É difícil apontar um número exato, mas estimativas mostram que cerca de 1,2 milhão de brasileiros sofrem hoje do mal de Alzheimer. No mundo, são 20 milhões de pessoas. E o que a TI tem a ver com isso? Os bixas são um componente essencial para mapear o cérebro humano, montar padrões estatísticos e algoritmos e analisar como a doença se desenvolve. Cada vez mais, laboratórios de tecnologia se entrosam com o universo da medicina no estudo de imagens de exames como tomografia e ressonância magnética. Um desses movimentos está numa universidade brasileira. No Departamento de Engenharia da FEI (Fundação Educacional Inaciana), em São Bernardo do Campo, em Grande São Paulo, um grupo de professores e alunos trabalha num projeto para comparar o cérebro de pessoas afetadas pelo mal de Alzheimer, epilepsia ou esquizofrenia com o de outras que não manifestaram essas doenças.

O trabalho é realizado em conjunto com os institutos de Psiquiatria e Radiologia da USP e tem duração prevista de quatro anos. "Estamos montando um sistema de detecção e interpretação de imagens médicas", diz o professor Carlos Eduardo Thomaz. Ele já usou esse tipo de técnica para estudar o comportamento de bebês prematuros. Padrões estatísticos e algoritmos também entram em outro projeto do grupo: um banco de imagens para uso em aplicações de biometria por reconhecimento de face.

O projeto da FEI é um dos exemplos das pesquisas de ponta em tecnologia que brotam dentro das universidades brasileiras, de norte a sul do país — várias delas desenvolvidas com financiamentos da iniciativa privada e de órgãos do governo. "Temos parceiras com a indústria há mais de 20 anos. É um modelo para conseguirmos recursos para as pesquisas", afirma o professor Alberto Lacerda, chefe do Departamento de Ciência da Computação da UFMG (Universidade Federal de Minas Gerais). Os trabalhos da UFMG se concentram principalmente em software e livro, criação e análise de dados, redes de sensores e tratamento de informações para a internet, como é o caso da web semântica.
NA PUC-RIO
Realidade virtual permite simular um voo sobre uma plataforma de petróleo
NARIZ MOVIDO A BITS

Imagine como seria um nariz artificial capaz de identificar o cheiro de gases tóxicos – ou de produtos químicos – por meio de padrões armazenados num banco de dados. A ideia foi apresentada em 2000 na tese de doutorado de uma aluna da UFPI. “A proposta inicial era usar o nariz artificial para detectar drogas nos aeroportos, substituindo os cães. Mas era inviável a curto prazo”, afirma a professora Teresa Ludermir, do Centro de Informática da UFPE. A universidade conseguiu um financiamento de 800 mil reais de um fundo setorial da área de petróleo, o que acabou direcionando aplicação para esse mercado.

O projeto, desenvolvido pelo Centro de Informática e pelo Departamento de Física, envolveu dez alunos. Um conjunto de sensores que captava as propriedades do cheiro e as transformava em sinais analógicos. Esses sinais passam por um multiplexador e são convertidos em digitais. Depois, vão para um computador, que roda o programa de reconhecimento de padrões e faz a comparação com o banco de dados. Desenvolvido no Centro de Informática, o software é baseado na tecnologia de redes neurais. Dois protótipos foram testados em laboratório – um fica na UFPE e outro, na Universidade Católica de Pernambuco (fotó). A primeira experiência usou vinhos de diferentes safras, que o nariz foi capaz de identificar. Depois, foram feitas comparações com duas bases de dados, fornecidas por uma refinaria da Petrobras: uma de gases tóxicos e outra de diferentes tipos de aguarrás, usada pela indústria de tintas. E o nariz emplacou de novo.

ROSA SPOSITO

Em várias das pesquisas das universidades, o movimento começa nas salas de aula e nos laboratórios e frequentemente vira combustível para as atuais incubadoras instaladas nos campus. Hoje, uma das áreas que mais aparecem no radar da turma acadêmica de TI é justamente a de medicina, em sintonia com os mais diversos tipos de tecnologia. Na Universidade Federal do Rio Grande do Sul, a UFRGS, um dos casamentos é com a área de computação gráfica e animação, num grupo de quatro professores. “Estamos tentando simular humanos virtuais. Começamos com a articulação dos joelhos”, afirma Luciana Porcher Nedel, professora do Instituto de Informática da UFRGS, uma das integrantes do grupo.

A mandíbula é o alvo de um dos projetos de doutorado de uma aluna do instituto, em parceria com equipes de medicina e de física médica. A iniciativa pretende mostrar como funcionam os movimentos de abrir e fechar a boca e analisar, por exemplo, o impacto na saúde de uma pessoa que mastiga errado. Por meio de imagens em JPEG de radiografias e tomografias de voluntários, a equipe de TI constrói um modelo tridimensional da mandíbula. Nos PCs do Instituto de Informática, entram os sistemas operacionais Windows e Linux (de várias distribuições) e aplicações, desenvolvidas lá mesmo, em C. Outro componente importante na visualização de imagens é a interface OpenGL. Além das aplicações mais voltadas para a medicina, a equipe também trabalha em projetos de placas gráficas, em soluções para extração de petróleo e games.

A robótica é outra área de alto entrosamento com a medicina. Também na UFRGS, um grupo de cinco professores e 25 alunos trabalha num braço robótico para auxiliar cirurgias de laparoscopia. “Além a robótica o reconhecimento de voz e o processamento de imagens”, diz Dante Augusto Couto Barone, coordenador do Laboratório de...
Robótica Inteligente do Instituto de Informática da UFRGS. Com isso, elimina-se a necessidade de um médico auxiliar nas cirurgias — profissional que, normalmente, precisa passar horas manipulando equipamentos pesados. Robôs como esses já são fabricados fora do país e usados por alguns hospitais brasileiros. Só que os comandos têm de ser dados em inglês — mais um elemento com que o médico tem de se preocupar numa situação de extrema concentração. O projeto começou há quatro anos e está em fase de protótipo. Os primeiros testes devem ser feitos ainda no segundo semestre do ano, inicialmente com animais. Além disso, a equipe de Barone participa das tradicionais competições de futebol de robôs — no qual a inteligência artificial entra em cena para comandar as decisões de jogo das máquinas.

A inteligência artificial também é a tecnologia que está por trás de um dos projetos de ponta do ITA, o Instituto Tecnológico de Aeronáutica, em São José dos Campos, no interior de São Paulo. Em parceria com a Receita Federal e a Unicamp, alunos e professores trabalham num sistema inteligente de combate à fraude aduaneira. O objetivo é analisar procedimentos que fogem à regra e identificar, por exemplo, irregularidades nas importações. “É um trabalho que envolve tecnologia de inteligência computacional e banco de dados”, afirma Carlos Henrique Costa Ribeiro, coordenador de pós-graduação da informática e chefe do Departamento de Teoria da Computação do ITA.

Outra especialidade em que as universidades brasileiras dão um mergulho high tech é a realidade virtual aplicada à indústria. Um dos exemplos é o Tecgraf — Grupo de Tecnologia em Computação Gráfica — da PUC-Rio, criado numa parceria estreita com a Petrobras. Com isso, a vocação natural do Tecgraf foi se especializar na área de petróleo, principalmente no desenvolvimento de aplicações de visualização. Cerca de 200 pesquisadores apóiam atividades de várias etapas de extração de petróleo — da análise de questões estruturais dos navios aos reservatórios propriamente ditos. Dentro do laboratório, usando óculos 3D, é possível simular um vôo sobre uma plataforma de petróleo. A estrutura para suportar as aplicações é de peso: são 200 máquinas, entre workstations e PCs, e

OS PINGÜINS DA CEF

Para implantar o projeto Agência Livre e migrar servidores e terminais para software livre, a Caixa Econômica Federal buscou a ajuda dos universitários — no caso, o Departamento de Ciência da Computação da UFMG. A CEF tem cerca de 600 aplicativos, rodando numa plataforma descentralizada, baseada no velho Windows NT 4. O objetivo é transportá-los para um novo ambiente com base em Linux — o LibertasBR, uma versão personalizada da distribuição Debian desenvolvida pela própria UFMG. A universidade também customizou e implantou ferramentas e aplicativos de escritório, como o browser Mozilla e o pacote OpenOffice. Cerca de 40 alunos participaram do projeto. O novo ambiente está sendo usado, como piloto, numa agência da CEF em Belo Horizonte.
CAPACETE OU FILMADORA? OS DOIS

Um capacete é a base de um dos projetos do Laboratório de Sistemas Integrais (LSI), da Poli/USP, que despertou a atenção da Petrobras. O desafio era capturar e transmitir imagens de vídeo, a distância, pela rede sem fio e em tempo quase real. Para isso, foram colocadas no capacete duas câmeras digitais, que capturam imagens com resolução de 640 por 480 na velocidade de 30 quadros por segundo – qualidade semelhante à da TV. Para garantir o efeito 3D, as câmeras funcionam de forma sincronizada.

“É preciso que as duas capturem o mesmo quadro exata mente ao mesmo tempo”, diz Marcio Cabral, pesquisador do LSI responsável pelo projeto. A Petrobras estuda o uso do sistema na inspeção remota de plataformas.

As câmeras têm interface FireWire, por meio da qual enviam as imagens para um notebook, que foi acondicionado dentro de uma mochila para facilitar o transporte. Esse notebook converte as imagens para JPEG e faz o processamento necessário, antes de enviá-las, via rede Wi-Fi (padrão 802.11a, b ou g), para o computador do operador, que controla a distância o que deve ser capturado. Os programas usados na captura de vídeo, compressão, transmissão, codificação e exibição das imagens foram desenvolvidos pela equipe do LSI, com a colaboração de alunos da Poli e do Instituto de Matemática e Estatística da USP. Agora, o grupo trabalha num novo protótipo, que vai permitir a comunicação remota entre o operador e a pessoa que está usando o capacete, por meio de voz sobre IP. RS

O LSI (Laboratório de Sistemas Integrais), da Escola Politécnica da USP, é outro nome famoso pelos projetos de realidade virtual. O mais conhecido deles é a Caverna Digital, um ambiente construído especialmente para fazer simulações. Um dos trabalhos do grupo é um capacete que embute duas câmeras de vídeo e permite captar imagens em 3D nas plataformas de petróleo (veja mais detalhes no quadro ao lado). Paralelamente, a Poli estudou a criação de um acervo de software de realidade virtual para escolas para apoiar as atividades pedagógicas. Que tal um voo virtual pelos Andes para aprender mais sobre geografia? Os estudos da área, no entanto, não ficam apenas no campo das imagens – estão também nos sons, no olfato e até no tato. "No futuro, você poderá fazer uma videoconferência e sentir o abraço de um amigo por meio de campos magnéticos", diz o professor João Antonio Zuffo, coordenador-geral do LSI.

Os sensores e agentes inteligentes vêm recebendo o atendimento dos centros de pesquisas acadêmicos. Um dos trabalhos desenvolvidos pela UFPE (Universidade Federal de Pernambuco) é um assistente animado para uso em projetos de educação a distância. Ele é capaz de reagir ao comportamento do usuário no computador e mostrar reações se o internauta fizer algo de errado no treinamento ou ficar muito tempo inativo. O agente inteligente em questão ganhou um nome – Victor – e tem até um perfil no site: 1,81 metro de altura,
82 quilos, doutorado em ciência da computação e esportes radicais são seu hobby. Os campos de aplicação são amplos. "Também poderíamos ter sensores e agentes inteligentes nos veículos para ver se um motorista está alcoolizado e alertá-lo sobre isso", diz Silvio Maria, cientista-chefe do Cesar (Centro de Estudos e Sistemas Avançados do Recife). Outro projeto que usa os sensores como base é o nariz artificial (leia mais na página 64). Ainda um protótipo, pode ser usado, por exemplo, para monitorar áreas de risco com concentração de gases tóxicos.

Várias das universidades de ponta no país se dedicam a projetos de segurança, entre eles o de criptografia e de biometria — dos mais variados tipos, de digitais ao da face. Na Unicamp, uma equipe de engenheiros pesquisou uma aplicação bastante específica: a biometria por digitação. A ideia é usá-la em conjunto com a senha para validar a entrada das pessoas num sistema. Nesse caso, alguém pode até descobrir a sua senha, mas teria de passar pelo teste da biometria, identificando a forma como a pessoa digita — o ritmo, os intervalos entre pressionar uma tecla e outra. "Estudamos essa aplicação principalmente para uso em celulares, que não podem usar senhas alfanuméricas, apenas aquelas formadas por números", diz Lee Luan Ling, professor da Faculdade de Engenharia Elétrica e coordenador do Laboratório de Reconhecimento de Padrões e Redes de Comunicações da Unicamp. A equipe já terminou o algoritmo e montou um protótipo de celular, que está em fase de testes.

CIENTISTAS PRECEDES

Antes mesmo de entrar na faculdade, os estudantes brasileiros podem dar sua contribuição para o desenvolvimento da tecnologia. É o que vem acontecendo há três anos, desde que a feira brasileira de Ciências e Tecnologia, a Febrace, foi criada. Realizada pela Escola Politécnica da USP, o evento apresenta projetos nas áreas de ciências e engenharia, desenvolvidos por alunos daquela série do ensino fundamental e do médio ou técnico. Os melhores trabalhos são selecionados para representar o Brasil na Intel ISEF (International Science and Engineering Fair), feira internacional realizada anualmente nos Estados Unidos.

Em sua primeira edição, em 2003, a Febrace recebeu 93 projetos de 13 estados. Um deles ganhou um prêmio de 500 dólares durante a ISEF: um robô-peixe destinado a coletar amostras do fundo de um lago para avaliar indícios de poluição. Construído por dois estudantes do interior de São Paulo, o robô era equipado com um microcontrolador e com diversos tipos de sensores que o ajudavam a chegar ao fundo do lago, desviando de obstáculos. Neste ano, a Febrace exibiu 200 projetos e selecionou nove para a ISEF. O Milk Tester, equipamento microcontrolado que permite verificar a qualidade do leite, ficou em quarto lugar na categoria de engenharia. Os autores do projeto — três alunos do curso de eletrônica da Fundação Escola Técnica de Novo Hamburgo, no Rio Grande do Sul — também faturaram um prêmio de 500 dólares.