance one
in small sample size, high-dimensional problems.  The maximum entropy approach
that preserves as much of the sample group covariance information as possible
achieved a more intuitive visual performance and the best classification accuracies,
especially in face experiments where moderate changes in facial expressions, pose,
and scale, occurred.

The QD classifier is a simple and powerful classifier in eigenface recognition.  The
experiments performed show clearly that the use of mixture covariance matrices is
worth consideration for improving recognition, especially when implemented by using
the straight-forward maximum entropy approach.
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